Articles | Volume 19, issue 8
Atmos. Chem. Phys., 19, 5719–5735, 2019
https://doi.org/10.5194/acp-19-5719-2019
Atmos. Chem. Phys., 19, 5719–5735, 2019
https://doi.org/10.5194/acp-19-5719-2019
Research article
30 Apr 2019
Research article | 30 Apr 2019

Simulation of SOA formation from the photooxidation of monoalkylbenzenes in the presence of aqueous aerosols containing electrolytes under various NOx levels

Chufan Zhou et al.

Related authors

Modeling Diurnal Variation of SOA Formation via Multiphase Reactions of Biogenic Hydrocarbons
Sanghee Han and Myoseon Jang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-327,https://doi.org/10.5194/acp-2022-327, 2022
Preprint under review for ACP
Short summary
Prediction of secondary organic aerosol from the multiphase reaction of gasoline vapor by using volatility–reactivity base lumping
Sanghee Han and Myoseon Jang
Atmos. Chem. Phys., 22, 625–639, https://doi.org/10.5194/acp-22-625-2022,https://doi.org/10.5194/acp-22-625-2022, 2022
Short summary
Secondary Organic Aerosol Formation via Multiphase Reaction of Hydrocarbons in Urban Atmospheres Using the CAMx Model Integrated with the UNIPAR model
Zechen Yu, Myoseon Jang, Soontae Kim, Kyuwon Son, Sanghee Han, Azad Madhu, and Jinsoo Park
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1002,https://doi.org/10.5194/acp-2021-1002, 2022
Revised manuscript accepted for ACP
Short summary
Modeling of Gas-Wall Partitioning of Organic Compounds Using a Quantitative Structure–Activity Relationship
Sanghee Han, Myoseon Jang, and Huanhuan Jiang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-550,https://doi.org/10.5194/acp-2019-550, 2019
Revised manuscript not accepted
Short summary
Simulation of heterogeneous photooxidation of SO2 and NOx in the presence of Gobi Desert dust particles under ambient sunlight
Zechen Yu and Myoseon Jang
Atmos. Chem. Phys., 18, 14609–14622, https://doi.org/10.5194/acp-18-14609-2018,https://doi.org/10.5194/acp-18-14609-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Limitations in representation of physical processes prevent successful simulation of PM2.5 during KORUS-AQ
Katherine R. Travis, James H. Crawford, Gao Chen, Carolyn E. Jordan, Benjamin A. Nault, Hwajin Kim, Jose L. Jimenez, Pedro Campuzano-Jost, Jack E. Dibb, Jung-Hun Woo, Younha Kim, Shixian Zhai, Xuan Wang, Erin E. McDuffie, Gan Luo, Fangqun Yu, Saewung Kim, Isobel J. Simpson, Donald R. Blake, Limseok Chang, and Michelle J. Kim
Atmos. Chem. Phys., 22, 7933–7958, https://doi.org/10.5194/acp-22-7933-2022,https://doi.org/10.5194/acp-22-7933-2022, 2022
Short summary
Eurodelta multi-model simulated and observed particulate matter trends in Europe in the period of 1990–2010
Svetlana Tsyro, Wenche Aas, Augustin Colette, Camilla Andersson, Bertrand Bessagnet, Giancarlo Ciarelli, Florian Couvidat, Kees Cuvelier, Astrid Manders, Kathleen Mar, Mihaela Mircea, Noelia Otero, Maria-Teresa Pay, Valentin Raffort, Yelva Roustan, Mark R. Theobald, Marta G. Vivanco, Hilde Fagerli, Peter Wind, Gino Briganti, Andrea Cappelletti, Massimo D'Isidoro, and Mario Adani
Atmos. Chem. Phys., 22, 7207–7257, https://doi.org/10.5194/acp-22-7207-2022,https://doi.org/10.5194/acp-22-7207-2022, 2022
Short summary
Elucidating the critical oligomeric steps in secondary organic aerosol and brown carbon formation
Yuemeng Ji, Qiuju Shi, Xiaohui Ma, Lei Gao, Jiaxin Wang, Yixin Li, Yanpeng Gao, Guiying Li, Renyi Zhang, and Taicheng An
Atmos. Chem. Phys., 22, 7259–7271, https://doi.org/10.5194/acp-22-7259-2022,https://doi.org/10.5194/acp-22-7259-2022, 2022
Short summary
Fast climate responses to emission reductions in aerosol and ozone precursors in China during 2013–2017
Jiyuan Gao, Yang Yang, Hailong Wang, Pinya Wang, Huimin Li, Mengyun Li, Lili Ren, Xu Yue, and Hong Liao
Atmos. Chem. Phys., 22, 7131–7142, https://doi.org/10.5194/acp-22-7131-2022,https://doi.org/10.5194/acp-22-7131-2022, 2022
Short summary
Secondary PM2.5 decreases significantly less than NO2 emission reductions during COVID lockdown in Germany
Vigneshkumar Balamurugan, Jia Chen, Zhen Qu, Xiao Bi, and Frank N. Keutsch
Atmos. Chem. Phys., 22, 7105–7129, https://doi.org/10.5194/acp-22-7105-2022,https://doi.org/10.5194/acp-22-7105-2022, 2022
Short summary

Cited articles

Abramson, E., Imre, D., Beranek, J., Wilson, J., and Zelenyuk, A.: Experimental determination of chemical diffusion within secondary organic aerosol particles, Phys. Chem. Chem. Phys., 15, 2983–2991, https://doi.org/10.1039/c2cp44013j, 2013. 
Beardsley, R. L. and Jang, M.: Simulating the SOA formation of isoprene from partitioning and aerosol phase reactions in the presence of inorganics, Atmos. Chem. Phys., 16, 5993–6009, https://doi.org/10.5194/acp-16-5993-2016, 2016. 
Bertram, A. K., Martin, S. T., Hanna, S. J., Smith, M. L., Bodsworth, A., Chen, Q., Kuwata, M., Liu, A., You, Y., and Zorn, S. R.: Predicting the relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component, Atmos. Chem. Phys., 11, 10995–11006, https://doi.org/10.5194/acp-11-10995-2011, 2011. 
Download
Short summary
The formation of secondary organic aerosol (SOA) from the photooxidation of three monoalkylbenzenes (toluene, ethylbenzene, and n-propylbenzene) has been simulated using the SOA model under varying environments (temperature, humidity, sunlight, NOx levels, electrolytic inorganic seed – acidity and water content, and aging). The model demonstrates that the effect of an electrolytic aqueous phase on SOA formation is more critical than that of NOx levels under SO2-rich polluted urban environments.
Altmetrics
Final-revised paper
Preprint