Articles | Volume 20, issue 17
Atmos. Chem. Phys., 20, 10111–10124, 2020
https://doi.org/10.5194/acp-20-10111-2020
Atmos. Chem. Phys., 20, 10111–10124, 2020
https://doi.org/10.5194/acp-20-10111-2020

Research article 31 Aug 2020

Research article | 31 Aug 2020

Impact of aerosols and turbulence on cloud droplet growth: an in-cloud seeding case study using a parcel–DNS (direct numerical simulation) approach

Sisi Chen et al.

Related authors

Impact of hygroscopic seeding on the initiation of precipitation formation: results of a hybrid bin microphysics parcel model
Istvan Geresdi, Lulin Xue, Sisi Chen, Youssef Wehbe, Roelof Bruintjes, Jared Lee, Roy Rasmussen, Wojciech Grabowski, Noemi Sarkadi, and Sarah Tessendorf
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-506,https://doi.org/10.5194/acp-2021-506, 2021
Revised manuscript accepted for ACP
Short summary
Bridging the condensation–collision size gap: a direct numerical simulation of continuous droplet growth in turbulent clouds
Sisi Chen, Man-Kong Yau, Peter Bartello, and Lulin Xue
Atmos. Chem. Phys., 18, 7251–7262, https://doi.org/10.5194/acp-18-7251-2018,https://doi.org/10.5194/acp-18-7251-2018, 2018
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Environmental sensitivities of shallow-cumulus dilution – Part 2: Vertical wind profile
Sonja Drueke, Daniel J. Kirshbaum, and Pavlos Kollias
Atmos. Chem. Phys., 21, 14039–14058, https://doi.org/10.5194/acp-21-14039-2021,https://doi.org/10.5194/acp-21-14039-2021, 2021
Short summary
Supersaturation, buoyancy, and deep convection dynamics
Wojciech W. Grabowski and Hugh Morrison
Atmos. Chem. Phys., 21, 13997–14018, https://doi.org/10.5194/acp-21-13997-2021,https://doi.org/10.5194/acp-21-13997-2021, 2021
Short summary
Statistical properties of a stochastic model of eddy hopping
Izumi Saito, Takeshi Watanabe, and Toshiyuki Gotoh
Atmos. Chem. Phys., 21, 13119–13130, https://doi.org/10.5194/acp-21-13119-2021,https://doi.org/10.5194/acp-21-13119-2021, 2021
Short summary
Understanding the model representation of clouds based on visible and infrared satellite observations
Stefan Geiss, Leonhard Scheck, Alberto de Lozar, and Martin Weissmann
Atmos. Chem. Phys., 21, 12273–12290, https://doi.org/10.5194/acp-21-12273-2021,https://doi.org/10.5194/acp-21-12273-2021, 2021
Short summary
Impact of high- and low-vorticity turbulence on cloud–environment mixing and cloud microphysics processes
Bipin Kumar, Rahul Ranjan, Man-Kong Yau, Sudarsan Bera, and Suryachandra A. Rao
Atmos. Chem. Phys., 21, 12317–12329, https://doi.org/10.5194/acp-21-12317-2021,https://doi.org/10.5194/acp-21-12317-2021, 2021
Short summary

Cited articles

Beard, K. V. and Pruppacher, H. R.: A Wind Tunnel Investigation of the Rate of Evaporation of Small Water Drops Falling at Terminal Velocity in Air, J. Atmos. Sci., 28, 1455–1464, https://doi.org/10.1175/1520-0469(1971)028<1455:awtiot>2.0.co;2, 1971. a
Berry, E. X. and Reinhardt, R. L.: An Analysis of Cloud Drop Growth by Collection Part II. Single Initial Distributions, J. Atmos. Sci., 31, 1825–1831, https://doi.org/10.1175/1520-0469(1974)031<1825:aaocdg>2.0.co;2, 1974. a, b, c
Çelik, F. and Marwitz, J. D.: Droplet Spectra Broadening by Ripening Process. Part I: Roles of Curvature and Salinity of Cloud Droplets, J. Atmos. Sci., 56, 3091–3105, https://doi.org/10.1175/1520-0469(1999)056<3091:dsbbrp>2.0.co;2, 1999. a
Chen, S., Bartello, P., Yau, M. K., Vaillancourt, P. A., and Zwijsen, K.: Cloud Droplet Collisions in Turbulent Environment: Collision Statistics and Parameterization, J. Atmos. Sci., 73, 621–636, https://doi.org/10.1175/JAS-D-15-0203.1, 2016. a, b
Chen, S., Yau, M. K., and Bartello, P.: Turbulence Effects of Collision Efficiency and Broadening of Droplet Size Distribution in Cumulus Clouds, J. Atmos. Sci., 75, 203–217, https://doi.org/10.1175/JAS-D-17-0123.1, 2018a. a, b, c
Download
Short summary
This study employs a parcel–DNS (direct numerical simulation) modeling framework to accurately resolve the aerosol–droplet–turbulence interactions in an ascending air parcel. The effect of turbulence, aerosol hygroscopicity, and aerosol mass loading on droplet growth and rain formation is investigated through a series of in-cloud seeding experiments in which hygroscopic particles were seeded near the cloud base.
Altmetrics
Final-revised paper
Preprint