Articles | Volume 19, issue 8
Atmos. Chem. Phys., 19, 5635–5660, 2019
https://doi.org/10.5194/acp-19-5635-2019
Atmos. Chem. Phys., 19, 5635–5660, 2019
https://doi.org/10.5194/acp-19-5635-2019
Research article
30 Apr 2019
Research article | 30 Apr 2019

Heuristic estimation of low-level cloud fraction over the globe based on a decoupling parameterization

Sungsu Park and Jihoon Shin

Related authors

Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, Susannah Burrows, Philip Cameron-Smith, David Cugnet, Christopher Danek, Makoto Deushi, Larry W. Horowitz, Anne Kubin, Lijuan Li, Gerrit Lohmann, Martine Michou, Michael J. Mills, Pierre Nabat, Dirk Olivié, Sungsu Park, Øyvind Seland, Jens Stoll, Karl-Hermann Wieners, and Tongwen Wu
Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021,https://doi.org/10.5194/acp-21-5015-2021, 2021
Short summary
The relationship between low-level cloud amount and its proxies over the globe by cloud type
Jihoon Shin and Sungsu Park
Atmos. Chem. Phys., 20, 3041–3060, https://doi.org/10.5194/acp-20-3041-2020,https://doi.org/10.5194/acp-20-3041-2020, 2020
Short summary
Impact of poleward heat and moisture transports on Arctic clouds and climate simulation
Eun-Hyuk Baek, Joo-Hong Kim, Sungsu Park, Baek-Min Kim, and Jee-Hoon Jeong
Atmos. Chem. Phys., 20, 2953–2966, https://doi.org/10.5194/acp-20-2953-2020,https://doi.org/10.5194/acp-20-2953-2020, 2020
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Machine learning of cloud types in satellite observations and climate models
Peter Kuma, Frida A.-M. Bender, Alex Schuddeboom, Adrian J. McDonald, and Øyvind Seland
Atmos. Chem. Phys., 23, 523–549, https://doi.org/10.5194/acp-23-523-2023,https://doi.org/10.5194/acp-23-523-2023, 2023
Short summary
A modeling study of an extreme rainfall event along the northern coast of Taiwan on 2 June 2017
Chung-Chieh Wang, Ting-Yu Yeh, Chih-Sheng Chang, Ming-Siang Li, Kazuhisa Tsuboki, and Ching-Hwang Liu
Atmos. Chem. Phys., 23, 501–521, https://doi.org/10.5194/acp-23-501-2023,https://doi.org/10.5194/acp-23-501-2023, 2023
Short summary
Long-term upper-troposphere climatology of potential contrail occurrence over the Paris area derived from radiosonde observations
Kevin Wolf, Nicolas Bellouin, and Olivier Boucher
Atmos. Chem. Phys., 23, 287–309, https://doi.org/10.5194/acp-23-287-2023,https://doi.org/10.5194/acp-23-287-2023, 2023
Short summary
Equilibrium climate sensitivity increases with aerosol concentration due to changes in precipitation efficiency
Guy Dagan
Atmos. Chem. Phys., 22, 15767–15775, https://doi.org/10.5194/acp-22-15767-2022,https://doi.org/10.5194/acp-22-15767-2022, 2022
Short summary
Southern Ocean cloud and shortwave radiation biases in a nudged climate model simulation: does the model ever get it right?
Sonya L. Fiddes, Alain Protat, Marc D. Mallet, Simon P. Alexander, and Matthew T. Woodhouse
Atmos. Chem. Phys., 22, 14603–14630, https://doi.org/10.5194/acp-22-14603-2022,https://doi.org/10.5194/acp-22-14603-2022, 2022
Short summary

Cited articles

Albrecht, B. A., Betts, A. K., Schubert, W. H., and Cox, S. K.: Model of the thermodynamic structure of the trade-wind boundary layer: Part I. Theoretical formulation and sensitivity tests, J. Atmos. Sci., 36, 73–89, 1979. a
Augstein, E., Schmidt, H., and Ostapoff, F.: The vertical structure of the atmospheric planetary boundary layer in undisturbed trade winds over the Atlantic Ocean, Bound.-Lay. Meteorol., 6, 129–150, 1974. a
Betts, A. K. and Ridgway, W.: Coupling of the radiative, convective, and surface fluxes over the equatorial Pacific, J. Atmos. Sci., 45, 522–536, 1988. a
Bretherton, C.: A conceptual model of the stratocumulus-trade-cumulus transition in the subtropical oceans, in: Proc. 11th Int. Conf. on Clouds and Precipitation, vol. 1, pp. 374–377, International Commission on Clouds and Precipitation and International Association of Meteorology and Atmospheric Physics Montreal, Quebec, Canada, 1992. a
Bretherton, C. S. and Park, S.: A new moist turbulence parameterization in the Community Atmosphere Model, J. Climate, 22, 3422–3448, 2009. a
Download
Short summary
Clouds exert substantial impacts on the global radiation budget and hydrological cycle. We propose a new proxy for the observed low-level cloud amount (LCA), so-called ELF (estimated low-level cloud fraction), and we show that ELF achieves the unprecedented best performance in diagnosing spatiotemporal variations of the observed LCA. Our study can be used to evaluate the performance of GCMs, identify the source of inaccurate simulation of LCA, and better understand climate sensitivity.
Altmetrics
Final-revised paper
Preprint