Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
ACP | Articles | Volume 19, issue 4
Atmos. Chem. Phys., 19, 2629–2634, 2019
https://doi.org/10.5194/acp-19-2629-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Layered phenomena in the mesopause region (ACP/AMT inter-journal...

Atmos. Chem. Phys., 19, 2629–2634, 2019
https://doi.org/10.5194/acp-19-2629-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Technical note 28 Feb 2019

Technical note | 28 Feb 2019

Technical note: Bimodality in mesospheric OH rotational population distributions and implications for temperature measurements

Konstantinos S. Kalogerakis

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Konstantinos Kalogerakis on behalf of the Authors (05 Feb 2019)  Author's response
ED: Publish as is (12 Feb 2019) by Franz-Josef Lübken
Publications Copernicus
Download
Short summary
Light emission from energetic hydroxyl radical, OH*, is a prominent feature in spectra of the night sky. It is routinely used to determine the temperature of the atmosphere near 90 km. This note shows that the common practice of using only a few emission features from low rotational excitation to determine rotational temperatures does not account for the bimodality of the OH population distributions and can lead to large systematic errors.
Light emission from energetic hydroxyl radical, OH*, is a prominent feature in spectra of the...
Citation
Altmetrics
Final-revised paper
Preprint