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Abstract. Smoke forecasts have been challenged by high
uncertainty in fire emission estimates. We develop an in-
verse modeling system, the HYSPLIT-based Emissions In-
verse Modeling System for wildfires (or HEIMS-fire), that
estimates wildfire emissions from the transport and disper-
sion of smoke plumes as measured by satellite observations.
A cost function quantifies the differences between model pre-
dictions and satellite measurements, weighted by their un-
certainties. The system then minimizes this cost function by
adjusting smoke sources until wildfire smoke emission esti-
mates agree well with satellite observations. Based on HYS-
PLIT and Geostationary Operational Environmental Satel-
lite (GOES) Aerosol/Smoke Product (GASP), the system
resolves smoke source strength as a function of time and
vertical level. Using a wildfire event that took place in the
southeastern United States during November 2016, we tested
the system’s performance and its sensitivity to varying con-
figurations of modeling options, including vertical alloca-
tion of emissions and spatial and temporal coverage of con-
straining satellite observations. Compared with currently op-
erational BlueSky emission predictions, emission estimates
from this inverse modeling system outperform in both reanal-
ysis (21 out of 21 d; − 27 % average root-mean-square-error
change) and hindcast modes (29 out of 38 d; −6 % average
root-mean-square-error change) compared with satellite ob-
served smoke mass loadings.

1 Introduction

Burning biomass is one of the major factors affecting global
air quality (Crutzen and Andreae, 1990). Fire smoke plumes
directly emit both particles that can impact cardiopulmonary
health and precursors (e.g., NOx , SO2, NH3, and volatile or-
ganic carbons, VOCs) (Andreae, 2019) that react to form sec-
ondary particulate matter (PM) or other pollutants, such as
ozone (Dreessen et al., 2016; Jaffe and Wigder, 2012; Mok
et al., 2016; Singh et al., 2012; Valerino et al., 2017). In ad-
dition to their impact on air quality, fire emissions influence
direct and indirect radiative transfer, aerosol formation, and
the formation of cloud condensation nuclei, and they further
interact with clouds and, eventually, with the biosphere and
climate. Interaction between fire and the climate is an im-
portant factor affecting the future direction of the environ-
ment (Bowman et al., 2009). While high fire activities are
affected by decadal-scale variation of the climate (Carvalho
et al., 2011; Flannigan et al., 2005; Spracklen et al., 2009),
aerosols released from fires and changed surface albedo due
to burned areas are influential, as they disturb the radiative
balance in the atmosphere (Liu et al., 2014).

Meeting National Ambient Air Quality Stan-
dards (NAAQS) requires US state agencies to understand the
primary emission sources for particulate matter. Notwith-
standing many states’ continuous efforts to control in-state
sources of pollutants, it is challenging to account accurately
for fire emissions and the out-of-state transport of fire
plumes. Due to the huge impact of fires on regional air
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quality, accurately forecasting their impact is an important
public-service task, performed mostly by government
agencies. The National Oceanic and Atmospheric Admin-
istration (NOAA) Smoke Forecasting System (SFS) was
initiated after the large wildfire event in May 1998 (In et
al., 2007; Rolph et al., 2009) to predict the movement of
smoke from large wildfires (Rolph et al., 2009; Stein et al.,
2009). The SFS uses the National Environmental Satellite,
Data, and Information Service (NESDIS) Hazard Mapping
System (HMS) (Ruminski and Kondragunta, 2006) and the
US Forest Service’s (USFS) BlueSky framework (Larkin
et al., 2009) to detect fires and estimate emissions. The
NOAA’s HYSPLIT (Stein et al., 2015), a Lagrangian model
which is designed to track air parcel trajectories, is then
used to calculate transport, dispersion, and deposition of the
emitted particulate matter. The SFS provides daily smoke
forecasts over the continental United States, Alaska, and
Hawaii to provide air quality guidance to the public.

Eulerian systems are also used for smoke forecasting.
Smoke emissions from wildfires have been incorporated into
the NOAA’s National Air Quality Forecast Capability system
as real-time, intermittent sources; this system has been fore-
casting regional air quality for surface ozone and particulate
matter concentration since 2015 (Lee et al., 2017). The High-
Resolution Rapid Refresh Smoke (HRRR-smoke; https://
rapidrefresh.noaa.gov/hrrr/, last access: 29 August 2020)
(Ahmadov et al., 2017) system also provides 36 h forecasts
for the continental United States using the WRF-Chem mod-
eling system with emissions derived from satellite-measured
fire radiative power (FRP). Also, Chen et al. (2019) demon-
strated an air quality forecast system over Canada that in-
corporates near-real-time measurement of biomass burning
emissions to forecast smoke plumes from fire events. There
are numerous other global smoke forecast systems (Chen
et al., 2011; Larkin et al., 2009; Lee et al., 2019; Li et al.,
2019b; Pavlovic et al., 2016; Sofiev et al., 2009).

Any improved smoke forecast system must confront sev-
eral uncertainties, particularly fire (especially wildfire) emis-
sion amounts and their allocation spatially and vertically.
In general, fire emissions may be estimated in one of two
ways: bottom up and top down. Regarding the more tradi-
tional bottom-up approaches, fuel consumption is estimated
as the product of burned size, pre-burn fuel loading of the
fire-affected area, completeness of combustion, and emission
factors (Seiler and Crutzen, 1980). Since emission factors are
specific to the type of tree ablaze, a completely constructed
database is very important in this approach. For example,
Wiedinmyer et al. (2006), in estimating emissions from fires
in North America, estimated fuel loading based on a combi-
nation of satellite and ground-collected data, such as Mod-
erate Resolution Imaging Spectroradiometer (MODIS) ther-
mal anomalies, the Global Land Cover Characteristics data
set, the MODIS Vegetation Continuous Fields Product, and
emission factors.

Recently, the global coverage of spaceborne instruments
has encouraged top-down approaches. A fire’s heat signa-
ture (that is, FRP) is detectable by satellite, and FRP can be
used to estimate the rate of combustion (Giglio et al., 2003;
Kaufman et al., 1998). Measurements of FRP from polar-
orbiting sensors can both detect active fires and characterize
their properties (Freeborn et al., 2009; Jordan et al., 2008;
Schroeder et al., 2014). FRP data have been used to quan-
tify biomass consumption, detect the locations of fire emis-
sion sources, trace gas and aerosol production (Ellicott et al.,
2009; Kaiser et al., 2012; Vermote et al., 2009), and estimate
the vertical extension of smoke plumes and other fire emis-
sions (Val Martin et al., 2010). Several global fire emission
databases – e.g., Global Fire Emissions Database (GFED),
Fire Inventory from NCAR (FINN), Quick Fire Emissions
Database (QFED), Global Fire Assimilation System (GFAS),
Fire Energetics and Emissions Research (FEER), and Global
Biomass Burning Emissions Product (GBBEP) – have been
developed using one or both of the bottom-up and top-down
approaches (Ichoku and Ellison, 2014; Kaiser et al., 2012;
van der Werf et al., 2010; Wiedinmyer et al., 2011; Zhang et
al., 2012). Both bottom-up and top-down approaches have
their own advantages and limitations. While the bottom-
up approach may provide detailed information based on a
process- or fuel-specific estimation, it relies on various sur-
veys that require significant time and resources. On the other
hand, the top-down approach relies on observations of a few
atmospheric variables such as radiation or aerosol optical
properties, but it has an advantage from its timely availabil-
ity and geographical coverage. Both approaches complement
each other for better fire emission estimation.

This study extends the current capabilities of the NOAA
SFS fire smoke forecast systems, most of which estimate fire
emissions using the surface and thermal characteristics of de-
tected fire locations. Transport pathways of smoke plumes
are rarely considered in determining emissions strength, ver-
tical extension, and temporal variation. This study aims to
develop an inverse modeling system for fire emissions based
on a Lagrangian model that can resolve these transport path-
ways using HYSPLIT simulations and satellite observations.
Such an approach has been adapted to inversely estimate var-
ious emission sources, including greenhouse gas emissions
(Kunik et al., 2019; Nickless et al., 2018; Turnbull et al.,
2019), volcanic ash and sulfur dioxide emissions (Boichu et
al., 2014; Zidikheri and Lucas, 2020), and radionuclide re-
lease from a nuclear power plant incident (Chai et al., 2015;
Katata et al., 2015; Li et al., 2019a), but was rarely used in
fire emission estimation (e.g., Nikonovas et al., 2017).

The remainder of the paper is structured as follows. Sec-
tion 2 describes the model and satellite data used to detect
fire locations and the transport of fire smoke. Section 3 con-
cerns the methodology and structural design of the inverse
modeling system. Results from a case study, sensitivity tests,
and comparison with the currently operational system are
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presented in Sect. 4. Finally, Section 5 summarizes and dis-
cusses directions for future work.

2 Data

2.1 HMS and BlueSky

Consistent with the NOAA SFS system, the HMS data are
utilized to detect wildfire information. HMS, developed as a
tool to identify fires and their smoke emissions over North
America in an operational environment, incorporates im-
ages from multiple geostationary and polar-orbiting envi-
ronmental satellites, including the Geostationary Operational
Environmental Satellite (GOES)-East/West, Suomi-National
Polar-orbiting Partnership (NPP), MODIS, and Advanced
Very High Resolution Radiometer (AVHRR) METOP-B, to
provide the location and time of detected fires. Automated
fire detection algorithms are first employed for each sensor,
and then human analysts apply further quality control by ex-
amining visible channel imagery for false alarms and missed
hotspots (Ruminski et al., 2008; Ruminski and Kondragunta,
2006; Schroeder et al., 2008).

The BlueSky system, developed by the US Forest Ser-
vice, provides the first guess for fire emission estimation.
As a modeling framework, BlueSky links several models of
fire information, fuel loading, fire consumption, fire emis-
sions, and smoke dispersion (Larkin et al., 2009; Strand et al.,
2012). For the original NOAA SFS system, BlueSky emis-
sions are used as inputs for the dispersion model. In this
study, we use the BlueSky emission rate as an initial guess
before applying the inverse modeling system.

2.2 GASP

The GOES Aerosol/Smoke Product (GASP) is a retrieval of
the aerosol optical depth (AOD) using GOES visible im-
agery (Kondragunta et al., 2008; Prados et al., 2007). This
product is available at 30 min intervals and 4 km× 4 km spa-
tial resolution during the sunlit portion of the day. The Au-
tomated Smoke and Tracking Algorithm (ASDTA; https:
//www.ssd.noaa.gov/PS/FIRE/ASDTA/asdta_west.html, last
access: 29 August 2020) detects smoke associated with de-
tected fire source locations. For each pixel, the radiative sig-
natures of an aerosol layer (e.g., dust and smoke) are de-
termined by the scattering and absorption properties of the
aerosol. ASDTA also utilizes a pattern recognition technique
to isolate smoke aerosols from other type of aerosols, so that
it can recognize plumes transported far from fire sources.
The GASP product is particularly useful for tracking fast-
moving plumes, which polar-orbiting sensors often cannot
detect since they provide only one daily image. Since the
ASDTA product is a part of the GASP product, in this study,
GASP and ASDTA indicate total AOD and smoke AOD, re-
spectively. Hourly data were used for the inverse system.

2.3 HYSPLIT

HYSPLIT computes air parcel trajectories and the dispersion
or deposition of atmospheric pollutants (Stein et al., 2015). It
has been widely used to simulate pollutant events, including
volcanic ash, smoke from wildfires, radioactive nuclei dis-
persion, and emissions of anthropogenic pollutants. For the
inverse modeling system, we used the Transfer Coefficient
Matrix (TCM) approach. The unit source calculations give
the dispersion factors from the release point for every emis-
sion period to each downwind grid location, defining what
fraction of emissions are transferred to each location varying
as a function of time. This is defined as the TCM (Draxler
and Rolph, 2012). The TCM is computed for inert and de-
positing species and, when quantitative air concentration re-
sults are required, the final air concentration is computed in
a simple post-processing step that multiplies the TCM by the
appropriate emission rate. Results for multiple emission sce-
narios are easily created and may be used to optimize model
results as more measurement data become available.

For the inverse system, 120 h HYSPLIT simulations were
conducted daily, starting from 06:00 Z using North Ameri-
can Model 12 km meteorology (NAM12), at each fire source
location provided by the HMS fire detection information. A
total of 50 000 particles were released for each simulation,
and dispersed concentrations were vertically integrated up
to 5000 m onto 0.1◦ spatial grids. Hourly outputs were inte-
grated to match with satellite observational data. HYSPLIT
modeling options were configured to be consistent with the
SFS system, including options for dry and wet depositions
(i.e., 0.8 µm diameter with 2 g cm−3 density) (Rolph et al.,
2009). In this paper the integrated mass loading of parti-
cles from HYSPLIT simulation and satellite products will be
compared with each other. For satellite products (e.g., GASP,
ASDTA, and MODIS), smoke is converted from AOD us-
ing a simple conversion factor (i.e., 1 AOD= 0.25 g m−2)
which is compatible to 4 m2 g−1 mass extinction efficiency
(Nikonovas et al., 2017). Although we used a single conver-
sion factor for the study, the actual conversion factors may
vary in time and space (i.e., 3.9–5.3 m2 g−1) (Chand et al.,
2006; Hobbs et al., 1996; Ichoku and Ellison, 2014; Nikono-
vas et al., 2017; Reid et al., 2005). Therefore, applying more
realistic conversion factors and their uncertainties into the
system would be another factor in the future improvement
of the system.

For HYSPLIT runs, smoke indicates the sum of dispersion
simulations (i.e., TCM runs in concentration unit) multiplied
by emissions for each source. Since we have integrated dis-
persion model outputs (in density unit) up to 5000 m height,
the results shown in the study are obtained by multiplying
the column height (i.e., 5000 m) and are demonstrated as to-
tal mass loading for a column (kg m−2).
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3 Methodology

3.1 Overview

A HYSPLIT inverse system was built and successfully
applied to estimate the cesium-137 releases from the
Fukushima Daiichi Nuclear Power plant accident in 2011
(Chai et al., 2015). It was then modified to estimate the vol-
canic ash source strengths, vertical distribution, and tempo-
ral variations by assimilating MODIS satellite retrievals of
volcanic ash clouds while using ash cloud top height infor-
mation as well (Chai et al., 2017). It was found that simulta-
neously assimilating observations at different times produces
better hindcasts than only assimilating the most recent obser-
vations. In this application, the HYSPLIT-based Emissions
Inverse Modeling System for wildfires (HEIMS-fire) is de-
signed to assimilate satellite observations to generate wildfire
emission estimates. The smoke plume transport and disper-
sion, captured by frequent geostationary satellite retrievals,
can be used as constraints to obtain the smoke emission es-
timates. In the system, a cost function quantifies the differ-
ences between HYSPLIT model predictions and satellite-
observed AOD, weighted by model and observation uncer-
tainties. Minimizing the cost function by adjusting emission
rates at different fire locations and at several different release
heights thereby provides the fire emission estimates.

3.2 Cost function

Taking a top-down approach, unknown emission terms are
obtained by searching for the emissions that provide the
model predictions that most closely match the observations.
With fire locations mostly identified by the HMS system, un-
known emission rates at these specified locations remain un-
determined. At each fire location, released smoke can reach
different heights under various fuel-loading and meteorolog-
ical conditions. In addition, emission rates may vary signifi-
cantly with time. Thus, the unknown elements of the inverse
problem are the emission rates qiktat each wildfire location i
at different heights k and time periods t . The cost function F
is defined as follows:

F =
1
2

T∑
t=1

K∑
k=1

I∑
i=1

(
qikt − q

b
ikt

)2
σ 2
ikt

+
1
2

N∑
n=1

M∑
m=1

(
ch
nm− c

o
nm

)2
ε2
nm

+Fother, (1)

where co
nm is the mth gridded satellite observation (e.g.,

GASP ASDTA smoke mass loading) at time period n and
ch
nm is its HYSPLIT counterpart.

A background term is included to measure the deviation
of the emission estimate from its first guess, qb

ikt , obtained
from the operational BlueSky emission computation. The
background term ensures the problem remains well-posed

even with the limited observations available in certain cir-
cumstances. The background error variance σ 2

ikt measures
uncertainties in qb

ikt . Pan et al. (2020) compared six global
emission estimates and found that the total emission dif-
fers by a factor of 3.8. However, emission estimations at
specific locations and times can have much larger errors.
In addition, the vertical distribution of the smoke emissions
is difficult to determine and this adds even more uncertain-
ties to the emission estimates. We chose a large uncertainty
for the background term as σikt = 1000×qb

ikt +1000 kg h−1

at all locations and heights to minimize the adverse im-
pact of inaccurate BlueSky emission estimates. The observa-
tional error variances, ε2

nm, represent uncertainties in both the
model and observations, as well as the representative errors.
Kondragunta et al. (2008) indicated that GOES aerosol re-
trievals over land were expected to have uncertainties within
0.15τ ± 0.05, where τ is the AOD. Paciorek et al. (2008)
showed a better performance of GOES aerosol retrievals in
eastern US than in western US. Green et al. (2009) demon-
strated that GOES AOD correlates best with AERONET
in autumn (September to November) than in other seasons.
They showed that the RMSE was 0.060 in autumn while the
average for all seasons is 0.149. Considering the better per-
formance in the eastern US and in November, AOD uncer-
tainties of 0.10τ ± 0.06 are assumed in this paper. A slightly
larger additive component of the AOD error is chosen to in-
clude the effects of the representative errors and model errors
that do not vary with the observed AOD values. Fother refers
to the other regularized terms that can be included in the
cost function. For instance, Chai et al. (2015) has a tem-
poral smoothness penalty term to avoid abrupt changes in
the temporal profile of the release rates. While this optimiza-
tion problem could be solved to obtain optimal emission es-
timates using many minimization tools, we used the limited-
memory Broyden–Fletcher–Goldfarb–Shanno (BFGS) algo-
rithm (Zhu et al., 1997).

3.3 Inverse system

The HEIMS-fire system is designed to conduct a two-step
operation: (1) estimation of fire emission using an inverse
system and (2) forecast modeling of fire smoke using esti-
mated fire emissions. The inverse system utilizes observa-
tions and modeling systems available from multiple agen-
cies. We aim to objectively and optimally estimate wildfire
smoke sources’ strength, vertical distribution, and tempo-
ral variations by assimilating GASP AODs. Figure 1 sum-
marizes the system’s incremental stages of data processing,
listed below with the required data (and their providing agen-
cies):

1. fire detection from the Hazard Mapping System (NES-
DIS),

2. HYSPLIT simulations with unit emissions at different
locations and release heights,
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Figure 1. Schematic diagram of the HYSPLIT-based Fire Emission
Inverse Modeling System.

3. construction of the Transfer Coefficient Matrix with
available observations,

4. initial guess for fire emissions (BlueSky, US Forest Ser-
vice),

5. cost function minimization to estimate smoke emis-
sions,

6. smoke forecast using adjusted smoke emissions.

By minimizing a cost function, the HEIMS-fire system
provides adjusted fire emissions that can describe realistic
smoke plumes. Results in the following section show that the
assimilated smoke plumes agree well with satellite observa-
tions. The system requires a first guess as input before it can
start to minimize the cost function. Selection of this input is
usually critical both for the performance of the minimization
calculation and for the final output.

Here we also explain the naming conventions for temporal
coverage of emission estimation processes and forecasting
processes. This inverse system is designed to estimate fire
emissions on the target day by analyzing past and present
smoke fields and then utilizes them to forecast the future
smoke field. The assimilation days (i.e., aday= 0, −1, −2)
(see Fig. S1 in the Supplement) indicate the temporal cover-
age of dispersions and constraining observations. For a target
day, 13 November, inversions are conducted using HYSPLIT
dispersion simulations and ASDTA observations for 24 h
(i.e., aday= 0), 48 h (i.e., aday=−1), 72 h (i.e., aday=−2),
and 96 h (i.e., aday=−3). Estimated fire emissions are used
to simulate fire smoke for 13 November (i.e.,fday= 0; re-
analysis), and the same amount of fire emissions are used
in forecast mode for 14 November (i.e., fday=+1) and
15 November (i.e., fday=+2). Application of forecast mode
will be further discussed in Sect. 4.5.

4 Results

4.1 Case study

A case study using a November 2016 wildfire event was
conducted to test the performance of the HEIMS-fire sys-
tem. This fire event was a series of wildfires in the south-
eastern United States in October and November 2016. The
US Forest Service reported at least 80 000 acres (∼ 324 km2

burned from 23 October to 9 December 2016. For the case
study, we focused on the fire event that occurred in Geor-
gia, South Carolina, North Carolina, and the adjacent states
from 10 to 17 November 2016. Figure 2 shows an example
of fire smoke detected from a MODIS true-color image and
three AOD products from MODIS, GASP, and ASDTA on
10 November 2016. Wildfires in the Appalachians of north-
ern Georgia, western North Carolina, and eastern Tennessee
began to produce large smoke plumes moving southeast. Nu-
merous smoke plumes could be seen from active wildfires
burning across the region. Changes in the fire events from
8 to 19 November 2016 are also shown as MODIS true-color
images in the Supplement (Fig. S2).

4.2 Model configuration

The month of November 2016 saw fires nationwide, although
the most extensive fires happened in the southeastern US re-
gion. We considered four geographic domains in determining
fire source inputs, as shown in Fig. 3. Red dots indicate HMS
fire detections during November 2016. The results of the sen-
sitivity test using these domains are discussed in Sect. 4.4.

The inverse modeling system was tuned using various sen-
sitivity tests. A series of twin experiments was conducted to
test the range of uncertainties that comes from the system
design. A twin experiment is an idealized modeling test in
which we assume that the modeled world adeptly mimics the
real world. Using a true solution for the situation, we can
test the system’s capability to reproduce the true answer. We
tested uncertainties of the system across multiple scenarios
and four types of potential uncertainty (vertical allocation,
temporal coverage, spatial coverage, and impact of observa-
tion errors) in these twin experiment cases. Detailed descrip-
tions of the twin experiments and sensitivity test are available
in the Supplement.

4.3 Emission estimation

Fire emissions and their vertical distributions for each de-
tected fire location were estimated using the HEIMS-fire
system, inversely modeled from ASDTA AOD data as de-
scribed above. Locations and times of fires detected by HMS
were used to initiate HYSPLIT simulations, with emissions
released over six layers (100, 500, 1000, 1500, 2000, and
5000 m). On 11 November, 46 fire locations were identified
within the assimilation domain (domain 1 in Fig. 3). Thus,
the TCM was established based on 276 HYSPLIT simula-
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Figure 2. Detection of fires over the southeastern region of the United States on 10 November 2016. True-color images from MODIS (left),
MODIS AOD (top right), GASP AOD (middle right), and ASDTA AOD (bottom right) are shown. MODIS true-color images and AOD are
obtained from https://earthdata.nasa.gov/ (last access: 29 August 2020), and GASP and ASDTA AOD are obtained from NOAA NESDIS.

Figure 3. Geographical coverage of case study domains. Red dots
indicate HMS fire detections during November 2016. The four la-
beled domains indicate spatial coverage of fire source inputs for the
inverse system used in the sensitivity tests.

tions (46 fires× 6 release altitudes) and GASP AOD obser-
vations. Emissions rates calculated from the BlueSky system
were used as an initial condition. Emissions were evenly dis-
tributed to all layers used in the system.

Minimizing the cost function results in the estimation of
fire emissions. Figure 4 shows the agreement between the
modeled and observed mass loading from the initial to the ad-
justed emission estimates. Table 1 presents summary statis-
tics for the changes in reconstructed smoke mass loading
from the initial guess to the adjusted emissions. In the end,
estimated fire emissions were combined to reconstruct fire

smoke plumes. Using adjusted fire emissions, we can recon-
struct the integrated smoke columns as a sum of adjusted
emissions, qikt , applied to each TCM, Tikt :

c(nm)=
∑
ikt

qikt · Tikt (n,m), (2)

where i, k, and t denote spatial, vertical, and temporal alloca-
tion of emission sources andm and n denote the location and
time of receptor (i.e., observations), respectively. Figure 5
presents the spatial distribution of reconstructed fire smoke
mass loading for the case study in terms of column-integrated
density. We applied estimated fire emissions to TCM runs
for each detected fire location and vertical release height and
then merged them into one hourly concentration field. Re-
constructed smoke plumes (i.e., integrated dispersion outputs
in 0–5000 m height) show a good agreement with observed
smoke (Fig. 5). The first and second columns compare AS-
DTA and HEIMS smokes for spatially and temporally match-
ing pixels, and the third column shows the full spatial cover-
age of HEIMS smoke for daytime (around 08:00–17:00 LT,
local time) when ASDTA data are available. The 17 Novem-
ber output in Fig. 5 shows how the system responds when
observations are limited or missing, while it still provides a
robust result by honoring the initial guess information. On
17 November, no ASDTA AOD was provided from the satel-
lite operation. Under 48 h configuration (i.e., aday=−1), the
inverse system still produced reasonable outputs using lim-
ited observations (16 November) and initial guess emissions
(16 and 17 November). This case hints at the importance of
both a traditional (e.g., BlueSky emissions) and new inverse
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Figure 4. Scatterplot comparison between initial and assimilated smoke mass loading using adjusted fire emissions. A 48 h observation
(aday=−1) and 6-layer plume release configuration is used (unit: ×10−6 kg m−2).

system. They complement each other, as one provides the lat-
est data assimilation technique while the other provides prior
information and backup stability in a contaminated environ-
ment (e.g., excessive cloud cover).

4.4 Sensitivity tests

Similar to the twin experiments, we conducted a series of
sensitivity tests to investigate how the inverse model re-
sponds to changes in input data and various configurations
of the modeling framework. This will be achieved by focus-
ing on variation in temporal coverage, spatial coverage, and
vertical allocation of smoke plumes.

First, we changed the assimilation time windows from 1 d
(24 h) to 4 d (96 h). Since the impact of fire emissions easily
translates over multiple days, we tested how temporal cover-
age affects system results. The “1 d” (aday= 0) simulation is
run through the inverse model using dispersions and obser-

vations for the target day, while the “2 d” simulation uses 2 d
(i.e., 48 h) of dispersions and observations (aday=−1). For
this test, all observations within the assimilation time win-
dows were selected for the assimilation and the evaluation.
The results are shown in Fig. 6a, while the correlation and
error statistics are summarized in the top section of Table 2,
i.e., (A: 24 h, O: 24 h, E: 24 h), . . . , (A: 96 h, O: 96 h, E: 96 h).
With the exception of 10 and 11 November, in the early stage
of the fire event, both the correlation coefficient (R) and nor-
malized root-mean-square error (NRMSE) were improved by
the use of more days (i.e., 3 or 4 d) of dispersions and ob-
servations for the inverse model. This makes sense because
emissions from multi-day fire events spread out and affect
concentrations over proceeding days.

A series of additional simulations were also conducted to
test the system’s sensitivity to the selection of observations
for the assimilation and the evaluation. In these tests, we
investigated combinations in assimilation time (“A” in Ta-
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Figure 5. Comparison of observed and reconstructed smoke plumes during 10–17 November 2016. Smoke mass loading from ASDTA
(left column) and reconstructed HEIMS smokes for ASDTA-matching (middle column) and for daytime (right column). A 48 h observation
(aday=−1) and 6-layer plume release configuration is used.

ble 2), observational time (“O”), and evaluation time win-
dows (“E”). Results are also summarized in Table 2. For a
fixed assimilation time period (i.e., A: 96 h), using a shorter
observational time window resulted in a better result. It is
reasonable because we expect a better fitting with a smaller
number of data points. However, it can easily be exposed to
an overfitting problem if available data for the assimilation
are too small.

Second, we tested the layers at which fire emissions are
initiated in the model. As expected, including more layers
results in better statistics, since the transport and dispersion
of each smoke plume can vary with the altitude to which their

fire emissions are allocated. We tested the model’s uncer-
tainties on layers’ maximum extension and resolution, with
varying selections of two to seven layers at 100, 500, 1000,
1500, 2000, 5000, or 10 000 m. To test the maximum exten-
sion, starting from two layers (i.e., with emissions released
at 100 and 500 m), we added the next higher layer over six
test runs to investigate the effect of maximum extension of
smoke plume. Figure 6b shows the results, and error statis-
tics are summarized in Table 3. Including the 5000 m layer
resulted in noticeable changes especially, implying the poten-
tial benefit of including high-level transport for specific days.
Since the 5000 m layer is above typical planetary boundary
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Figure 6. Sensitivity tests for (a) temporal coverage, (b) layer selection, and (c) spatial coverage. Temporal coverage of inputs is tested for
between 24 h (aday= 0) and 96 h (aday=−3). Selection of layers is tested using two to seven layers among 100, 500, 1000, 1500, 2000,
5000, and 10 000 m. Beginning from two layers at 100 and 500 m, the next higher layer is added for each test. Spatial coverage is tested
through domain 1 to 4. The thick blue boxes indicate the intensive fire episode period, 10–17 November 2016.

layer height, emissions injected at this level experience dif-
ferent physical characteristics. Smoke lofted into the free tro-
posphere is less affected by turbulence and scavenging, and
easily transports hundreds or thousands of kilometers down-
wind because of the higher wind speeds. The addition of the
5000 m layer would better represent the potential long-range
transport. Smoke plume rise is one of traditionally impor-
tant questions in smoke modeling, so further research on the
topic is warranted. The effects of the layer resolution were
also tested. Starting from two layers (i.e., 100 and 5000 m),
we added intermediate layers up to six layers and evaluated
their performances (Table S3). As expected, including more
layers resulted in the better statistics, but its improvement
was not significant after four layers.

In the third test, we varied the spatial coverage of in-
put fire information. Although wildfire impacts easily spread
by long-range transport, we could not include all the global
fire information due to limited computational resources. We
therefore tested different spatial domains of fire locations to
evaluate what spatial coverage of wildfire detection informa-
tion is required to estimate fire emissions. Fire sources inside
domain 1 through 4 (Fig. 3) were tested in the assimilation
constrained by ASDTA AOD inside domain 1. Figure 6c and
Table 4 show correlation and error statistics from the sensi-
tivity test of spatial coverage. In most days, we have better
results when we include fire emission sources at least within
domain 2. It makes sense considering the effects of trans-
ported fire plumes from Mississippi and Louisiana (Fig. 3).
Maximizing geographical coverage (e.g., domain 4) did not
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Table 1. Performance evaluation. Statistics of modeled smoke mass loading (×10−6 kg m−2) using initial and top-down estimated fire
emissions.

10 Nov 11 Nov 12 Nov 13 Nov 14 Nov 15 Nov 16 Nov 17 Nov

Mean
Observation 84.95 105.34 148.71 159.67 188.40 184.57 127.36 101.41
Initial 37.53 36.44 15.75 34.51 29.61 18.96 9.26 6.83
Inverse 73.72 77.92 108.20 105.24 122.15 114.85 87.76 66.14

RMSE
Initial 86.09 99.56 153.21 153.35 184.74 188.81 136.79 104.80
Inverse 54.07 69.37 94.40 104.85 124.88 130.89 92.35 70.77

NRMSE Initial 101.34 94.51 103.02 96.01 98.06 102.30 107.40 103.34
[%] Inverse 63.64 65.85 63.48 65.67 66.28 70.92 72.51 69.79

Slope
Initial 0.88 0.74 0.33 0.54 0.46 0.24 −0.15 0.26
Inverse 0.73 0.89 0.99 1.07 1.07 1.07 0.89 1.14

R
Initial 0.4 0.46 0.02 0.18 0.28 0.25 −0.08 0.00
Inverse 0.65 0.62 0.31 0.48 0.44 0.35 0.15 0.15

Figure 7. Scatterplot comparisons between ASDTA smoke and HEIMS smoke (top row) and ASDTA and SFS smoke (bottom row) for
forecast days: fday= 0, +1, +2.

always result in the best performance in our case study. This
result, however, should be taken carefully because we do not
have strong fire activities outside domain 2 in our study case.
Strong long-range transport cases, typically from the north-
western US, Canada, and Alaska, would have bigger impacts.

4.5 Hindcast and operation

In this section, we conducted a HEIMS system for hindcast
mode, and compared it with operational products from the
SFS system. Both SFS and HEIMS use fire detection from
HMS for consistency, and HEIMS uses SFS fire emissions
for initial guess information. SFS simulates 72 h dispersion

of fire smoke for every day in November 2016, which is con-
sistent with fday= 0, +1, +2 of the HEIMS hindcast simu-
lations (as described in Fig. S1).

Notable differences in the configuration of SFS and
HEIMS are plume rise estimation, temporal resolution of
fire emissions, fire decaying assumption, and meteorology.
While SFS computes plume rise using the Briggs’ equation
(Arya, 1998; Briggs, 1969), which assumes an air parcel’s
rise is based only on the buoyancy terms, HEIMS determines
fire emissions’ vertical allocation using an inverse system.
At the initial guess, SFS fire emissions are evenly distributed
in all layers. Current HEIMS assumes daily emission vari-
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Table 2. Sensitivity test for temporal coverage. Uses of assimilation (A), observation (O), and evaluation (E) time windows (24 to 96 h) were
tested, and statistics, NRMSE, and R were compared. The best performance is marked in bold.

NRMSE [%] R

Coverage
A: 24 h A: 48 h A: 72 h A: 96 h A: 24 h A: 48 h A: 72 h A: 96 h
O: 24 h O: 48 h O: 72 h O: 96 h O: 24 h O: 48 h O: 72 h O: 96 h
E: 24 h E: 48 h E: 72 h E: 96 h E: 24 h E: 48 h E: 72 h E: 96 h

10 Nov 66.6 63.7 62.7 68.7 0.677 0.654 0.669 0.577
11 75.2 65.9 64.0 63.7 0.410 0.620 0.587 0.593
12 75.1 63.5 61.4 60.6 0.373 0.309 0.562 0.526
13 72.8 65.7 59.9 59.6 0.298 0.476 0.397 0.576
14 75.6 66.3 61.0 56.8 0.285 0.444 0.522 0.469
15 82.7 70.9 62.7 60.2 0.105 0.348 0.465 0.511
16 69.8 72.5 68.2 61.7 0.146 0.150 0.372 0.478
17 69.8 72.5 68.2 0.146 0.150 0.372

Coverage
A: 24 h A: 48 h A: 72 h A: 96 h A: 24 h A: 48 h A: 72 h A: 96 h
O: 24 h O: 48 h O: 72 h O: 96 h O: 24 h O: 48 h O: 72 h O: 96 h
E: 24 h E: 24 h E: 24 h E: 24 h E: 24 h E: 24 h E: 24 h E: 24 h

10 Nov 66.6 49.1 49.0 38.7 0.677 0.713 0.716 0.716
11 75.2 80.6 78.4 78.4 0.410 0.621 0.623 0.623
12 75.1 45.2 56.5 55.8 0.373 0.406 0.425 0.430
13 72.8 58.0 52.9 63.5 0.298 0.534 0.581 0.589
14 75.6 54.6 53.8 53.1 0.285 0.567 0.593 0.609
15 82.7 43.9 42.4 44.6 0.105 0.554 0.589 0.571
16 69.8 34.3 28.4 27.4 0.146 0.464 0.507 0.505
17

Coverage
A: 96 h A: 96 h A: 96 h A: 96 h A: 96 h A: 96 h A: 96 h A: 96 h
O: 24 h O: 48 h O: 72 h O: 96 h O: 24 h O: 48 h O: 72 h O: 96 h
E: 24 h E: 48 h E: 72 h E: 96 h E: 24 h E: 48 h E: 72 h E: 96 h

10 Nov 53.0 62.1 62.1 68.7 0.746 0.657 0.657 0.577
11 54.7 61.9 63.7 63.7 0.583 0.615 0.593 0.593
12 43.0 54.0 59.1 60.6 0.425 0.481 0.545 0.526
13 40.3 46.4 54.5 59.6 0.664 0.510 0.500 0.576
14 38.3 43.5 50.5 56.8 0.688 0.603 0.499 0.469
15 43.9 50.8 55.3 60.2 0.647 0.572 0.533 0.511
16 33.5 42.2 53.2 61.7 0.667 0.685 0.581 0.478
17 36.1 53.8 68.2 0.624 0.520 0.372

Coverage
A: 96 h A: 96 h A: 96 h A: 96 h A: 96 h A: 96 h A: 96 h A: 96 h
O: 24 h O: 48 h O: 72 h O: 96 h O: 24 h O: 48 h O: 72 h O: 96 h
E: 24 h E: 24 h E: 24 h E: 24 h E: 24 h E: 24 h E: 24 h E: 24 h

10 Nov 53.6 47.1 47.1 38.7 0.746 0.715 0.715 0.716
11 58.1 81.0 78.4 78.4 0.668 0.624 0.623 0.623
12 41.3 48.0 56.7 55.8 0.489 0.432 0.433 0.430
13 39.5 49.8 55.4 63.5 0.691 0.612 0.588 0.589
14 39.5 45.8 51.9 53.1 0.698 0.612 0.612 0.609
15 37.8 43.1 43.1 44.6 0.682 0.552 0.566 0.571
16 33.7 29.6 27.9 27.4 0.614 0.542 0.510 0.505
17
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Table 3. Sensitivity tests for selection of two to seven layers among 100, 500, 1000, 1500, 2000, 5000, and 10 000 m. Beginning from two
layers at 100 and 500 m, the next higher layer is added for each test. The best performance is marked in bold.

Date 2 layers 3 layers 4 layers 5 layers 6 layers 7 layers
(100–500 m) (100–1000 m) (100–1500 m) (100–2000 m) (100–5000 m) (100–10 000 m)

10 Nov 74.1 69.9 65.7 64.5 63.7 63.7
11 82.2 75.6 70.1 68.4 65.9 65.9
12 68.6 65.6 67.0 68.9 63.5 63.5

NRMSE 13 76.0 73.2 72.8 72.8 65.7 65.3
[%] 14 78.1 77.1 76.3 75.5 66.3 66.3

15 81.1 75.4 73.2 71.4 70.9 70.9
16 84.6 80.8 76.4 73.7 72.5 72.5
17 81.3 78.3 73.5 73.2 69.8 69.8

R

10 Nov 0.58 0.62 0.64 0.65 0.65 0.65
11 0.49 0.55 0.60 0.61 0.62 0.62
12 0.23 0.21 0.15 0.12 0.31 0.31
13 0.43 0.44 0.43 0.43 0.48 0.47
14 0.43 0.41 0.41 0.43 0.44 0.44
15 0.30 0.34 0.34 0.35 0.35 0.35
16 0.11 0.1 0.12 0.15 0.15 0.15
17 0.40 0.34 0.33 0.24 0.15 0.15

Table 4. Sensitivity tests for spatial coverage. Use of observational
data in terms of spatial availability is tested. Domains 1–4 are shown
in Fig. 3. The best performance is marked in bold.

Date Domain 1 Domain 2 Domain 3 Domain 4

Nov. 10 64.5 65.9 65.7 63.7
11 64.5 62.3 65.3 65.9
12 59.7 59.5 59.8 63.5

NRMSE 13 60.1 60.1 60.1 65.7
[%] 14 62.3 63.6 62.3 66.3

15 66.5 66.4 66.5 70.9
16 66.5 72.7 72.6 72.5
17 66.5 72.7 72.6 69.8

R

10 Nov 0.48 0.62 0.62 0.65
11 0.48 0.63 0.62 0.62
12 0.32 0.32 0.31 0.31
13 0.47 0.47 0.47 0.48
14 0.43 0.42 0.43 0.44
15 0.33 0.33 0.32 0.35
16 0.33 0.15 0.15 0.15
17 0.33 0.15 0.15 0.15

ation compared to hourly emissions of SFS. Also, SFS as-
sumes 75 % of emissions still happen at the same location the
next day; the HEIMS uses 50 % decay assumption after sen-
sitivity tests, which will be discussed in the next section. For
HEIMS simulation, we used aday=−1 (2 d temporal cover-
age) for the simulations shown. On the other hand, HEIMS
would benefit from a better meteorology. Although both sys-
tems use the NAM12 forecast meteorology, HEIMS hindcast
used the first 24 h portion of everyday forecast cycle, and SFS
used 72 h forecast.

For forecasting days, smoke is estimated as the summation
of impact from previous days and new emissions on the target
days. For example, smoke at fday=+2 can be reconstructed
as

Sfday=+2 = qf=0 ·TCMf=0+ qf=0 ·p ·TCMf=+1

+ qf=0 ·p
2
·TCMf=+2 , (3)

where q and p denote emissions and persistency rate, respec-
tively. The persistency rate, p, assumes the change of future
day emissions. Its role will be discussed in the next section.

Figures 7 and 8 demonstrate simulated fire smoke by SFS
and HEIMS on 11 November and 2 d forecasts (hindcasts
for HEIMS) for 12 and 13 November. Both systems repro-
duced the smoke well in their general patterns and inten-
sity, as shown in ASDTA AOD and MODIS true-color image
(Fig. 8).

As expected, the HEIMS shows better agreement
at fday= 0, as the fire emissions were assimilated
on the day. For fday=+1 (i.e., 12 November), the
HEIMS shows better agreement in RMSE and mean
bias (RMSE= 58.1× 10−6 kg m−2 and bias=−22.4×
10−6 kg m−2, compared with RMSE= 63.0× 10−6 kg m−2

and bias=−42.2×10−6 kg m−2) while SFS has better slope.
For fday=+2, HEIMS is better in mean bias but worse in
RMSE and R. Table 5 summarizes RMSE statistics from
HEIMS and SFS for each day of November 2016. In most of
the days, HEIMS posts better statistics compared with SFS,
implying the potential benefit of system improvement by
adding an additional observational constraint. For the com-
parisons of HEIMS hindcast and SFS operational simula-
tions, HEIMS system shows better performance in both hind-
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Figure 8. Spatial distributions of observed and forecasted fire smoke plumes on 11–13 November 2016: true-color image from MODIS (top
row), ASDTA smoke (second row, converted from AOD), HEIMS smoke hindcast (third row), and SFS smoke forecast (bottom row, from
operation) are shown. MODIS true-color images are obtained from https://earthdata.nasa.gov/ (last access: 29 August 2020).

cast days (16/19= 84 % on fday=+1 and 13/19= 68 % on
fday=+2).

Change of fire activity is also a problem for both systems.
If there is considerable change of fire activity for fday=+1
and +2, the forecast will result in worse performance. If fire
activities increase, the simulated smoke from HEIMS will
be underestimated, and if fire activities decrease, the HEIMS
system will overestimate the impact of smoke. Therefore, in-
formation of next day fire activity or fire duration will be
important for an accurate fire smoke forecast system, which
will be discussed further in the next section.

4.6 Persistency of fire activity

The selection of the persistent rate of daily fire emissions
(i.e., persistency= 1− decaying_rate) and its importance to
the smoke forecast system’s performance are discussed here.
In our current systems, both SFS and HEIMS, we use a sim-
ple assumption of fire emission change for next day. Fig-
ure 9 shows how the HEIMS responds to the selection of
a persistent rate for forecast days fday=+1 and +2. We
applied five different persistent rates ranging from 0 % to
100 %; persistency= 0 % assumes no new fire occurs, and
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Table 5. Performance statistics and RMSEs for HEIMS and SFS smoke mass loading for 0–2 forecast days (e.g., fday= 0,+1,+2). For each
forecast day, the better performance from the two systems is marked in bold. Statistics for days without observations or without operational
outputs are not available (unit: 10−6 kg m−2).

fday= 0 fday=+1 fday=+2

Date (in Nov) HEIMS SFS HEIMS SFS HEIMS SFS

1 64.5 105.8 54.6 70.5 40.2 77
2 53.6 70.6 52.0 76.2 51.8 53.9
3 61.4 76.4 52.8 54.5 74.3 74.4
4 45.1 53.3 67.2 71.6 106.8 86.5
5 41.6 70.4 64.3 82.4 68.5 72.2
6 54.2 86.1 61.6 95.7 – –
7 56.3 88.3 – – 75.2 72.9
8 – – 74.8 – 45.0 –
9 60.4 73.3 39.7 40.3 69.3 70.5
10 22.8 57.0 61.2 60.1 71.8 89.1
11 45.5 60.3 58.1 63.0 95.4 71.0
12 39.9 60.7 103.0 69.1 79.4 88.1
13 52.7 74.3 69.7 83.8 75.3 61.4
14 60.3 81.9 61.8 63.9 42.0 44.2
15 57.8 – 31.4 – – –
16 26.6 39.8 – – – –
17 – – – – 46.2 47.0
18 – – 52.3 45.6 45.0 43.6
19 35.6 49.7 44.4 45.8 42.3 46.0
20 42.8 – 41.3 – 77.3 –
21 35.0 45.2 64.5 77.0 63.7 76.6
22 49.2 – 54.3 – 43.2 –
23 60.7 75.5 42.7 46.2 92.7 92.4
24 39.8 50.9 89.8 93.3 70.4 71.1
25 87.6 93.4 71.7 72.1 102.1 101.6
26 62.3 72.0 90.6 100.8 – –
27 73.1 99.8 – – – –
28 – – – – – –
29 – – – – – –
30 – – – – 40.0 40.0

HEIMS
21/21= 100 % 16/19= 84 % 13/19= 68 %

better than SFS

persistency= 100 % assumes the same amount of fire emis-
sions released at the same location from the previous day.
For the top row of Fig. 9, simulated smokes in fday=+1
and +2 solely originate from fires in fday= 0. On the other
hand, persistency= 100 % simulation demonstrates accumu-
lated impacts (target day and previous days), showing denser
smokes estimated compared with persistency= 0 %.

An implication from these comparisons is the importance
of persistent rate selection. Indeed, better smoke forecasting
may require improvement via two separate steps. The first
one is to estimate today’s emissions, which can be improved
by better assimilation techniques than those we introduce in
this paper. The second issue is to predict fire activity, which
is more related to the studies of fire behavior. In more de-
tail, we need to predict how long existing fires persist, and
also to predict the occurrence of new fires, which may pose

the greatest difficulty for daily operational systems. Without
a better understanding and modeling of fire behavior, the cur-
rent system has to rely on the empirical solution. For our
case study, choosing a persistent rate of 50 % d−1 produced
the best result, but it warrants further study with a long-term
data set being used in an operational system. Prediction of
wildfire consistency based on the change of meteorological
conditions, such as the Fire Weather Index (FWI, https://
cwfis.cfs.nrcan.gc.ca/background/summary/fwi, last access:
29 August 2020), will be a good indicator for the change of
fire emission. Without this kind of fire behavior model, the
fire smoke forecast system could be limited.
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Figure 9. Sensitivity test with varying persistent rates. For p = 75 %, we assume that 75 % of fday= 0 emissions remain in fday=+1 and
56.25 % (0.752) emissions remain in fday=+2.

5 Summary and discussion

Accurate estimation of emissions from wildfire sources is
critical to improving the performance of air quality fore-
cast systems. Wildfire emissions may be estimated based on
fire detection information from the surface (bottom up) or
instead based on the intensity of radiance measured from
space (top down). This study extends the top-down approach
by applying an additional constraint, i.e., transported smoke
plume recorded by geostationary satellites. We developed an

inverse modeling system to estimate wildfire smoke emis-
sions over North America using NOAA’s HYSPLIT and
GOES Aerosol/Smoke products. This HEIMS-fire resolves
the strength of smoke sources as a function of time and verti-
cal level. The system adjusts estimated wildfire smoke emis-
sions until they agree well with satellite observations.

We conducted numerous sensitivity tests, varying the tem-
poral, vertical, and spatial coverage of the input data sets used
to initiate the inverse system. Results are mostly consistent
with general expectations based on the characteristics and
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behavior of fire events. As transport from previous days can
impact large areas, including multiple days of observations
to constrain fire emissions yields statistically better results.
Including more vertical layers also leads to better results; for
example, including the 5000 m layer resulted in the best im-
provement. Spatial coverage was tested in terms of four dif-
ferent domains, and while this particular test presented no
solid conclusion, adding more information in general yielded
better results, as expected. It also should be noted that the
uncertainties of the emission estimation and the smoke fore-
casts thereafter are not quantified in this study. An ensemble
of HYSPLIT predictions using different meteorological in-
puts will be used to estimate the uncertainties of the results
in the future.

For operational purposes, including an additional con-
straint that extends current smoke forecast systems to use
smoke plume transport has clear advantages. Future study
could improve this approach in several respects. First, the
conversion of AOD to smoke mass loading is simply em-
pirical; secondary formation of PM is not considered. Omis-
sion of chemical reaction models is the basic characteristic of
trajectory- or dispersion-based models compared with Eule-
rian, full chemistry models. Applying estimated emissions to
a chemistry dispersion model could improve results. Second,
the system is highly dependent on the quality of constraining
observations. Use of the latest satellite instruments could fur-
ther improve results. Third, we have not yet included surface
observations into the inverse system. Utilizing both surface
and more columnar observations from other satellite systems
will improve the model performance. Fourth, we only used
the target day fire emissions for the smoke forecast. Since
fire smoke lasts several days, including the previous days’
emissions will enhance the background effect.

This study aimed to improve the operational smoke fore-
cast by providing accurate fire emission inputs. Unfortu-
nately, the GASP product was discontinued in early 2018.
However, the concept of minimizing a cost function based
on satellite observations remains robust and can be applied
to other data sets. In particular, we plan to apply the GOES-
R Advanced Baseline Imager (ABI) product to constrain the
extension of fire smoke.
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