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Abstract. Based on the decoupling parameterization of the
cloud-topped planetary boundary layer, a simple equation is
derived to compute the inversion height. In combination with
the lifting condensation level and the amount of water vapor
in near-surface air, we propose a low-level cloud suppres-
sion parameter (LCS) and estimated low-level cloud fraction
(ELF), as new proxies for the analysis of the spatiotempo-
ral variation of the global low-level cloud amount (LCA).
Individual surface and upper-air observations are used to
compute LCS and ELF as well as lower-tropospheric stabil-
ity (LTS), estimated inversion strength (EIS), and estimated
cloud-top entrainment index (ECTEI), three proxies for LCA
that have been widely used in previous studies. The spa-
tiotemporal correlations between these proxies and surface-
observed LCA were analyzed.

Over the subtropical marine stratocumulus deck, both LTS
and EIS diagnose seasonal–interannual variations of LCA
well. However, their use as a global proxy for LCA is limited
due to their weaker and inconsistent relationship with LCA
over land. EIS is anti-correlated with the decoupling strength
more strongly than it is correlated with the inversion strength.
Compared with LTS and EIS, ELF and LCS better diagnose
temporal variations of LCA, not only over the marine stra-
tocumulus deck but also in other regions. However, all prox-
ies have a weakness in diagnosing interannual variations of
LCA in several subtropical stratocumulus decks. In the anal-
ysis using all data, ELF achieves the best performance in di-
agnosing spatiotemporal variation of LCA, explaining about
60 % of the spatial–seasonal–interannual variance of the sea-
sonal LCA over the globe, which is a much larger percentage
than those explained by LTS (2 %) and EIS (4 %).

Our study implies that accurate prediction of inversion
base height and lifting condensation level is a key factor nec-

essary for successful simulation of global low-level clouds
in general circulation models (GCMs). Strong spatiotempo-
ral correlation between ELF (or LCS) and LCA identified in
our study can be used to evaluate the performance of GCMs,
identify the source of inaccurate simulation of LCA, and bet-
ter understand climate sensitivity.

1 Introduction

Clouds belong to the most important but uncertain compo-
nents of the climate system. Due to their strong shortwave
radiative cooling effect on the Earth, low-level clouds have
been the focus of various studies in the past few decades,
both in the observation and modeling communities. Slingo
(1990) estimated that a 4 % increase in the low-level cloud
amount (LCA) has the potential to offset global warming
associated with a doubled CO2 concentration. Most low-
level clouds exist over the ocean, mainly due to abundant
moisture sources near the surface (Hahn and Warren, 1999).
Among various types of low-level clouds, marine stratocu-
mulus clouds (MSCs) have received special attention due to
their large spatial coverage and the complexity of physics and
dynamic processes controlling their formation and dissipa-
tion (Wood, 2012). Several planetary boundary layer (PBL)
schemes used in general circulation models (GCMs) have the
capability to simulate MSCs and associated feedback pro-
cesses in a realistic way (e.g., Lock et al., 2000; Bretherton
and Park, 2009; Park and Bretherton, 2009). However, MSCs
simulated by these parameterization schemes or more com-
plex numerical models are the results of complex interactions
among various physics processes. Therefore, it has not been
easy for the climate researchers to understand the feedback
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processes of MSCs from the climate perspective. If a sim-
ple proxy could diagnose spatial and temporal variations of
MSCs, it would be much easier for the climate researcher to
understand the role of MSCs in future climate, both qualita-
tively and quantitatively.

Klein and Hartmann (1993) (KH93 hereafter) showed that
a lower-tropospheric stability (LTS) ≡ θ700− θ1000 where
θ700 and θ1000 are the potential temperatures at 700 and
1000 hPa levels, respectively, correlates well with seasonal
variations of LCA over the subtropical marine stratocumu-
lus deck. LTS has been widely used as a proxy to understand
the characteristics of MSCs and their impact on future cli-
mate. The success of LTS stems in part from the fact that
LTS is correlated with other factors controlling the forma-
tion of MSCs in the subtropical marine stratocumulus deck
such as the sea surface temperature (SST), cold air advec-
tion, free-tropospheric moisture, and subsidence in associa-
tion with a subtropical high-pressure system. Using a heuris-
tic Lagrangian MSC model, Park et al. (2004) (PLR04 here-
after) explored the sensitivity of MSCs to various environ-
mental conditions in the cold advection regime of the north-
eastern subtropical Pacific and to both warm and cold advec-
tion regimes of the eastern equatorial Pacific Ocean. Consis-
tent with Klein (1997), PLR04 found a positive correlation
between the simulated MSC fraction and strong upstream
subsidence, although Myers and Norris (2013) reported the
opposite correlation. PLR04 simulated less MSCs with a
drier free atmosphere. However, enhanced longwave radia-
tive cooling at the top of MSCs capped by a drier free atmo-
sphere (this process was not included in the PLR04’s model)
may increase MSCs by enhancing turbulent vertical moisture
transport from the sea surface to overlying MSCs.

Based on the decoupling hypothesis suggested by PLR04
and other proceeding works (e.g., Augstein et al., 1974; Al-
brecht et al., 1979; Betts and Ridgway, 1988; Bretherton,
1992), Wood and Bretherton (2006) (WB06 hereafter) ex-
tended KH93’s LTS and suggested an estimated inversion
strength (EIS) as a better proxy for LCA in which temper-
ature profiles in the decoupled layer below the inversion
and the free troposphere above the inversion are assumed
to be close to a moist adiabat that is strongly temperature-
dependent. WB06 showed that, compared with LTS, EIS cor-
relates better with LCA over a wide range of stratocumulus
regimes, because it captures the lapse rate and boundary layer
structure more completely than LTS. Similar to LTS, EIS has
been widely used as a good proxy for LCA.

In their derivation of EIS, WB06 assumed that the fac-
tor zinv · (0

m
700−0

m
LCL), where zinv is the inversion height

and 0m
700 and 0m

LCL are the moist adiabatic lapse rates at
700 hPa and lifting condensation level (LCL) of near-surface
air (zLCL), respectively, contributes less to the correlation
relationship between the inversion strength and LTS than
the other terms, so that it was simply set to zero. Although
a scaling argument was provided to justify this simplifica-
tion, a more fundamental reason for neglecting this term

was associated with the practical difficulty in estimating
and parameterizing zinv. PLR04 suggested a heuristic pa-
rameterization for PBL decoupling to simulate stratocumulus
cloudiness in the inversion-capped marine boundary layer.
In their study, PBL decoupling is parameterized as an in-
creasing function of the height difference between zinv and
zLCL. PLR04’s conceptual idea of PBL decoupling was used
in WB06’s derivation of EIS and other studies to under-
stand the variation of cloudiness associated with PBL de-
coupling (Stevens, 2006; Xiao et al., 2011; Van der Dussen
et al., 2014, 2015, 2016; Park, 2014a, b; Dal Gesso et al.,
2015a, b; Neggers et al., 2017). In our study, we sug-
gest a simple heuristic method to estimate zinv by com-
bining PLR04’s decoupling parameterization with EIS. By
using zinv, zLCL, and water vapor specific humidity in the
surface-based mixed layer (qv,ML), we propose two low-level
cloud suppression parameters (LCS), β1 ≡ (zinv+zLCL)/1zs
and β2 ≡

√
zinv · zLCL/1zs with 1zs = 2750 m, and an esti-

mated low-level cloud fraction, ELF≡ f (1−β2) with f ≡
max[0.15,min(1,qv,ML/0.003)], as new proxy for the char-
acterization of the spatiotemporal variation of LCA over the
globe. Individual surface and upper-air observations are used
to compute LTS, EIS, LCS, and ELF, and the correlations be-
tween these proxies and the surface-observed seasonal LCA
are examined. We also analyzed the recently proposed es-
timated cloud-top entrainment index (ECTEI, Kawai et al.,
2017), which is a modified EIS that takes into account cloud-
top entrainment criteria. It will be shown that, compared with
LTS, EIS, and ECTEI, which are mainly designed as prox-
ies for marine LCA, ELF and LCS are better proxies for the
global LCA, applicable over both the ocean and land.

The structure of this paper is as follows. Section 2.1 pro-
vides a detailed explanation on the conceptual framework
used to compute zinv, LCS, ELF, and other related proxies
for LCA. Section 2.2 describes the data and analysis method.
The correlations between various proxies and LCA in spatial
and temporal domains over the globe are presented in Sect. 3.
A summary and conclusion are provided in Sect. 4.

2 Method

2.1 Conceptual framework

Following PLR04 and WB06, we assume that the lower tro-
posphere below 700 hPa consists of four regimes (see Fig. 1):
a surface-based mixed layer (ML) topped at zML with the
potential temperature, θML, and water vapor specific humid-
ity, qv,ML, specified at the reference height, zref or pref (i.e.,
θML = θref, qv,ML = qv,ref); a decoupled cloud layer (DL)
with a vertical gradient of θ approximated by the moist θ
adiabat at zML (0m

DL > 0); an inversion at the DL top (zinv);
and the free atmosphere with a vertical gradient of θ approxi-
mated by the moist θ adiabat at p = 700 hPa (0m

700 > 0). The
moist adiabatic lapse rate of θ used in our study (0m

DL and
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Figure 1. Schematic diagram illustrating an idealized structure of
the decoupled planetary boundary layer (PBL), which consists of
a surface-based mixed layer (ML) topped by zML with the po-
tential temperature, θML = θref, and water vapor specific humidity,
qv,ML = qv,ref, given at the reference height, zref; a decoupled layer
(DL) in which the vertical temperature gradient is assumed to fol-
low a saturated moist adiabat at the ML top (0m

DL); an inversion at
zinv across which θ increases and qv decreases in a discontinuous
way; and the free atmosphere between zinv and z700 in which the
vertical temperature gradient is assumed to follow a saturated moist
adiabat at the 700 hPa level (0m

700). Also shown are the inversion
strength, IS ≡ θ+inv− θ

−

inv; decoupling strength, DS ≡ θ−inv− θML;
and lower-tropospheric stability (LTS)≡ θ700−θML. The lapse rate
of qv in the free atmosphere is given by the linear slope between
qv,700 and qv,750. For simplicity, it is assumed that θ and qv share
a common decoupling parameter, α ≡ (θ−inv−θML)/(θ

+

inv−θML)=

(q−v,inv− qv,ML)/(q
+

v,inv− qv,ML). Over the ocean, stratocumulus
generally exists below the inversion base and shallow cumulus
grows into the overlying stratocumulus in the decoupled layer. See
the text for more details.

0m
700 in unit of Km−1) is a function of T and p; it increases

as p increases or T increases. The inversion strength at zinv,
IS ≡ θ+inv− θ

−

inv, becomes

IS= LTS+0m
DL · zML−0

m
700 · z700+ zinv · (0

m
700−0

m
DL), (1)

where θ+inv is the potential temperature just above the inver-
sion, θ−inv is the potential temperature just below the inver-
sion, and LTS ≡ θ700− θML is the lower-tropospheric stabil-
ity. By assuming that the contribution of zinv ·(0

m
700−0

m
DL) to

variability in the relationship between IS and LTS is negligi-
bly small due to the opposite variations of zinv and 0m

700−0
m
DL

with LTS, WB06 derived the so-called estimated inversion
strength, EIS:

EIS= LTS+0m
DL · zML−0

m
700 · z700, (2)

which was shown to be a better proxy for LCA than LTS.
Because it does not contain zinv, which is hard to estimate,
EIS has been used as a convenient proxy for LCA.

If zinv can be reasonably estimated instead of being ne-
glected, it may be possible to construct a better proxy than
EIS for LCA. In this study, we suggest an approach to esti-
mate zinv and other related proxies in a heuristic way based
on the decoupling hypothesis suggested by PLR04. From
the analysis of sounding data, PLR04 showed that the de-
coupling parameter α can be parameterized as an increas-
ing function of the decoupled layer thickness,1zDL ≡ zinv−

zML,

α ≡
θ−inv− θML

θ+inv− θML
≈

(
1zDL

1zs

)γ
≈

(
zinv− zML

1zs

)
, (3)

where the scale height, 1zs ≈ 2750 m, is obtained from
the analysis of a set of sounding data over the ocean (see
PLR04). Originally, PLR04 defined α for the condensate po-
tential temperature θc ≡ θ − (Lv/Cp) · ql− (Ls/Cp) · qi with
γ ≈ 1.1–1.3, where ql and qi are the cloud liquid and ice con-
tents, respectively, and θc is a conserved scalar with respect
to the phase change. In our study, however, α is defined for
θ and, accordingly, γ is slightly reduced to 1 to account for
αθ > αθc in the cloud-topped decoupled layer. The choice of
γ = 1 allows us to obtain analytical expressions for various
proxies as will be shown below. The small (large) α indi-
cates that the environmental air at the inversion base, z−inv, is
well connected to (decoupled from) the surface air property
with abundant moisture, providing more (less) favorable con-
ditions for the formation of LCA at z−inv. It should be noted
that α only measures the degree of vertical decoupling of
thermodynamic properties between zML and z−inv. That is, α
does not provide information regarding the amount of surface
moisture.

By combining Eq. (3) with θ+inv = θ700−0
m
700 ·(z700−zinv)

and θ−inv = θML+0
m
DL ·(zinv−zML), we can derive the follow-

ing expressions for the inversion height,

zinv =−(LTS/0m
700)+ z700 +1zs ·

(
0m

DL
0m

700

)
=−(EIS/0m

700)+ zML ·

(
0m

DL
0m

700

)
+1zs ·

(
0m

DL
0m

700

)
,

(4)

which can be also written as zinv = α·1zs+zML from Eq. (3).
Then, the inversion strength, IS, becomes

IS= (1−α) ·0m
DL ·1zs, (5)

and decoupling strength, DS ≡ θ−inv− θML, becomes

DS= α ·0m
DL ·1zs, (6)

and LTS= IS+DS+0m
700 · (z700− zinv), as shown in Fig. 1.

Once θML = θref, qv,ML = qv,ref, and zML are obtained, we
can consecutively compute LTS= θ700− θref and zinv using
the first expression of Eq. (4), α from Eq. (3), IS from Eq. (5),
and DS from Eq. (6). Note that IS is identical to the sum of
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EIS and zinv ·(0
m
700−0

m
DL), the neglected term in the original

formulation of WB06.
Following previous studies (e.g., PLR04 and WB06), we

will assume that zML ≈ zLCL over the ocean. However, due
to insufficient moisture at the surface, it is likely that zML <

zLCL over most land areas unless strong buoyancy or shear
production near the surface sufficiently deepens the surface-
based mixed layer. It may be possible to parameterize zML as
a function of turbulent kinetic energy within the PBL; how-
ever, for simplicity, we assume that zML ≈ zLCL over the en-
tire globe.

As mentioned above, α only measures the degree of ver-
tical decoupling of thermodynamic properties between the
inversion base and surface air, not the surface moisture itself.
Conceptually, however, the formation of LCA at the inver-
sion base is likely to be influenced by both surface moisture
and α. As a simple but practical proxy representing surface
moisture, we select zLCL. From the simple conceptual argu-
ment that small (large) zLCL and α are likely to be associated
with large (small) LCA at the inversion base, we define the
first low-level cloud suppression parameter (LCS), β1, as

β1 ≡ α+µ ·

(
zLCL

1zs

)
=
zinv+ zLCL

1zs
, (7)

where the second equality is obtained by assuming zML ≈

zLCL and µ= 2. In principle, µ can be estimated in an em-
pirical way using multiple linear regression analysis of LCA
fitted to zinv and zLCL such that β1 explains the maximum
fraction of the variance of LCA. We performed a multiple
linear regression analysis of LCA on zinv and zLCL using in-
dividual seasonal data in each 2.5◦ latitude× 5◦ longitude
grid box over the globe. Except over some portions, the val-
ues of µ were mostly between 0 and 4 with an approximate
average value, µ= 2 (not shown). The resulting β1 is a non-
dimensional sum of zinv and zLCL. By simply extending β1,
we also define the second LCS, β2, as a non-dimensional
product of zinv and zLCL,

β2 =

√
zinv · zLCL

1zs
, (8)

which, similar to β1, increases as the surface air becomes
drier and the PBL deepens. In the case of zML ≈ zLCL, it
becomes β1 ≈ (zLCL/1zs) · [2+(zinv−zML)/zML] and β2 ≈

(zLCL/1zs) ·
√

1+ (zinv− zML)/zML, where the first factor
in both formulae represents the degree of subsaturation of
near-surface air, and the second factor represents the decou-
pling strength. Note that zLCL oppositely controls the surface
moisture parameter and decoupling strength: small zLCL de-
creases the first factor but increases the second factor and
vice versa. Large (small) values of β1 and β2 likely favor the
dissipation (formation) of LCA at the inversion base.

Finally, we define the estimated low-level cloud fraction
(ELF) as

ELF= f · (1−β2)= f ·

[
1−
√
zinv · zLCL

1zs

]
≤ 1, (9)

where f is the freeze-dry factor (Vavrus and Waliser, 2008),

f =max
[

0.15,min
(

1,
qv,ML

0.003

)]
, (10)

designed to reduce the parameterized cloud fraction in the
extremely cold and dry atmospheric conditions typical of po-
lar and high-latitude winter. Cloud fraction parameterization
based on the grid-mean relative humidity (RH) assumes that
there is a certain amount of subgrid variability of thermo-
dynamic scalars (e.g., Park et al., 2014), which allows the
formation of cloud fraction even when the grid-mean RH is
smaller than 1. In the very stable Arctic and high-latitude
atmosphere during winter, however, there is little subgrid
variability (Jones et al., 2004). Thus, any grid-mean RH-
based cloud fraction parameterization (e.g., our LCS based
on zLCL) is likely to predict too much LCA there. Vavrus
and Waliser (2008) showed that the implementation of the
freeze-dry factor into GCMs substantially reduced the sim-
ulated LCA in the Arctic and high-latitude regions during
winter and improved the simulation. Compared to β2, ELF
diagnoses smaller LCA in the high-latitude region during
winter where the amount of water vapor within the ML is
often smaller than 3 gkg−1 (see Fig. 2e, f). If zML ≈ zLCL, it
becomes ELF= f ·[1−(zLCL/1zs)

√
1+ (zinv− zML)/zML],

where f denotes the amount of water vapor in the surface-
based ML air, zLCL represents the degree of subsaturation
of near-surface air, and (zinv− zML)/zML quantifies the de-
gree of thermodynamic decoupling of the inversion base air
from the surface-based ML air. Our ELF predicts that LCA
increases as the near-surface air becomes more saturated with
enough water vapor and as the PBL becomes more verti-
cally coupled. When the inversion base air is fully coupled
with saturated near-surface air containing enough water va-
por, ELF approaches its upper bound of 1. Considering that
low-level clouds usually form at zinv, the conceptual cloud
formation processes embedded in ELF are consistent with
what is expected to happen in nature. We defined ELF using
β2 instead of β1, because β2 has a better global performance
than β1 (see Tables 1, 3, 4, 6). Note that our ELF can have
small negative values, which, however, can be reset to zero
for more complete parameterization. In our study, we do not
reset ELF to zero.

In reality, the key factor controlling the formation of
clouds is the relative humidity. According to our conceptual
framework, most of the clouds are likely to form at the inver-
sion base. To compute the relative humidity at the inversion
base, RH−inv, we follow PLR04 and assume that the decou-
pling parameter, α, defined in Eq. (3) also describes the de-
coupling of the water vapor specific humidity, qv. Then, the
water vapor specific humidity (q−v,inv) and potential tempera-
ture (θ−inv) at the inversion base can be computed as q−v,inv =

α · q+v,inv+ (1−α) · qv,ML and θ−inv = α · θ
+

inv+ (1−α) · θML.
The lapse rate of qv in the free atmosphere 0qv

700, which is
required to compute q+v,inv = qv,700−0

qv
700 · (z700− zinv), is
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Figure 2. (a, b) Frequency of occurrence of α = 0 (i.e., zinv ≤ zLCL) among all observations (the sum of 0< α < 1, α = 0, and α = 1); (c,
d) frequency of occurrence of α = 1 (i.e., zinv ≥1zs+zLCL) among all observations; (e, f) the difference between ELF and 1−β2 = ELF/f ,
where f is the freeze-dry factor (see Eqs. 9, 10); and (g, h) the difference between ELF and LCA during (left column) JJA and (right column)
DJF. In panels (e) and (f), the contour lines denotes the freeze-dry factor, f . In panels (g) and (h), the contour lines denotes the climatological
LCA reported by surface observers. All observations are used for the panels (e)–(h). The grid boxes with a climatological observation number
below 100 in each season are masked by gray color.
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obtained from the linear slope of qv at the 700 and 750 hPa
levels. Using q−v,inv and θ−inv, we compute RH−inv as an ad-
ditional proxy for LCA. We note that only RH−inv needs the
information on q−v,inv; the other proxies do not need informa-
tion on the vertical profile of qv other than qv,ML to compute
zLCL.

2.2 Data and analysis

The surface observation data used in our study are from the
Extended Edited Cloud Report Archive (EECRA, Hahn and
Warren, 1999) for January 1956 to December 2008 over the
ocean (without sea ice) and January 1971 to December 1996
over land. The EECRA compiles individual ship and land ob-
servations of clouds (e.g., cloud amount and cloud type for
each low, middle, and upper level), present weather (e.g., fog,
rain, snow, thunderstorm shower, and drizzle), and other co-
incident surface meteorologies (e.g., sea level pressure, sea
surface temperature, ship-deck air temperature, dew-point
depression, and wind speed and direction) at every 3 or 6 h
based on the strict hierarchy of the World Meteorological Or-
ganization (WMO, WMO, 1975). Following Park and Leovy
(2004), we filtered out the observations obtained under poor
illumination conditions (i.e., the moonlight screening crite-
ria, Hahn et al., 1995), from the WMO’s Historical Sea Sur-
face Temperature (HSST) Data Project (identified by card
deck numbers 150–156), or with any missing surface me-
teorologies or cloud information. In this study, we focus on
the analysis of LCA of all cloud types including cumulus
as well as stratus. The upper-level meteorologies (e.g., p,
θ , and qv) are from the ERA-Interim reanalysis products
(ERAI, Simmons et al., 2007) from January 1979 to Decem-
ber 2008 at 6-hourly time intervals. Spatial and temporal in-
terpolations are performed to compute the upper-level mete-
orologies at the exact time and location at which the EECRA
surface observers reported LCA. Because both EECRA and
ERAI are necessary, our analysis only uses the data from Jan-
uary 1979 to December 2008 (30 years) over the ocean and
January 1979 to December 1996 over land (18 years). Using
the 6-hourly ERAI vertical profiles of θ and qv interpolated
to individual EECRA surface observations, we computed the
12 proxies for LCA (LTS, EIS, ECTEI, IS, DS, α, zLCL, zinv,
RH−inv, β1, β2, ELF) and averaged them into 5◦ latitude× 10◦

longitude seasonal data for each year. Thus, if there is no
missing grid value, a total of 120 and 72 seasonal datapoints
is available in each grid box over the ocean and land, respec-
tively. To reduce the impact of random noise in association
with the small observation number, the year with an observa-
tion number smaller than 10 in each season and grid box is
not used in our analysis.

Three separate correlation analyses were performed be-
tween LCA and the 12 proxies: spatial–seasonal correlation
analysis using climatological seasonal (i.e., DJF, MAM, JJA,
SON) grid data (Table 1 and Figs. 3–6; Table 4 and Figs. 11,
12) or climatological seasonal data averaged over selected

regions (Figs. 7, 8, 12), seasonal–interannual and interannual
correlation analysis using seasonal grid data from each year
(Figs. 9–10, 13) or seasonal data averaged over selected re-
gions from each year (Tables 2, 5), and combined spatial–
seasonal–interannual correlation analysis (Tables 3, 6) using
seasonal grid data over the globe in each year. For the spatial–
seasonal correlation analysis, only the seasons and grid boxes
with a climatological seasonal observation number equal to
or larger than 100 are used. For any temporal correlation
analysis containing interannual variations, we only used the
years and seasons with a seasonal observation number equal
to or larger than 10 for each year within the grid box or se-
lected regions. Only the grid boxes with the number of ef-
fective seasonal data points equal to or larger than 50 out of
the maximum 120 over the ocean (30 years) and 72 over land
(18 years) are used for the temporal correlation analysis.

As the reference height near the surface, we tested both
pref = p1000 and pref = psfc. In both cases, the density of the
atmosphere within the lower troposphere below 700 hPa was
set to ρ = 1 kgm−3. When pref = p1000, all thermodynamic
properties at p1000 (e.g., p, θ , and qv) are obtained from
6-hourly ERA-Interim data interpolated into the time and
location of individual EECRA observations. The geometric
height of p1000 from the surface (z1000) is computed using a
hydrostatic equation. If the air at p1000 is saturated, zLCL is
set to z1000. When pref = psfc, a set of thermodynamic prop-
erties at psfc (e.g., θ , qv) is obtained from two different data
sources: one is from the 6-hourly ERA-Interim data inter-
polated into the time and location of individual EECRA ob-
servations similar to the case of pref = p1000 and the other
is from EECRA surface observations. When the surface air
is saturated, we set zLCL = zsfc. Three separate analyses
were performed using individual datasets (e.g., pref = p1000,
pref = psfc with ERA-Interim surface data, and pref = psfc
with EECRA surface observations). In the next section, we
will show the results based on pref = psfc with EECRA sur-
face observations of psfc, θsfc, and qv,sfc. The analyses using
the other two choices produced similar results. It is not shown
here, but the same analysis using the NCEP/NCAR reanaly-
sis product (Kalnay et al., 1996) instead of the ERA-Interim
data also produced similar results.

A fundamental assumption of our decoupling hypothesis
is that thermodynamic scalars at the inversion base (θ−inv) are
bounded by the ML (θML) and inversion top (θ+inv) properties.
That is, the decoupling parameter α is between 0 and 1 (see
Eq. 3). However, the inversion height, zinv, estimated from
Eq. (4) can have any numerical values, such that α parameter-
ized by zinv (i.e., α = (zinv− zML)/1zs) can be smaller than
0 or larger than 1. To be consistent with our decoupling hy-
pothesis, we reset zinv = zML whenever zinv estimated from
Eq. (4) is smaller than zML (i.e., we wrap all α < 0 to α = 0),
and, similarly, we reset zinv =1zs+ zML whenever the esti-
mated zinv is larger than1zs+zML (i.e., we wrap all α > 1 to
α = 1). As shown in Fig. 2, the cases of α = 0 after wrapping
frequently occur in stably stratified regimes over the Arctic
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Table 1. Spatial–seasonal correlation coefficients between LCA and various proxies for the climatological seasonal data (DJF, MAM, JJA,
SON) of each 5◦ latitude× 10◦ longitude grid box (values in the upper right: over the ocean; values in the lower left: over land; and values
within the parenthesis: over the entire globe including the coast). Statistically significant correlations at the 99.9 % confidence level from
the Student t test assuming independent samples are denoted by the bold characters. The same convention is applied to the following tables.
Only the data satisfying 0< α < 1 are used for this table.

r LCA LTS EIS ECTEI IS DS α zLCL zinv RH−inv β1 β2 ELF

LCA 1 −0.05 0.62 0.66 0.39 − 0.63 − 0.58 − 0.72 − 0.69 0.62 − 0.75 − 0.79 0.80
( 0.17) ( 0.22) ( 0.19) (− 0.09) (− 0.23) (− 0.17) (− 0.78) (− 0.67) ( 0.38) (− 0.80) (− 0.83) ( 0.83)

LTS 0.18 1 0.07 − 0.17 0.57 0.07 − 0.09 0.30 0.00 − 0.22 0.07 0.16 − 0.11
(− 0.08) (− 0.31) ( 0.31) ( 0.23) ( 0.09) (− 0.27) (− 0.11) (− 0.17) (− 0.20) (− 0.22) ( 0.26)

EIS 0.07 − 0.13 1 0.96 0.84 − 0.99 − 0.99 − 0.38 − 0.96 0.75 − 0.90 − 0.79 0.78
( 0.96) ( 0.82) (− 0.98) (− 0.98) ( 0.11) (− 0.73) ( 0.64) (− 0.44) (− 0.22) ( 0.22)

ECTEI 0.07 − 0.35 0.96 1 0.68 − 0.98 − 0.94 − 0.49 − 0.95 0.85 − 0.91 − 0.84 0.83
( 0.68) (− 0.98) (− 0.94) ( 0.15) (− 0.67) ( 0.72) (− 0.38) (− 0.17) ( 0.16)

IS − 0.39 0.21 0.71 0.59 1 − 0.77 − 0.86 −0.05 − 0.76 0.46 − 0.66 − 0.49 0.51
(− 0.72) (− 0.82) ( 0.39) (− 0.41) ( 0.32) (− 0.10) ( 0.11) (− 0.10)

DS − 0.16 0.35 − 0.95 − 0.97 − 0.50 1 0.98 0.43 0.97 − 0.78 0.92 0.82 − 0.81
( 0.98) (− 0.09) ( 0.75) (− 0.68) ( 0.46) ( 0.24) (− 0.23)

α − 0.11 0.17 − 0.97 − 0.94 − 0.66 0.96 1 0.37 0.97 − 0.74 0.91 0.79 − 0.78
(− 0.12) ( 0.74) (− 0.65) ( 0.43) ( 0.21) (− 0.20)

zLCL − 0.83 − 0.40 0.15 0.21 0.53 −0.09 − 0.11 1 0.59 − 0.60 0.73 0.86 − 0.86
( 0.58) (− 0.27) ( 0.84) ( 0.94) (− 0.94)

zinv − 0.77 − 0.23 − 0.48 − 0.42 0.04 0.54 0.53 0.78 1 − 0.81 0.98 0.91 − 0.91
(− 0.71) ( 0.93) ( 0.82) (− 0.81)

RH−inv 0.71 0.22 0.27 0.29 − 0.18 − 0.34 − 0.30 − 0.69 − 0.78 1 − 0.82 − 0.81 0.80
(− 0.60) (− 0.48) ( 0.47)

β1 − 0.85 − 0.33 − 0.20 − 0.13 0.29 0.26 0.25 0.93 0.95 − 0.78 1 0.97 − 0.97
( 0.97) (− 0.97)

β2 − 0.86 − 0.36 −0.06 0.00 0.39 0.13 0.11 0.97 0.90 − 0.75 0.99 1 − 0.99
(− 1.00)

ELF 0.86 0.39 0.06 −0.01 − 0.38 − 0.11 −0.10 − 0.97 − 0.89 0.75 − 0.99 − 1.00 1

and northern continents in winter, desserts during the night,
the northwestern Pacific and southern-hemispheric (SH) cir-
cumpolar regions during boreal summer when warm air is
advected into cold SST, and along the west coast of major
continents where cold SST exists due to coastal upwelling.
On the other hand, the cases of α = 1 after wrapping occur
in unstable regimes over the tropical SST warm pools in JJA
and along the midlatitude storm tracks during winter. In the
next section, we will first present the results based on the data
of 0< α < 1 and then all data of 0≤ α ≤ 1 (e.g., the sum of
0< α < 1, α = 0, and α = 1).

3 Results

3.1 Spatial–seasonal correlation

Figures 3 and 4 show the seasonal climatology of LCA (solid
lines; also see Fig. 7 for the color maps of LCA in the 2.5◦

latitude× 5◦ longitude grid box) and 12 proxies for LCA
defined in the previous section during JJA and DJF, respec-

tively. The spatial–seasonal correlation coefficients between
these variables are summarized in Table 1. The scatter plots
between the 12 proxies and LCA over the ocean and land are
shown in Figs. 5 and 6, respectively.

Consistent with KH93 and WB06, both LTS and EIS are
strong in subtropical marine stratocumulus decks west of
major continents but weak in the tropical deep convection
regime in which LCA is small. Although the overall pattern
of EIS looks similar to that of LTS, several notable differ-
ences exist between them. For example, in the vicinity of po-
lar and high-latitude regions in both hemispheres where LCA
is large, EIS is strong but LTS is weak, which seems to con-
tribute to a low spatial–seasonal correlation between LTS and
EIS over the globe (see Table 1). According to Eq. (2), EIS
here should be weaker than in other regions, because zLCL
is low in these cold regions (see Figs. 3g and 4g). However,
probably due to the decreases in 0m

700 and z700 in the cold re-
gion, EIS becomes strong here, resulting in a better spatial–
seasonal correlation between EIS and LCA (r = 0.62) than
between LTS and LCA (r =−0.05) over the ocean. Table 1
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Figure 3. Global distribution of climatological (a) lower-tropospheric stability (LTS), (b) estimated inversion strength (EIS), (c) estimated
cloud-top entrainment index (ECTEI), (d) inversion strength (IS), (e) decoupling strength (DS), (f) decoupling parameter (α), (g) lifting
condensation level of near-surface air (zLCL), (h) inversion height (zinv), (i) relative humidity at the inversion base (RH−inv), (j) the first
low-level cloud suppression parameter (β1), (k) the second low-level cloud suppression parameter (β2), and (l) estimated low-level cloud
fraction (ELF) in June–July–August (JJA). The contour line denotes the climatological LCA in JJA reported by surface observers. The grid
boxes with a climatological observation number below 100 in JJA are masked by gray color and dots. Only the data satisfying 0< α < 1 are
used for this figure.

shows that the spatial–seasonal correlation between LTS and
LCA is very weak over the ocean and land. This is some-
what surprising, because KH93 reported that LTS is signif-
icantly positively correlated with LCA. It should be noted
that KH93’s finding was based on the analysis over the ma-
rine stratocumulus deck, while our result is based on global
analysis. Because of this potential sensitivity of the relation-
ship between LTS and LCA to the analysis domain, we need
to be careful when using LTS as a global proxy for LCA in
climate sensitivity studies.

The spatial pattern of the inversion strength (IS, Figs. 3d
and 4d), which is about 1–3 K higher than EIS, is roughly
similar to that of EIS. However, in contrast to EIS but sim-
ilar to LTS, IS tends to be small in high-latitude regions,
which results in a weaker spatial–seasonal correlation be-
tween IS and LCA over the ocean (r = 0.39) than between
EIS and LCA. Table 1 shows that the decoupling strength
(DS, Figs. 3e and 4e) is almost perfectly correlated with EIS
over the globe (r =−0.98), with a correlation with LCA very
similar to that of EIS. However, the named EIS has a weaker
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Figure 4. The same as Fig. 3 but in December–January–February (DJF).

correlation with inversion strength than anti-correlation with
decoupling strength. In other words, a strong EIS indicates
that the air at the inversion base is coupled well with the
surface-based ML air. The decoupling parameter (α, Figs. 3f
and 4f) also has a near-perfect correlation with EIS (r =
−0.98), supporting our interpretation of EIS. When 0m

700 ≈

0m
DL, it becomes α = DS/(0m

DL ·1zs)≈ 1−EIS/(0m
DL ·1zs).

As will be shown later, stronger correlation among EIS–DS–
α than EIS–IS also exists in the combined spatial–seasonal–
interannual correlation statistics (Table 3) and in the analysis
using all of the observation data (Tables 4 and 6).

The inversion height (zinv = α ·1zs+ zLCL, Figs. 3h and
4h), which is strongly correlated with EIS, DS, and α, has a
high spatial–seasonal correlation with LCA (r =−0.69 over
the ocean and r =−0.77 over land), even better than EIS

(r = 0.62 over the ocean and r = 0.07 over land). The superi-
ority of zinv over EIS as a proxy for LCA is more pronounced
over land. Why does zinv characterize LCA better than EIS
over land? If 0m

700 ≈ 0
m
DL, zinv =1zs−EIS/0m

DL+zLCL such
that the different correlation characteristics of zinv and EIS
with LCA are likely associated with zLCL. In the case that
surface air is saturated and very low-level clouds are formed
(e.g., fog with a low zLCL), small zLCL causes EIS to de-
crease (EIS≈ LTS−0m

DL·(z700−zLCL) from Eq. 2). This con-
tributes to the weaker, negative EIS–LCA correlation seen
over land compared to the stronger, positive correlation ob-
served in the marine stratocumulus deck. Because zinv is de-
fined as the addition of zLCL to EIS, the undesirable negative
impact of zLCL to the correlation with LCA is removed from
EIS compared to zinv. Over the western continental United
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Figure 5. Scatter plots between LCA and various proxies over the ocean. Each dot reflects climatological seasonal data at each 5◦ lati-
tude× 10◦ longitude grid box shown in Figs. 3 and 4, and different colors denote different seasons. Also plotted are the least-squares fitting
lines for each season (colored lines) and all seasons (thick black line) and regression equations for all seasons with the corresponding fraction
of variance (R2) explained by the all-seasons regression equation. The dashed gray line in (l) denotes LCA= ELF. Only the data satisfying
0< α < 1 are used for this figure.

States during summer, both zLCL and zinv are at their maxi-
mum where LCA is at its minimum. In this region, similar
to the ocean case, zinv is negatively correlated with LCA;
however, opposite to the ocean case, EIS is not positively
correlated with LCA. Consequently, EIS has a weaker global
spatial–seasonal correlation with LCA (r = 0.22) than zinv

(r =−0.67). It is very interesting to note that a simple proxy,
zLCL, shows a stronger spatial–seasonal (and also spatial–
seasonal–interannual) correlation with LCA than LTS, EIS,
and zinv over both the ocean and land.

According to our conceptual framework, low-level clouds
likely form just below zinv (see Fig. 1). If that is the case, it is
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Figure 6. The same as Fig. 5 but over land.

likely that the relative humidity at the base of zinv (RH−inv) is
a good proxy for LCA. Over both the ocean and land, RH−inv
shows a stronger correlation with LCA than LTS and EIS but
a weaker correlation than zinv and zLCL. We speculate that
this relatively poor performance of RH−inv compared to zinv
and zLCL is due in part to the poor estimation of q−v,inv rather
than indicating that RH−inv is a poor proxy for LCA. Because
RH−inv is estimated using the roughly estimated θ−inv and q−v,inv
without performing any saturation adjustment, the absolute

values of RH−inv in our analysis can be unreasonably larger
than 100 % in some regions (Figs. 3i and 4i).

The spatial patterns of two LCS parameters, β1 = (zinv+

zLCL)/1zs and β2 =
√
zinv · zLCL/1zs, are roughly similar

to those of zinv and zLCL. However, both LCS parameters
have a better spatial–seasonal correlation with LCA than zinv
and zLCL, with β2 showing a slightly better performance than
β1 (see Table 1 and Figs. 5, 6). The estimated low-level cloud
fraction, ELF= f (1−β2), shows a very similar correlation
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Figure 7. The seasonal climatology of LCA during (a) JJA and
(b) DJF in the 2.5◦ latitude× 5◦ longitude grid box. The grid
boxes with a climatological observation number below 25 in each
season are masked by gray color. The domains selected for com-
puting temporal (seasonal–interannual and interannual only) cor-
relation coefficients in Tables 2 and 5 are also plotted: Peruvian
(7.5–22.5◦ S, 80–90◦W and 17.5–22.5◦ S, 75–80◦W), Namibian
(7.5–15◦ S, 5◦W–10◦ E), Californian (25–32.5◦ N, 120–135◦W),
Australian (20–27.5◦ S, 95–110◦ E), Canarian (17.5–27.5◦ N, 20–
30◦W), Arabian (15–20◦ N, 60–70◦ E and 20–22.5◦ N, 60–65◦ E),
North Pacific (42.5–50◦ N, 170–200◦ E), North Atlantic (55–
62.5◦ N, 15–35◦W), southern-hemispheric circumpolar region (50–
65◦ S, 0–360◦ E), China (25–30◦ N, 105–120◦ E and 22.5–25◦ N,
105–115◦ E), India (20–25◦ N, 75–85◦ E and 15–20◦ N, 75–80◦ E),
Europe (47.5–60◦ N, 30–45◦ E and 47.5–55◦ N, 20–30◦ E), east-
ern US (32.5–40◦ N, 80–95◦W), western US (35–47.5◦ N, 110–
120◦W), South America (12.5–22.5◦ S, 45–65◦W), Australia (25–
35◦ S, 140–150◦ E and 17.5–30◦ S, 130–140◦ E), and southwestern
Sahara (7.5–17.5◦ N, 10◦W–15◦ E).

to β2 because the freeze-dry factor, f , is approximately 1 in
the regime of 0< α < 1 (see Fig. 2). Among all 12 prox-
ies, β2 and ELF have the highest spatial–seasonal correlation
with LCA over both the ocean and land. ECTEI is equivalent
if slightly better than EIS for the ocean, equivalent over land,
and between LTS and EIS over the globe.

Figure 8 shows the scatter plots between the seasonal LCA
and 12 proxies in several regions shown in Fig. 7. LTS over
land shows a stronger interregional–seasonal correlation with
LCA than that over the ocean; however, EIS (and ECTEI, DS,

and α) over the ocean has a stronger correlation than that over
land. Over both the ocean and land, zinv and zLCL are strongly
correlated with LCA. RH−inv is strongly correlated with LCA
over the ocean and land; however, the correlation over the
globe is weak. Each of β1 and β2–ELF explains about 80 %
of the interregional–seasonal variations of the seasonal LCA,
which is a much larger percentage than those explained by
LTS (25 %), EIS (25 %), and ECTEI (7 %). Except LTS, the
difference between the regression slopes for the ocean and
land in each proxy shown in Fig. 8 is generally larger than the
seasonal differences between the regression slopes shown in
Figs. 5 and 6, indicating a need to incorporate additional fac-
tors characterizing the contrast between the ocean and land
in the future.

3.2 Seasonal–interannual correlation

Figure 9 shows the global distribution of seasonal–
interannual correlation coefficients between the seasonal
LCA and 12 proxies. Over the North Pacific and subtropi-
cal marine stratocumulus deck west of major continents, LTS
and LCA are positively correlated. However, a negative cor-
relation also exists, for example, over Europe and the north-
western Atlantic. Similar to LTS, EIS and LCA are positively
correlated over marine stratocumulus deck; but interestingly,
the correlation signs over the northwestern Atlantic and Eu-
rope and several continents (e.g., Southeast Asia, Australia,
South America, and Central Africa) are reversed compared
with LTS. As mentioned before, zLCL mainly contributes to
the different correlation characteristics between EIS and LTS
with LCA in these regions (see Eq. 2). Although LTS and
EIS are good proxies for LCA over the marine stratocumulus
deck, they have a limitation as a global proxy due to the spa-
tial changes of temporal correlation signs. ECTEI shows very
similar correlation characteristics to EIS. With an opposite
sign, the overall correlation patterns of DS and α are quite
similar to that of EIS. Compared with the other proxies, LCA
tends to be more homogeneously correlated with zLCL, zinv,
RH−inv, β1, and β2 and ELF over the globe, without the spa-
tial reversal of the correlation sign. Figure 10 shows a similar
temporal correlation analysis to that shown in Fig. 9 but only
for interannual variations without the seasonal cycle. Over-
all, the spatial pattern of interannual correlation is similar to
that of seasonal–interannual correlation; however, the mag-
nitude is reduced, particularly over the marine stratocumulus
deck. Both in terms of seasonal–interannual and interannual
correlations, β2 and ELF perform better than LTS and EIS
over the entire globe without the spatial changes of temporal
correlation signs; thus, they are well suited as global proxies
for LCA. β1 performs nearly as well if not equivalently to β2
and ELF.

Table 2 summarizes the temporal correlation coefficients
between LCA and 12 proxies for various regions shown in
Fig. 7. The first six regions in our analysis are the subtrop-
ical marine stratocumulus decks. Although less well known
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Figure 8. Scatter plots between the seasonal LCA and various proxies over selected regions of Fig. 7. Different colors denote different
seasons. The ocean and land regions are denoted by dots and “x” marks, respectively, except for the China stratocumulus deck, which is
denoted by the circled “x” marks. Also plotted are the least-squares fitting lines for ocean (O; dashed line), land (L; dotted line), and globe
(G; thick solid line), respectively, with the fraction of variance (R2) explained by the regression lines. Only the data satisfying 0< α < 1 are
used for this figure.

than the other regions, stratocumulus and fog also exist over
the Arabian Sea during summer and thus are included in our
analysis (see Park and Leovy, 2004; Schubert et al., 1979;
and also Fig. 7a). The next three regions are the midlatitude
marine stratocumulus decks which have large LCA and un-
dergo frequent passages of synoptic storms (North Pacific,

North Atlantic, SH circumpolar). The last seven regions are
over the continents and have small LCA. China is a unique
continental stratocumulus deck with high LCA. Over the ma-
rine stratocumulus decks, except in the SH circumpolar re-
gion, LTS has a significant positive seasonal–interannual cor-
relation with LCA. In all regions except the Arabian Sea,
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Figure 9. Global distribution of temporal (seasonal plus interannual) correlation coefficients between the seasonal LCA and various proxies:
(a) LTS, (b) EIS, (c) ECTEI, (d) IS, (e) DS, (f) α, (g) zLCL, (h) zinv, (i) RH−inv, (j) β1, (k) β2, and (l) ELF. The contour line denotes the
climatological annual LCA reported by surface observers, and the grid boxes with a climatological annual observation number below 100 are
denoted by dots. Only the grid boxes with the number of effective seasonal data used for the correlation analysis equal to or larger than 50
out of the maximum 120 over the ocean and 72 over land are plotted. The grid boxes that are not satisfying these conditions are masked by
dark gray color. The minimum magnitudes of correlation coefficients statistically significant at the 99.9 % confidence level with the numbers
of independent samples of 120 (ocean max), 72 (land max), and 50 (minimum requirement) are 0.3, 0.38, and 0.45, respectively. Only the
data satisfying 0< α < 1 are used for this figure.

both EIS and ECTEI show strong correlations similar to that
of LTS. Although mainly designed as a proxy for the marine
stratocumulus fraction, LTS is also positively correlated with
some continental LCA in a statistically significant way. On
the other hand, as is also shown in Fig. 9, EIS and ECTEI are
strongly negatively correlated with the continental LCA over
India, South America, and the southwestern Sahara. Similar
to the spatial–seasonal correlations, the temporal correlation
characteristics of DS and α with LCA are very similar to

that of EIS. Over the stratocumulus decks, zinv is a proxy
that is as good as or better than LTS and EIS. Notably, zLCL
shows a very good performance over land (and also in the
midlatitude marine stratocumulus decks), indicating that sur-
face moisture (regardless of whether it is locally originated
or advected) substantially contributes to the temporal varia-
tions of the continental LCA. In most areas, RH−inv has a sig-
nificant positive seasonal–interannual correlation with LCA.
In general, the interannual correlation tends to be weaker
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Figure 10. The same as Fig. 9 but for interannual variation only without the seasonal cycle. This plot was generated by using the four-seasons
data (DJF, MAM, JJA, SON) in each year with the seasonal climatology subtracted in each season, such that only interannual variation is
included in this correlation analysis.

than the seasonal–interannual correlation. In the subtropical
marine stratocumulus decks, except the Namibian and Aus-
tralian ones, the seasonal cycle dominantly contributes to the
temporal correlation between various proxies and LCA. Re-
gardless of whether the seasonal cycle is included or not, two
LCS parameters (β1,β2) and ELF have better temporal cor-
relations with LCA than any other proxies over almost all
regions, including the marine stratocumulus decks.

Table 3 summarizes the combined spatial–seasonal–
interannual correlations between the seasonal LCA and 12
proxies. Over the ocean, EIS and ECTEI show better corre-
lations with LCA than LTS. EIS correlates better with DS
and α than with IS. As a global proxy for LCA, both zLCL

and zinv perform better than LTS, EIS, and ECTEI because
of their better performance over land. A very simple proxy,
zLCL performs better than zinv and explains almost 50 % of
the spatiotemporal variations of LCA over the globe. Among
all 12 proxies, β2 and ELF explain the largest fraction of spa-
tial and temporal variations of the seasonal LCA (more than
56 % over the entire globe), much more than the ones ex-
plained by LTS (3 %) and EIS (4 %). Over the ocean, β2 per-
forms slightly better than β1 with a similar performance over
land.
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Table 2. Temporal (rs+i: seasonal plus interannual, ri: interannual only) correlation coefficients of the seasonal LCA fitted to the individual
proxy for selected regions shown in Fig. 7. Only the data satisfying 0< α < 1 are used for this table.

Domain LTS EIS ECTEI IS DS α zLCL zinv RH−inv β1 β2 ELF

Peruvian rs+i 0.83 0.84 0.84 0.80 − 0.84 − 0.84 − 0.59 − 0.87 0.41 − 0.87 − 0.85 0.85
ri 0.29 0.22 0.15 0.19 −0.19 −0.20 −0.21 −0.28 0.04 −0.32 −0.31 0.31

Namibian rs+i 0.90 0.89 0.89 0.87 − 0.89 − 0.89 −0.26 − 0.92 0.70 − 0.93 − 0.92 0.92
ri 0.56 0.54 0.54 0.49 − 0.55 − 0.53 − 0.35 − 0.63 0.44 − 0.67 − 0.66 0.66

Californian rs+i 0.70 0.71 0.61 0.70 − 0.67 − 0.69 − 0.35 − 0.72 0.67 − 0.72 − 0.67 0.67
ri 0.18 0.30 0.33 0.25 − 0.31 −0.29 −0.05 − 0.30 0.22 −0.28 −0.22 0.22

Australian rs+i 0.50 0.45 0.41 0.48 − 0.42 − 0.45 −0.14 − 0.54 0.61 − 0.56 − 0.49 0.49
ri 0.34 0.39 0.48 0.34 − 0.40 − 0.38 −0.03 − 0.41 0.44 − 0.40 − 0.33 0.33

Canarian rs+i 0.77 0.49 0.39 0.61 − 0.45 − 0.53 − 0.51 − 0.65 0.72 − 0.72 − 0.77 0.77
ri 0.24 0.25 0.27 0.22 −0.24 −0.24 0.00 −0.25 0.19 −0.23 −0.19 0.19

Arabian rs+i 0.67 −0.08 −0.03 0.05 0.13 0.04 − 0.79 − 0.53 0.78 − 0.85 − 0.91 0.91
ri −0.06 −0.13 −0.05 −0.13 0.13 0.13 −0.16 0.07 0.11 −0.01 −0.10 0.10

North rs+i 0.75 0.83 0.69 0.78 − 0.74 − 0.79 − 0.84 − 0.84 0.81 − 0.86 − 0.87 0.87
Pacific ri 0.29 0.26 0.19 0.26 −0.16 −0.23 − 0.40 − 0.36 0.21 − 0.42 − 0.44 0.44

North rs+i 0.38 0.39 0.29 0.39 − 0.34 − 0.40 − 0.62 − 0.50 0.38 − 0.55 − 0.59 0.59
Atlantic ri 0.42 0.32 0.28 0.36 −0.28 − 0.35 − 0.64 − 0.50 0.31 − 0.58 − 0.63 0.63

SH rs+i 0.27 0.07 −0.25 −0.29 0.16 0.24 − 0.76 − 0.51 −0.21 − 0.65 − 0.71 0.72
circumpolar ri 0.24 0.04 −0.25 − 0.44 0.14 0.26 − 0.86 − 0.61 −0.28 − 0.76 − 0.83 0.82

China rs+i 0.63 0.21 0.22 0.19 −0.18 −0.18 − 0.77 − 0.42 0.61 − 0.63 − 0.82 0.82
ri 0.77 0.17 0.15 0.09 −0.05 −0.10 − 0.89 − 0.77 0.73 − 0.88 − 0.90 0.90

India rs+i 0.67 − 0.85 − 0.85 − 0.75 0.91 0.72 − 0.85 − 0.57 0.84 − 0.74 − 0.79 0.79
ri 0.40 − 0.39 −0.28 − 0.40 0.44 0.37 − 0.62 − 0.45 0.66 − 0.57 − 0.59 0.60

Europe rs+i −0.19 0.86 0.85 0.61 − 0.88 − 0.90 − 0.93 − 0.96 0.76 − 0.97 − 0.96 0.96
ri 0.08 0.33 0.44 −0.22 −0.30 −0.15 − 0.79 − 0.77 0.65 − 0.81 − 0.81 0.80

Eastern rs+i 0.57 0.87 0.83 0.81 − 0.86 − 0.88 − 0.69 − 0.96 0.90 − 0.94 − 0.90 0.90
US ri 0.66 0.31 0.18 0.22 −0.15 −0.30 − 0.74 − 0.81 0.62 − 0.82 − 0.80 0.80

Western rs+i 0.45 −0.27 − 0.56 − 0.83 − 0.49 0.27 − 0.89 − 0.86 0.89 − 0.88 − 0.88 0.89
US ri 0.53 −0.07 −0.13 − 0.39 −0.01 0.13 − 0.77 − 0.77 0.72 − 0.79 − 0.79 0.79

South rs+i 0.48 − 0.86 − 0.88 − 0.85 0.89 0.84 − 0.92 −0.31 0.72 − 0.75 − 0.85 0.85
America ri 0.72 −0.00 −0.13 −0.03 0.13 −0.06 − 0.90 − 0.75 0.71 − 0.85 − 0.88 0.88

Australia rs+i 0.82 0.38 0.07 0.25 −0.13 −0.38 − 0.91 − 0.77 0.81 − 0.84 − 0.86 0.86
ri 0.88 −0.32 − 0.64 − 0.38 0.73 0.38 − 0.93 − 0.87 0.86 − 0.91 − 0.92 0.92

Southwestern rs+i 0.97 − 0.89 − 0.92 − 0.83 0.95 0.82 − 0.97 − 0.94 0.98 − 0.98 − 0.98 0.98
Sahara ri 0.74 − 0.44 − 0.52 −0.27 0.63 0.26 − 0.83 − 0.73 0.65 − 0.82 − 0.84 0.84

3.3 Extended analysis using all data

Until now, we have presented results based on the analysis of
the data satisfying 0< α < 1 (i.e., zLCL < zinv <1zs+zLCL)
when our decoupling hypothesis can be applied without any
conceptual ambiguity. However, for a fair comparison with
the previous proxies of LTS, EIS, and ECTEI, which can be
defined in any of the cases, it is necessary to examine the
performance of various proxies in general situations. This
section provides an extended analysis using all observation
data of 0≤ α ≤ 1 (i.e., the sum of 0< α < 1, α = 0, and

α = 1). Figure 2 shows the frequency of occurrence of α = 0
and α = 1 among all observations during JJA and DJF. The
cases of α = 0 frequently occur when the lower troposphere
is highly stable (i.e., zinv ≤ zLCL) in the vicinity of the Arc-
tic area north of 60◦ N, the northern continents and desserts
during boreal winter, the northwestern Pacific and SH cir-
cumpolar regions during boreal summer, and along the west
coast of major continents. On the other hand, the cases of
α = 1 occur when the troposphere is highly unstable (i.e.,
zinv ≥1zs+ zLCL) in the tropical warm pool regions during
JJA and the midlatitude storm tracks during boreal winter.
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Table 3. Combined spatial–seasonal–interannual correlation coefficients of the seasonal LCA fitted to the individual proxy with the same
convention as Table 1. All seasonal data (DJF, MAM, JJA, SON) in each year in each 5◦ latitude× 10◦ longitude grid box are used. Only the
data satisfying 0< α < 1 are used for this table.

r LCA LTS EIS ECTEI IS DS α zLCL zinv RH−inv β1 β2 ELF

LCA 1 0.02 0.53 0.58 0.34 − 0.54 − 0.49 − 0.60 − 0.60 0.57 − 0.66 − 0.70 0.70
( 0.17) ( 0.20) ( 0.19) (− 0.03) (− 0.21) (− 0.16) (− 0.70) (− 0.58) ( 0.36) (− 0.72) (− 0.75) ( 0.76)

LTS 0.21 1 0.22 − 0.02 0.64 − 0.11 − 0.27 0.13 − 0.21 − 0.04 − 0.15 − 0.05 0.10
( 0.06) (− 0.19) ( 0.40) ( 0.08) (− 0.07) (− 0.30) (− 0.25) (− 0.07) (− 0.31) (− 0.30) ( 0.33)

EIS 0.05 − 0.07 1 0.96 0.87 − 0.99 − 0.98 − 0.27 − 0.95 0.68 − 0.89 − 0.74 0.74
( 0.96) ( 0.86) (− 0.99) (− 0.98) ( 0.12) (− 0.78) ( 0.63) (− 0.49) (− 0.25) ( 0.24)

ECTEI 0.06 − 0.31 0.95 1 0.71 − 0.97 − 0.92 − 0.36 − 0.93 0.80 − 0.89 − 0.78 0.77
( 0.72) (− 0.97) (− 0.93) ( 0.17) (− 0.71) ( 0.73) (− 0.42) (− 0.19) ( 0.18)

IS − 0.33 0.21 0.77 0.65 1 − 0.81 − 0.90 − 0.02 − 0.81 0.47 − 0.71 − 0.52 0.53
(− 0.78) (− 0.87) ( 0.33) (− 0.55) ( 0.39) (− 0.24) ( 0.00) ( 0.00)

DS − 0.11 0.26 − 0.96 − 0.97 − 0.61 1 0.98 0.30 0.96 − 0.71 0.90 0.77 − 0.75
( 0.98) (− 0.12) ( 0.78) (− 0.67) ( 0.49) ( 0.26) (− 0.24)

α − 0.07 0.10 − 0.97 − 0.93 − 0.75 0.96 1 0.25 0.97 − 0.68 0.89 0.74 − 0.73
(− 0.15) ( 0.78) (− 0.63) ( 0.48) ( 0.24) (− 0.23)

zLCL − 0.77 − 0.46 0.19 0.27 0.51 − 0.16 − 0.18 1 0.49 − 0.50 0.66 0.83 − 0.83
( 0.50) (− 0.21) ( 0.80) ( 0.93) (− 0.93)

zinv − 0.71 − 0.33 − 0.50 − 0.41 − 0.08 0.53 0.53 0.74 1 − 0.74 0.98 0.89 − 0.88
(− 0.69) ( 0.92) ( 0.79) (− 0.78)

RH−inv 0.62 0.18 0.35 0.39 − 0.04 − 0.40 − 0.36 − 0.56 − 0.73 1 − 0.76 − 0.74 0.73
(− 0.57) (− 0.45) ( 0.44)

β1 − 0.80 − 0.42 − 0.19 − 0.10 0.21 0.22 0.22 0.92 0.94 − 0.69 1 0.96 − 0.96
( 0.96) (− 0.96)

β2 − 0.81 − 0.44 − 0.03 0.05 0.33 0.07 0.06 0.97 0.87 − 0.64 0.99 1 − 0.99
(− 1.00)

ELF 0.80 0.47 0.03 − 0.06 − 0.33 − 0.06 − 0.05 − 0.97 − 0.87 0.64 − 0.98 − 1.00 1

The differences between the results presented in this section
and previous sections are due to the inclusion of the data ob-
tained from these highly stable (α = 0) and unstable regimes
(α = 1), mostly from stable regimes. This comparison allows
us to obtain insights into the impact of extreme vertical strat-
ification in the lower troposphere on the relationship between
various proxies and LCA.

Figure 11 shows the seasonal climatology of LCA (solid
lines) and six key proxies (LTS, EIS, ECTEI, β1, β2, and
ELF) during JJA and DJF, respectively, for all observation
data. The overall pattern of the climatological proxies is sim-
ilar to those with 0< α < 1 (Figs. 3, 4), but the magnitude in
the high-latitude regions is amplified due mainly to the con-
tribution of the data in the very stable regimes. In particular,
over the northern continents during DJF, the values of LTS,
EIS, and ECTEI (β1/β2) are substantially higher (lower) than
those of 0< α < 1. The spatial–seasonal correlation between
LTS and EIS (r = 0.85 in Table 4) is now much stronger than
the previous case of 0< α < 1 (r =−0.08 in Table 1), but,
in contrast to EIS, LTS still tends to decrease with latitude in
the SH high-latitude regions.

Figure 12 shows the scatter plots between LCA and six
key proxies over the ocean, land, globe, and several regions
defined in Fig. 7. This is the reproduction of Figs. 5, 6, and 8
using all observation data. Except ELF, the correlations be-
tween various proxies and LCA are degraded by the inclu-
sion of the data from the very stable and unstable regimes.
In particular, EIS and ECTEI over the ocean and two LCS
parameters (β1 and β2) show substantial degradation of the
correlation with LCA, due mainly to the enhanced scatters
induced by the data in the very stable regimes where LCA
is small (the light-colored data points of 0≤ α < 0.01 in
Fig. 12). Very surprisingly, however, ELF continues to main-
tain a strong correlation relationship with LCA over both the
ocean and land, explaining 70 % of spatial–seasonal varia-
tions of LCA over the entire globe, which is a much larger
percentage than those explained by β1 (19 %), β2 (30 %),
LTS (5 %), EIS (6 %), and ECTEI (4 %). In comparison with
the scatter plots of individual 5◦ latitude× 10◦ longitude grid
point data, the scatter plots of the selected regions (the last
column of Fig. 12) show weaker degradation of correlations
because the selected regions are relatively free from the oc-
currence of α = 0 and α = 1 (compare Fig. 7 with Fig. 2a, b).
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Figure 11. Global distribution of climatological LTS, EIS, ECTEI, β1, β2, and ELF during JJA (upper) and DJF (lower), respectively. The
contour line denotes the climatological seasonal LCA reported by surface observers. These figures are the same as Figs. 3 and 4 but were
obtained from the analysis of all observation data (i.e., 0< α < 1, α = 0, and α = 1).

If the analysis is performed with stratiform LCA only, EIS
and ECTEI show better performance than the ones shown in
Fig. 12 (see Supplement).

Table 4 is the reproduction of Table 1 using all the data of
0< α < 1, α = 0, and α = 1. Except the IS over the ocean
and ELF, the correlations between the proxies and LCA are
generally degraded in comparison to the previous case of
0< α < 1. The spatial–seasonal correlations between LTS

(and EIS, ECTEI) and LCA are very weak and even tend
to be negative. Similar to the previous case, EIS is more
strongly correlated with DS and α than with IS. Although
it shows a weaker correlation than that in Table 1, zLCL still
remains as a good proxy for LCA. Due mainly to the rapid
decrease in the correlation between zinv and LCA, the corre-
lations between two LCS parameters and LCA are substan-
tially weaker than the previous case of 0< α < 1. However,
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Figure 12. Scatter plots between LCA and six proxies over the (first column) ocean, (second) land, (third) globe, and (fourth) selected regions
shown in Fig. 7 with the least-squares fitting lines and the fraction of variance (R2) explained by the regression lines. The dashed gray line
in the panels (u)–(x) denotes LCA= ELF. All observation data (i.e., 0< α < 1, α = 0, and α = 1) are used for this figure. The grid data in
the range of 0≤ α < 0.01 (i.e., very stable regime) are denoted by light colors in the first three columns.
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Table 4. The same as Table 1, but all data (i.e., 0< α < 1 and α = 0 and α = 1) are used for this table.

r LCA LTS EIS ECTEI IS DS α zLCL zinv RH−inv β1 β2 ELF

LCA 1 − 0.20 0.01 0.13 0.51 − 0.41 − 0.31 − 0.54 − 0.38 0.44 − 0.43 − 0.48 0.81
(− 0.23) (− 0.23) (− 0.19) ( 0.10) (−0.01) ( 0.06) (− 0.67) (− 0.26) ( 0.19) (− 0.44) (− 0.54) ( 0.84)

LTS −0.06 1 0.79 0.69 0.23 − 0.49 − 0.61 − 0.27 − 0.59 0.37 − 0.56 − 0.50 − 0.16
( 0.85) ( 0.77) ( 0.01) (− 0.54) (− 0.64) (− 0.21) (− 0.65) ( 0.37) (− 0.58) (− 0.48) (− 0.15)

EIS − 0.21 0.90 1 0.98 0.20 − 0.84 − 0.88 − 0.50 − 0.87 0.58 − 0.85 − 0.81 0.02
( 0.99) ( 0.03) (− 0.82) (− 0.87) (− 0.11) (− 0.81) ( 0.49) (− 0.67) (− 0.52) (− 0.20)

ECTEI − 0.22 0.86 0.99 1 0.25 − 0.90 − 0.92 − 0.56 − 0.92 0.67 − 0.90 − 0.86 0.14
( 0.10) (− 0.89) (− 0.91) (− 0.09) (− 0.84) ( 0.56) (− 0.68) (− 0.52) (− 0.15)

IS − 0.14 − 0.36 − 0.36 − 0.29 1 − 0.59 − 0.57 − 0.10 − 0.52 0.52 − 0.47 − 0.39 0.66
(− 0.46) (− 0.44) ( 0.36) (− 0.22) ( 0.35) (−0.04) ( 0.10) ( 0.23)

DS 0.16 − 0.59 − 0.79 − 0.85 − 0.12 1 0.98 0.54 0.97 − 0.75 0.94 0.89 − 0.46
( 0.98) ( 0.04) ( 0.87) (− 0.65) ( 0.69) ( 0.51) (− 0.10)

α 0.15 − 0.65 − 0.82 − 0.87 −0.10 0.99 1 0.54 0.99 − 0.74 0.96 0.90 − 0.40
( 0.04) ( 0.89) (− 0.64) ( 0.70) ( 0.52) (− 0.05)

zLCL − 0.69 − 0.43 − 0.28 − 0.23 0.60 0.07 0.10 1 0.68 − 0.53 0.77 0.86 − 0.59
( 0.49) (− 0.24) ( 0.74) ( 0.87) (− 0.73)

zinv − 0.32 − 0.74 − 0.77 − 0.78 0.30 0.76 0.79 0.69 1 − 0.76 0.99 0.96 − 0.47
(− 0.67) ( 0.95) ( 0.85) (− 0.38)

RH−inv 0.54 0.26 0.13 0.15 − 0.11 − 0.17 − 0.19 − 0.62 − 0.52 1 − 0.76 − 0.74 0.49
(− 0.61) (− 0.52) ( 0.32)

β1 − 0.50 − 0.67 − 0.63 − 0.61 0.45 0.53 0.57 0.88 0.95 − 0.61 1 0.99 − 0.51
( 0.97) (− 0.55)

β2 − 0.58 − 0.62 − 0.53 − 0.51 0.51 0.40 0.44 0.94 0.90 − 0.62 0.99 1 − 0.55
(− 0.65)

ELF 0.82 0.03 − 0.16 − 0.16 −0.03 0.01 −0.00 − 0.76 − 0.47 0.66 − 0.63 − 0.69 1

ELF successfully maintains a very strong spatial–seasonal
correlation with LCA over both the ocean and land.

Figure 13 shows the global distribution of seasonal–
interannual (upper) and interannual (lower) correlation co-
efficients between the seasonal LCA and six key proxies.
The overall correlation patterns over the ocean are similar to
the previous cases of 0< α < 1 (see Figs. 9 and 10). How-
ever, over Asia, LTS, EIS, and ECTEI show very strong neg-
ative seasonal–interannual correlations, resulting in the op-
posite correlations between the ocean and land. Over Asia,
with similar contributions from zinv and zLCL (not shown but
more strongly from zinv for seasonal–interannual and more
strongly from zLCL for interannual correlations), both β1 and
β2 show undesirable positive seasonal–interannual correla-
tions with LCA. This indicates that LCS, similar to EIS, LTS,
and ECTEI, is not appropriate as a global proxy for diagnos-
ing seasonal–interannual variations of LCA. However, LCS
is still a useful global proxy for diagnosing interannual varia-
tions of LCA. Among all the proxies examined, ELF remains
the best proxy in terms of diagnosing both the seasonal–
interannual and interannual variations of LCA over the globe,
including the marine stratocumulus deck.

Table 5 is the reproduction of Table 2 using all data of
0≤ α ≤ 1. Similar to Table 2, LTS remains a good proxy

for diagnosing the seasonal–interannual variations of LCA in
the subtropical marine stratocumulus deck. However, its per-
formance over several land areas (e.g., South America, Aus-
tralia, southwestern Sahara, India, and China) is degraded,
but its performance over Europe is improved. Both EIS and
ECTEI show similar correlation characteristics to those in
Table 2, but the undesirable negative correlation in the west-
ern US is changed to a desirable strong positive correlation.
LTS outperforms EIS and ECTEI over the Arabian marine
stratocumulus deck and India. LTS, EIS, and ECTEI all show
undesirable significant negative correlations with LCA in the
SH circumpolar region. In the stratocumulus deck (and also
over most land areas), zinv remains as a proxy that is as good
as or better than LTS and EIS. Over the land and midlatitude
stratocumulus deck, including the Arabian region, zLCL tends
to work better than zinv. Similar to Table 2, ELF and two
LCS parameters perform better than LTS and EIS in most
regions, including the marine stratocumulus deck. Overall,
among the 12 proxies, ELF shows the best performance in di-
agnosing the seasonal–interannual variations of the seasonal
LCA in a statistically significant way. The only exception is
continental Australia in which both zLCL and zinv are weakly
correlated with LCA. In addition to the combined seasonal–
interannual variations, ELF also diagnoses the interannual
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Figure 13. Global distribution of seasonal–interannual (a–f) and interannual (g–l) correlation coefficients between the seasonal LCA and six
key proxies (LTS, EIS, ECTEI, β1, β2, and ELF). The contour line denotes the climatological annual LCA reported by surface observers.
These figures are the same as Figs. 9 and 10 but were obtained from the analysis of all observation data (i.e., 0< α < 1, α = 0, and α = 1).

variations of LCA well. However, similar to LTS and EIS,
ELF still does not show good performance in diagnosing the
interannual variations of LCA in several subtropical marine
stratocumulus decks in a statistically significant way.

Table 6 summarizes the combined spatial–seasonal–
interannual correlations between the seasonal LCA and 12
proxies in general cases with all observation data. LTS is
poorly correlated with LCA. Over the ocean, EIS and ECTEI

show slightly better performance than LTS, but the improve-
ment seems to be marginal. EIS correlates much better with
DS and α than with IS. Among all 12 proxies, ELF shows the
best performance in diagnosing the spatiotemporal variations
of LCA, explaining almost 60 % of the spatial–seasonal–
interannual variance of the seasonal LCA over the entire
globe (50 % and 62 % over the ocean and land, respectively),
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Table 5. The same as Table 2, but all data (i.e., 0< α < 1 and α = 0 and α = 1) are used for this table.

Domain LTS EIS ECTEI IS DS α zLCL zinv RH−inv β1 β2 ELF

Peruvian rs+i 0.85 0.86 0.87 0.83 − 0.86 − 0.86 −0.30 − 0.88 0.44 − 0.87 − 0.84 0.84
ri 0.30 0.27 0.24 0.25 −0.26 −0.26 −0.05 −0.30 0.07 −0.29 −0.24 0.24

Namibian rs+i 0.90 0.89 0.89 0.88 − 0.89 − 0.89 −0.16 − 0.92 0.70 − 0.93 − 0.91 0.91
ri 0.54 0.52 0.52 0.50 − 0.55 − 0.53 −0.27 − 0.61 0.45 − 0.65 − 0.64 0.64

Californian rs+i 0.72 0.72 0.65 0.71 − 0.68 − 0.69 − 0.32 − 0.72 0.67 − 0.72 − 0.69 0.70
ri 0.18 0.28 0.33 0.24 − 0.31 −0.29 0.03 −0.28 0.22 −0.25 −0.21 0.21

Australian rs+i 0.53 0.49 0.46 0.52 − 0.46 − 0.49 −0.07 − 0.57 0.63 − 0.58 − 0.49 0.49
ri 0.37 0.42 0.50 0.38 − 0.42 − 0.41 −0.00 − 0.44 0.47 − 0.42 − 0.35 0.35

Canarian rs+i 0.77 0.51 0.41 0.62 − 0.47 − 0.55 − 0.49 − 0.66 0.71 − 0.73 − 0.77 0.77
ri 0.22 0.22 0.25 0.19 −0.23 −0.21 −0.01 −0.23 0.15 −0.22 −0.20 0.20

Arabian rs+i 0.66 −0.02 0.01 0.10 0.12 −0.02 − 0.78 − 0.54 0.77 − 0.85 − 0.91 0.91
ri −0.05 −0.13 −0.07 −0.13 0.13 0.12 −0.18 0.06 0.08 −0.01 −0.12 0.11

North rs+i 0.86 0.84 0.79 0.85 − 0.79 − 0.83 − 0.84 − 0.87 0.78 − 0.90 − 0.91 0.91
Pacific ri 0.37 0.36 0.35 0.35 − 0.34 − 0.35 −0.26 − 0.41 0.30 − 0.45 − 0.45 0.45

North rs+i 0.46 0.43 0.35 0.44 − 0.40 − 0.45 − 0.66 − 0.54 0.34 − 0.59 − 0.65 0.64
Atlantic ri 0.43 0.37 0.34 0.37 − 0.36 − 0.38 − 0.64 − 0.51 0.22 − 0.59 − 0.67 0.67

SH rs+i − 0.31 − 0.45 − 0.48 −0.14 0.45 0.48 − 0.60 0.19 − 0.36 −0.05 −0.28 0.57
circumpolar ri − 0.30 − 0.38 − 0.42 − 0.38 0.40 0.46 − 0.75 0.13 − 0.54 −0.15 − 0.43 0.56

China rs+i 0.47 0.35 0.36 0.32 −0.33 −0.33 − 0.88 − 0.48 0.15 − 0.60 − 0.71 0.71
ri 0.53 0.14 0.16 −0.05 0.05 0.01 − 0.91 − 0.75 0.48 − 0.90 − 0.93 0.92

India rs+i 0.30 − 0.81 − 0.86 − 0.78 0.92 0.76 − 0.82 −0.30 0.82 − 0.61 − 0.70 0.70
ri −0.01 − 0.48 − 0.41 − 0.47 0.52 0.47 − 0.58 −0.14 0.57 − 0.41 − 0.47 0.48

Europe rs+i 0.76 0.73 0.73 0.38 − 0.74 − 0.76 − 0.91 − 0.84 −0.16 − 0.87 − 0.89 0.85
ri − 0.48 − 0.56 − 0.53 0.34 0.22 0.25 − 0.57 −0.22 0.54 − 0.39 − 0.46 0.82

Eastern rs+i 0.78 0.78 0.78 0.45 − 0.74 − 0.75 − 0.54 − 0.82 0.57 − 0.85 − 0.86 0.77
US ri 0.44 0.11 0.09 −0.02 0.04 −0.08 − 0.82 − 0.69 0.61 − 0.82 − 0.84 0.79

Western rs+i 0.62 0.66 0.69 − 0.91 − 0.71 − 0.61 − 0.91 − 0.87 0.82 − 0.89 − 0.89 0.90
US ri 0.25 0.12 0.13 − 0.53 −0.07 −0.00 − 0.78 − 0.71 0.62 − 0.75 − 0.75 0.73

South rs+i −0.18 − 0.84 − 0.88 − 0.84 0.88 0.83 − 0.90 0.17 0.80 − 0.49 − 0.72 0.72
America ri 0.48 −0.15 −0.20 −0.11 0.25 0.08 − 0.89 − 0.59 0.72 − 0.78 − 0.83 0.83

Australia rs+i −0.12 − 0.43 − 0.53 − 0.50 0.57 0.46 −0.37 0.09 0.22 −0.07 −0.13 0.13
ri 0.42 − 0.74 − 0.86 − 0.55 0.86 0.70 − 0.92 − 0.67 0.83 − 0.84 − 0.86 0.87

Southwestern rs+i 0.10 − 0.87 − 0.91 − 0.87 0.94 0.86 − 0.98 − 0.62 0.94 − 0.96 − 0.97 0.97
Sahara ri 0.45 −0.38 − 0.45 −0.34 0.57 0.32 − 0.83 − 0.65 0.65 − 0.83 − 0.85 0.86

which is a much larger percentage than those explained by
LTS (2 %), EIS (4 %), and ECTEI (2 %).

4 Summary and conclusion

Based on the decoupling parameterization of the cloud-
topped PBL suggested by PLR04, a simple heuristic equa-
tion is derived to compute the inversion height, zinv. As an
attempt to find a simple heuristic proxy for diagnosing the
spatiotemporal variations of LCA over the globe, we defined
two low-level cloud suppression parameters (LCS), β1 =

(zinv+zLCL)/1zs and β2 =
√
zinv · zLCL/1zs, by combining

zinv with the lifting condensation level of near-surface air,
zLCL, and normalizing with a constant scale height, 1zs =

2750 m. To better diagnose LCA in extremely cold and dry
atmospheric conditions, we also defined an estimated low-
level cloud fraction, ELF≡ f (1−β2), with a freeze-dry fac-
tor, f =max[0.15,min(1,qv,ML/0.003)], where qv,ML is the
water vapor specific humidity in the surfaced-based mixed
layer that is assumed to be topped by zLCL, for simplicity.
If zML ≈ zLCL where zML is the height of the surface-based
mixed layer, then β1 ≈ (zLCL/1zs) · [2+ (zinv− zML)/zML]

and β2 ≈ (zLCL/1zs) ·
√

1+ (zinv− zML)/zML, where the
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Table 6. The same as Table 3, but all data (i.e., 0< α < 1 and α = 0 and α = 1) are used for this table.

r LCA LTS EIS ECTEI IS DS α zLCL zinv RH−inv β1 β2 ELF

LCA 1 − 0.03 0.16 0.26 0.41 − 0.42 − 0.35 − 0.50 − 0.42 0.44 − 0.47 − 0.51 0.71
(− 0.15) (− 0.19) (− 0.14) ( 0.09) (− 0.03) ( 0.03) (− 0.63) (− 0.24) ( 0.20) (− 0.41) (− 0.52) ( 0.77)

LTS − 0.07 1 0.71 0.59 0.51 − 0.49 − 0.62 − 0.20 − 0.61 0.40 − 0.57 − 0.50 0.11
( 0.81) ( 0.71) ( 0.25) (− 0.54) (− 0.65) (− 0.17) (− 0.66) ( 0.40) (− 0.59) (− 0.49) (− 0.03)

EIS − 0.22 0.89 1 0.98 0.44 − 0.87 − 0.90 − 0.38 − 0.90 0.58 − 0.86 − 0.79 0.24
( 0.98) ( 0.23) (− 0.84) (− 0.88) (− 0.04) (− 0.82) ( 0.51) (− 0.68) (− 0.51) (− 0.12)

ECTEI − 0.22 0.83 0.99 1 0.46 − 0.92 − 0.92 − 0.43 − 0.92 0.65 − 0.90 − 0.84 0.34
( 0.29) (− 0.90) (− 0.91) (− 0.01) (− 0.84) ( 0.59) (− 0.68) (− 0.51) (− 0.08)

IS − 0.11 − 0.23 − 0.23 − 0.15 1 − 0.71 − 0.73 − 0.07 − 0.67 0.56 − 0.61 − 0.49 0.62
(− 0.60) (− 0.60) ( 0.30) (− 0.42) ( 0.45) (− 0.23) (− 0.05) ( 0.25)

DS 0.15 − 0.59 − 0.80 − 0.86 − 0.26 1 0.97 0.38 0.96 − 0.67 0.92 0.84 − 0.56
( 0.98) (− 0.03) ( 0.88) (− 0.64) ( 0.70) ( 0.50) (− 0.15)

α 0.15 − 0.65 − 0.83 − 0.88 − 0.24 0.99 1 0.37 0.98 − 0.69 0.94 0.85 − 0.52
(− 0.03) ( 0.90) (− 0.65) ( 0.72) ( 0.51) (− 0.12)

zLCL − 0.67 − 0.37 − 0.19 − 0.14 0.54 −0.00 0.02 1 0.55 − 0.43 0.67 0.81 − 0.67
( 0.40) (− 0.18) ( 0.68) ( 0.84) (− 0.75)

zinv − 0.30 − 0.73 − 0.76 − 0.76 0.15 0.76 0.79 0.63 1 − 0.71 0.99 0.93 − 0.61
(− 0.67) ( 0.95) ( 0.83) (− 0.43)

RH−inv 0.42 0.30 0.22 0.27 0.04 − 0.32 − 0.32 − 0.48 − 0.54 1 − 0.71 − 0.69 0.54
(− 0.60) (− 0.51) ( 0.33)

β1 − 0.48 − 0.66 − 0.60 − 0.58 0.33 0.52 0.55 0.85 0.95 − 0.57 1 0.98 − 0.67
( 0.96) (− 0.61)

β2 − 0.57 − 0.59 − 0.48 − 0.45 0.42 0.36 0.39 0.93 0.87 − 0.55 0.98 1 − 0.71
(− 0.71)

ELF 0.79 0.02 − 0.18 − 0.19 −0.01 0.03 0.02 − 0.78 − 0.46 0.52 − 0.64 − 0.71 1

first factor in both formulae represents the degree of subsat-
uration of near-surface air, and the second factor represents
the decoupling strength. ELF predicts that LCA increases as
the inversion base air is thermodynamically coupled with the
moist near-surface air containing enough water vapor. Con-
sidering that low-level clouds usually form at the inversion
base, the conceptual cloud formation processes embedded in
ELF are consistent with what is expected to happen in nature.

Using the near-surface θ and qv obtained from individual
EECRA surface observations and the 6-hourly ERA-Interim
profile of θ , we computed the IS (inversion strength), DS
(decoupling strength), α (decoupling parameter), zLCL, zinv,
RH−inv, β1, β2, and ELF for January 1979–December 2008
over the ocean and January 1979–December 1996 over
land, respectively, which were then averaged into 5◦ lati-
tude× 10◦ longitude seasonal grid data. Spatial and temporal
correlations between these proxies and surface-observed sea-
sonal LCA were computed over the globe and compared with
those of LTS, EIS, and ECTEI, all of which have been widely
used as proxies for LCA in previous studies. To obtain in-
sights into the impact of extreme vertical stratification in the
lower troposphere (i.e., very stable or unstable regimes) on
the correlation relationship between LCA and various prox-
ies, we first analyzed the results only using the data satisfy-

ing 0< α < 1 (i.e., zLCL < zinv <1zs+ zLCL) and then the
analysis was extended to include all of the observation data.
Here, we provide a summary of the results for 0< α < 1 and
then for all data.

In contrast to previous studies, the spatial–seasonal cor-
relation between LTS and LCA is very weak, reflecting the
sensitivity of the LTS–LCA relationship to the analysis do-
main. However, EIS and ECTEI show a significant positive
correlation with LCA over the ocean (Table 1 and Figs. 5,
6). It is shown that EIS is more strongly anti-correlated with
α and DS than with IS, implying that EIS may measure the
magnitude of decoupling strength more strongly than the in-
version strength. As a proxy for diagnosing spatial–seasonal
variations of LCA, zLCL performs better than zinv and RH−inv,
which work better than LTS. The LCS parameter, β2, per-
forms slightly better than β1, which is better than zLCL.
Among all 12 proxies, ELF shows the best performance. A
similar interregional–seasonal correlation analysis over sev-
eral selected regions (Fig. 8) also showed that β1 and β2–
ELF are the best proxies for LCA, explaining about 80 % of
interregional–seasonal variance of the seasonal LCA, which
is much higher than the ones explained by LTS and EIS
(25 %).
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In addition to the spatial–seasonal correlation, we also ex-
amined the seasonal–interannual and interannual correlations
between the proxies and LCA (Table 2 and Figs. 9, 10). Con-
sistent with previous studies, both LTS and EIS are good
proxies characterizing the seasonal–interannual variation of
LCA over subtropical marine stratocumulus decks. Although
mainly designed as a proxy for marine stratocumulus, LTS is
also positively correlated with some continental LCA. Due to
the spatial changes of temporal correlation signs, however,
the use of LTS and EIS as global proxies for LCA is lim-
ited. In contrast to LTS and EIS, the proxies of zinv, zLCL,
RH−inv, β1, and β2 and ELF tend to be more homogeneously
correlated with LCA all over the globe, without the reversal
of correlation signs (Fig. 9). Similar to the spatial–seasonal
correlations, the temporal correlation characteristics of DS
and α with LCA are very similar to that of EIS. The inter-
annual correlation between the proxies and LCA tends to
be weaker than the seasonal–interannual correlation, and all
proxies over the subtropical marine stratocumulus decks ex-
cept the Namibian ones have weak interannual correlations
smaller than 0.5 with LCA (Table 2 and Fig. 10). Regardless
of whether the seasonal cycle is included or not, β2 and ELF
show the best temporal correlation with LCA in almost all
regions. The combined spatial–seasonal–interannual correla-
tion analysis reveals that EIS and ECTEI over the ocean are
significantly correlated with LCA but LTS is poorly corre-
lated with LCA (Table 3). Among all 12 proxies, β2 and ELF
explain the largest fraction of spatial and temporal variations
of the seasonal LCA over the globe.

For a fair comparison with the previous proxies of LTS,
EIS, and ECTEI that can be defined in any situations, we
repeated our analysis by using all observation data, includ-
ing the ones in very stable and unstable regimes (Tables 4–
6 and Figs. 11–13). In general, in comparison with the pre-
vious case of 0< α < 1, the correlations between the prox-
ies and LCA are degraded mainly due to the enhanced scat-
ters induced by the data in the very stable regimes (Fig. 12).
However, ELF continues to maintain a very strong correla-
tion with LCA. LTS, EIS, and ECTEI remain good proxies
for diagnosing the seasonal–interannual variations of LCA
in the subtropical marine stratocumulus deck with better per-
formance of LTS than EIS and ECTEI over the Arabian and
Canarian regions (Table 5). However, they show undesir-
able negative correlations with LCA in the SH circumpo-
lar region and several continental regions, particularly Asia
(Fig. 13). Over the stratocumulus deck and most land ar-
eas except Asia, zinv remains a proxy that is as good as or
better than LTS and EIS, while zLCL generally works better
than zinv over land except the eastern United States EIS anti-
correlates much better with DS and α than with IS. Among
all 12 proxies, ELF shows the best performance in diagnos-
ing the spatiotemporal variations of LCA (Table 6), explain-
ing almost 60 % of spatial–seasonal–interannual variances of
the seasonal LCA over the entire globe (50 % and 62 % over
the ocean and land, respectively), which is a much larger per-

centage than those explained by LTS (2 %), EIS (4 %), and
ECTEI (2 %). However, similar to LTS and EIS, ELF still
has a weakness in diagnosing interannual variation of LCA
in several subtropical marine stratocumulus decks in a statis-
tically significant way (Table 5).

We have shown that ELF and two LCS parameters are su-
perior to the previously proposed LTS, EIS, and ECTEI in di-
agnosing the spatial and temporal variations of the seasonal
LCA over both the ocean and land, including the marine stra-
tocumulus deck. However, there are a couple of aspects that
need to be addressed in future research. First, mainly due
to insufficient surface moisture, the physical processes con-
trolling the formation and dissipation of LCA over land are
likely to be different from those over the ocean (e.g., Ek
and Mahrt, 1994; Ek and Holtslag, 2004; Zhang and Klein,
2010, 2013; Gentine et al., 2013). In contrast to ocean ar-
eas where zML ≈ zLCL, zML over desserts during the night is
likely to be lower than zLCL due to the radiative stabilization
of near-surface air. In addition, the mixed layer developed
during the daytime may reside above the stable nocturnal
surface layer; therefore, the idealized vertical structure de-
picted in Fig. 1 may not be valid. At this stage, we are not
aware of any comprehensive ways to handle these compli-
cated cases over land within the degree of complexity suit-
able for a heuristic proxy or simple parameterization. One
very simple way is to impose a certain upper limit on zML
(e.g., zML =min(zLCL,1500m)), but it would be more de-
sirable to parameterize zML as a function of the buoyancy
flux and shear production within the PBL. Second, although
named an estimated low-level cloud fraction due mainly to
the existence of an upper bound of 1 (when near-surface air is
saturated with enough water vapor), our ELF has systematic
biases against LCA. For example, as seen in Figs. 5l, 6l, 8l,
and 12u–x, the dashed gray lines representing LCA=ELF
are offset from the thick black regression lines, and the re-
gression slope over the ocean is different from that over land.
As a result, our ELF tends to overestimate LCA over land
and to underestimate it over the marine stratocumulus deck
(Fig. 2g, h). This feature may be addressed by using differ-
ent scale heights (1zs) over the ocean and land, respectively.
Finally, a strong correlation relationship between LCA and
ELF (and two LCS parameters) identified in our study can
be used to evaluate the realism of simulated LCA in GCMs,
as was done by Park et al. (2014) using LTS. Because the
freeze-dry factor is derived from the analysis of observation
data, and the definitions of the observed and simulated LCA
may differ, it might be better to use the LCS parameters (β1
or β2) instead of ELF to evaluate the simulated LCA, unless a
GCM has a cloud fraction parameterization incorporating the
freeze-dry factor. It was not shown here, but we checked that
the observed significant correlations between LCS and LCA
were also simulated by the Community Atmosphere Model
version 5 (CAM5, Park et al., 2014) and the Seoul National
University Atmosphere Model version 0 with a Unified Con-
vection Scheme (SAM0-UNICON, Park et al., 2019, 2017;
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Park, 2014a, b), which will be reported in a separate paper
with additional observational analysis by cloud types (e.g.,
cumulus, cumulonimbus, stratus, stratocumulus, and fog).

5 Implication

Our study implies that, regardless of other properties, accu-
rate prediction of inversion base height and lifting condensa-
tion level is a key factor necessary for successful simulation
of global low-level clouds in weather prediction models and
GCMs. Strong spatiotemporal correlation between ELF (or
LCS) and LCA identified in our study can be used to evaluate
the performance of GCMs, identify the source of inaccurate
simulation of LCA, and better understand climate sensitivity.
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