Articles | Volume 19, issue 9
Atmos. Chem. Phys., 19, 6107–6123, 2019
https://doi.org/10.5194/acp-19-6107-2019
Atmos. Chem. Phys., 19, 6107–6123, 2019
https://doi.org/10.5194/acp-19-6107-2019

Research article 08 May 2019

Research article | 08 May 2019

Heterogeneous sulfate aerosol formation mechanisms during wintertime Chinese haze events: air quality model assessment using observations of sulfate oxygen isotopes in Beijing

Jingyuan Shao et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Lin Zhang on behalf of the Authors (06 Apr 2019)  Author's response    Manuscript
ED: Publish as is (17 Apr 2019) by Eliza Harris
Download
Short summary
Sulfate is a key species contributing to particle formation and growth during wintertime Chinese haze events. This study combines observations and modeling of oxygen isotope signatures in sulfate aerosol to investigate its formation mechanisms, with a focus on heterogeneous production on aerosol surface via H2O2, O3, and NO2 and trace metal catalyzed oxidation. Contributions from different formation pathways are presented.
Altmetrics
Final-revised paper
Preprint