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Response to Comments by Referee #1 

 

Referee comments in boldface type 
Author responses in italics 
 5 

The author sincerely appreciates the referee’s offer to review the manuscript, all the associated efforts, and helpful 
comments. 
 
Anonymous Referee #1 
Referee report on manuscript acp-2018-1047 10 

General Comments 
1. OH rotational spectra are widely used for the estimation of upper mesosphere temperatures. 
The author discusses the complexity of the vibrational-rotational structures. He demonstrates the validity of an 

exponential-gap rotational relaxation model and the bimodality of the OH state distribution. He suggests that more 

complicated structures beyond bimodality are possible. These are important and interesting results.  15 

2. The author shows that it is important to take bimodality into account when deriving temperatures from the OH 

spectrum. Large errrors can occur if bimodality is neglected. This is an important and intriguing result for atmospheric 

physics.  

3. The author makes suggestions how to mitigate the problem. This again is interesting, but not easy to accomplish. 

4. The paper is well written.  20 

5. The paper is recommended for publication after minor changes have been made. 

Specific Comments. 
1. Page 4, Line 12: “: : :OH radiative lifetime decreases as the vibrational level 
decrease: : :” It should be the other way round! Please check! 
The reviewer is correct. This inadvertent mistake had already been corrected in the version submitted to ACP for Discussion 25 

and no further action was taken. 
 
Technical Corrections 
1. Page 3, Line 24, and Fig.3: 294 K or 293 K? Changed to the correct 293 ± 4 K 
2. Page 5, Line 5: “Thus it is reasonable: : :” Changed as suggested 30 

3. Page 6, Lines 11pp: Anlauf et al. goes after Adler-Golden Corrected as suggested 
4. Page 7, Lines 4pp: Hickson et al. goes after Grygalashviyly Corrected as suggested 
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Response to Comments by Referee #2 

 
Referee comments in boldface type 
Author responses in italics 
 5 

The author sincerely appreciates the referee’s offer to review the manuscript, all the associated efforts, and helpful 
comments. 
 
Anonymous Referee #2 
Referee report on manuscript acp-2018-1047 10 

General comments. 
The paper is devoted to explanation of the OH* rotational temperatures dependence on vibrational numbers. Author 
found that the existence of bimodal OH* rotational population distributions is an inherent feature of rotational 
relaxation. In the manuscript OH* rotational temperatures dependence on vibrational numbers is explained by the 
bimodality of the OH*(v) rotational population distributions. The result is obtained based on analysis of selected 15 

examples from former investigations. On my opinion the provided analysis is correct and author’s conclusions are 
reasonable. 
 
Specific comments. 
Is the explanation of the temperature trend by bimodal rotational population distribution 20 

only one possible? If – not, please discuss other with corresponding references. 
This report demonstrates that the OH rotational temperature dependence on the vibrational level that has been reported 
previously based on measurements of only the few lowest rotational levels contains large systematic errors. Therefore, the 
previously reported trend should be considered an artefact and does not reflect how the temperature of the thermalized 
portion of the OH rotational population distribution depends on the vibrational level. Not enough information is available 25 

yet to establish what the actual trend and its variability are.  
Another key point is that we do not know how collisional relaxation influences the bimodality in the rotational population 
distributions. As stated in lines 6-8 of the discussion on page 5, “…we do not fully understand all the relevant collisional 

relaxation processes and the variability of the bimodal character in the OH rotational population distributions.” It seems 

quite remarkable that after seven decades of measurements on OH rotational temperature, one finds that in many crucial 30 

aspects we are just at the beginning. 

Other than the comments provided above, the manuscript was left unchanged. 
 
Page 4, line 12: “the fact that the OH(v) radiative lifetime decreases as the vibrational 
level increases” – add reference. 35 

This sentence was corrected as follows and a reference was added:   

“This behaviour results from the fact that the OH(v) radiative lifetime decreases as the vibrational level increases (Brooke et 

al., 2016) and, consequently, the higher OH vibrational levels experience fewer collisions with the ambient atmosphere.” 
 

Brooke, J. S. A., Bernath, P. F., Western, C. M., Sneden, C., Afşar, M., Li, G., and Gordon, I. E.: Line strengths of 40 

rovibrational and rotational transitions in the X 2 ground state of OH, J. Quant. Spectrosc. Ra., 168, 142–157, 2016. 
 
Technical corrections 
 
I recommend for references in the manuscript to use unique style, i.e. ( ) or [ ] through 45 

the entire manuscript 
Corrected as suggested using parentheses. 
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Page 1, line 20: “von Savigny 2017” - add comma.  
Corrected as suggested 
 
Page 2, line 26: “[Charters and Polanyi, 1962;” – please add into reference list. 5 

The following reference was added: 

Charters, P. E. and Polanyi, J. C.: Energy distribution among reaction products. Part 1—The reaction atomic hydrogen plus 

molecular chlorine, Discuss. Faraday Soc., 33, 107-117, 1962. 

 
Page 3, line 9: “Lucht et al, 1986” - point after al. 10 

Corrected as suggested 
 
Page 3, line 10: “Fei et al. 1998” – al., “Funke et al., 2012,” – 2012; “ Noll et al.;” – al., 
Corrected as suggested 
 15 

Page 3, line 19: “data of Kliner and Farrow” – add year. 
Corrected as suggested 
 
Page 4, line 10: “highest vibrational levels,.” – without the comma. 
Corrected as suggested 20 

 
Page 4, line 20: “of a bimodal OH” – the (?! I am not sure). 
This sentence was changed as follows:  

“We now consider the effect of bimodal OH rotational population distributions on the determination of OH rotational 

temperatures by considering an example for OH(v = 9).” 25 

 
Page 4, line 33: “Oliva et al. data” – add year. 
Corrected as suggested 
 
Generally, after specific and technical corrections, I recommend this paper for publication 30 

in Atmospheric Chemistry and Physics. 
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Manuscript with aforementioned changes in yellow highlight 

Technical Note: Bimodality in Mesospheric OH Rotational 

Population Distributions and Implications for Temperature 

Measurements 

Konstantinos S. Kalogerakis1 5 

1Center for Geospace Studies, SRI International, Menlo Park, California, USA 

Correspondence to: Konstantinos S. Kalogerakis (ksk@sri.com) 

Abstract. Emission from the OH Meinel bands is routinely used to determine rotational temperatures that are considered 

proxies for the kinetic temperature near the mesopause region. Previous observations determined OH rotational temperatures 

that show a dependence on the vibrational level, with the temperature rising overall as the OH vibrational quantum number v 10 

increases. The source of this trend is not well understood and has generally been attributed to deviations from 

thermodynamic equilibrium. This Technical Note demonstrates that the existence of bimodal OH rotational population 

distributions is an inherent feature of rotational relaxation in gases and can provide an explanation for the previously 

reported temperature trend. The use of only a few lines from rotational transitions involving low rotational quantum numbers 

to determine rotational temperatures does not account for the bimodality of the OH rotational population distributions and 15 

leads to systematic errors overestimating the OH rotational temperature. This Note presents selected examples, discusses the 

relevant implications, and considers strategies that could lead to more reliable OH rotational temperature determination. 

1 Introduction 

The hydroxyl radical is an important species in the middle atmosphere of the Earth. At altitudes around 87 km, the 

exothermic reaction of ozone with atomic hydrogen produces rotationally and vibrationally excited hydroxyl, OH(v), in 20 

vibrational levels v = 5–9 (Adler-Golden, 1997; Khomich et al., 2008; von Savigny, 2017; and references therein). The 

radiative decay of OH(v) in the visible and infrared region of the electromagnetic spectrum, known as the OH Meinel band 

emission, is a prominent feature in night sky spectra. The OH Meinel band emission has been used to monitor atmospheric 

density changes, temperature fluctuations, and species concentrations for several decades (Meriwether, 1989; Sivjee, 1992; 

Khomich et al., 2008; Grygalashvyly, 2015).  25 

Collisional relaxation of OH(v) by other atmospheric species plays an important role in determining the observed internal 

quantum-state distribution. As a result, collisional energy transfer between OH(v) and the major components of the 

atmosphere at this altitude region, O2 and N2, have been studied for many years. Nevertheless, several gaps persist in our 

knowledge of these processes. Especially for oxygen atoms, which form a significant component of the atmosphere at the 

high-altitude part of the OH(v) layer, studies of collisional energy transfer have been relatively limited. Notable recent 30 
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developments from laboratory studies include the demonstration that the deactivation of OH(v = 9) by O atoms is 

characterized by a total loss rate coefficient that is significantly larger than that by O2 and N2, and the most efficient 

relaxation pathway involves multi-quantum vibrational-to-electronic energy transfer (Kalogerakis et al., 2011; 2016). 

The question of whether the OH rotational temperature determined by observations is equivalent to the local kinetic 

temperature is of fundamental significance and has been debated since the discovery of the Meinel band emission in the 5 

1950s (Kalogerakis et al., 2018; and references therein). Simultaneous observations of mesospheric OH(v) emissions from 

several vibrational levels by Cosby and Slanger (2007) and Noll et al. (2015, 2016) using sky spectra from astronomical 

telescopes reported rotational temperatures that exhibit a clear vibrational level dependence; the rotational temperature 

increases by approximately 15 K as the OH vibrational quantum number increases from v = 2 to v = 8. Both groups also 

determined that the rotational temperature of OH(v = 8) was significantly higher than that for OH(v = 9). Figure 1 10 

summarizes the results on OH rotational temperatures reported by Cosby and Slanger (2007), Oliva et al. (2015), and Noll et 

al. (2016). Despite some variation, possibly due to the different location, time, and instrument for these measurements, these 

data sets show a similar trend for the vibrational level dependence of the OH rotational temperatures. 

In this Technical Note, we first briefly consider the available knowledge from fundamental theoretical and experimental 

studies of rotational energy transfer. These studies unambiguously demonstrate that bimodal rotational population 15 

distributions are an inherent feature of the rotational relaxation process in gases. Signatures of bimodal behaviour have been 

observed in the laboratory as well as in the upper atmosphere. We then show that neglecting to account for this bimodality in 

the mesospheric OH rotational population distributions leads to large systematic errors in the determined rotational 

temperatures. These findings provide an explanation for the aforementioned dependence of the OH rotational temperatures 

on the vibrational level determined in previous studies. Finally, this Note briefly discusses the implications for mesospheric 20 

temperature measurements and strategies for mitigation of systematic errors.  

2 Evidence from Studies of Rotational Energy Transfer 

Before considering results from atmospheric observations, it is highly informative to review selected information from 

theoretical studies on the mechanism of rotational relaxation as well as relevant laboratory results.  

In their seminal experiments on rotational energy transfer investigated by the technique of “arrested relaxation” using 25 

infrared chemiluminescence, Polanyi and coworkers (Charters and Polanyi, 1962; Anlauf et al., 1967; Polanyi and Woodall, 

1972) investigated how the initial highly rotationally excited nonthermal population distribution of hydrogen chloride from 

the H + Cl2 reaction attained thermal equilibrium in collisions with the bath gas. A general observation in these studies was 

that rotational energy transfer was less efficient as the rotational excitation increased or, in other words, as the energy 

spacing between rotational levels became larger. A key finding by Polanyi and coworkers was that rotational-to-translational 30 

(R-T) energy transfer of an initial rotationally excited population distribution peaking at high rotational quantum number J 

does not exhibit a transient peak at intermediate J values. Instead, a bimodal distribution is generated with a peak at high J, 
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reflecting the nascent excited rotational population distribution, as well as a new secondary peak at low J, corresponding to 

the thermal distribution of the bath gas. As the rotational relaxation process progresses, the amplitude of the excited, 

nonthermal population distribution decreases while that of the thermalized distribution increases accordingly. Polanyi and 

Woodall (1972) developed a theoretical model for R-T energy transfer that quantitatively accounted for their experimental 

observations. According to this model, the transition probability for rotational energy transfer decreases exponentially with 5 

the energy gap between the two rotational states involved in the rotational energy exchange. Figure 2 demonstrates the 

bimodal pattern observed when an initial rotational population distribution that is a delta function relaxes according to the 

model of Polanyi and Woodall (1972). Exponential-gap models have been extensively used in studies of rotational energy 

transfer for decades (Koszykowski et al., 1985; Lucht et al., 1986; Dodd et al., 1994; Holtzclaw et al., 1997; Beaud et al. 

1998; Fei et al., 1998; Kliner and Farrow, 1999; Hickson et al., 2002; Knopp et al., 2003; Funke et al., 2012; Noll et al., 10 

2018). 

Regarding rotational relaxation involving the hydroxyl radical, Kliner and Farrow (1999) performed relevant, laser-

based experiments studying energy transfer in OH(v = 0) excited to rotational levels N = 1-12 near room temperature. In 

those studies, pulsed photolysis of H2O2 at 266 nm created a rotationally excited population distribution, whose temporal 

evolution was probed using laser-induced fluorescence (LIF). Kliner and Farrow (1999) were able to determine that 15 

rotational relaxation by O2 and N2 is more efficient for lower rotational levels than for higher ones. They also found that an 

exponential gap model similar to that of Polanyi and Woodall (1972) reproduced their laboratory measurements remarkably 

well. Figure 3 presents the results of Kliner and Farrow (1999) for rotationally excited OH(v = 0, N = 1-12) colliding with N2 

bath gas. The figure also shows Boltzmann fits to the data of Kliner and Farrow (1999) using a fitting function described by 

two Boltzmann distributions, at low and high temperatures. The initially excited and the final, thermalized distributions were 20 

fit to a single-temperature, indicated in Fig. 3. For the other measurements, we constrained the two determined temperatures 

as fixed values and varied the partitioning of the two rotational level populations at the two characteristic temperatures so as 

to reflect the changes in the degree of thermal equilibration. As Fig. 3 shows, this experimental system is well described by a 

low temperature value near room temperature and a high temperature value (293 ± 4 K and 1567 ± 38 K, based on our fits) 

reflecting the nascent rotational distribution of OH(v = 0) following photodissociation of H2O2. Gericke et al. (1986) 25 

performed a relevant laboratory study investigating the dynamics of H2O2 photodissociation at 266 nm and found that the 

nascent OH(v = 0) product rotational state distribution was characterized by a temperature of 1530 ± 150 K, in excellent 

agreement with the results of the fits shown in Fig. 3. We find similar agreement with the measurements of Kliner and 

Farrow (1999) for collider gases O2 and Ar. In summary, the results of Kliner and Farrow (1999) provide further validation 

for the exponential-gap rotational relaxation model of Polanyi and Woodall (1972) for OH as well as a clear laboratory 30 

demonstration of bimodality in the OH product state distributions following rotational relaxation. 
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3 Bimodality in Rotational Population Distributions of Mesospheric OH and Implications for Rotational 

Temperature Measurements 

Atmospheric observations have revealed that the rotational population distributions of mesospheric OH display a bimodal 

character. Early observations provided the first indications for emission from lines associated with high rotational excitation 

in selected vibrational levels (Pendleton et al., 1989; 1992; Perminov and Semenov, 1992; Smith et al., 1992; Dodd et al., 5 

1993; Perminov et al., 2007; and references therein). Recent simultaneous observations of multiple OH vibrational levels 

using high-resolution spectrographs from astronomical telescopes by Cosby and Slanger (2007) and Oliva et al. (2015) 

represent the most comprehensive demonstrations of bimodal behaviour in OH(v) rotational population distributions to date. 

Bimodal behaviour is evident for all observed vibrational levels OH(v = 2-9), but this effect may appear at first less 

pronounced for the highest vibrational levels. In fact, the opposite is true because the higher the OH vibrational level is, the 10 

larger the fraction of the rotational level population that deviates from thermodynamic equilibrium. This behaviour results 

from the fact that the OH(v) radiative lifetime decreases as the vibrational level increases (Brooke et al., 2016) and, 

consequently, the higher OH vibrational levels experience fewer collisions with the ambient atmosphere. In principle, more 

complex behaviour than bimodal might be possible because of the large number of production and removal pathways for 

mesospheric OH(v). Hints of additional features may be discerned for v = 3-5 in the data of Oliva et al. (2015), but these are 15 

at best tentative given the signal-to-noise ratio. Additional measurements at high-resolution and sensitivity combined with 

careful corrections for any absorption and spectral interferences will be required to settle this question. Based on the 

available information to date, it appears that to a first approximation the simplest adequate description of the mesospheric 

OH(v) rotational population distributions is that of bimodal Boltzmann distributions. 

We now consider the effect of bimodal OH rotational population distributions on the determination of OH rotational 20 

temperatures by considering an example for OH(v = 9). This is the highest populated vibrational level and most probable 

product of the H + O3 reaction. Collisional cascade from higher vibrational levels can be assumed to be a limited, and most 

likely negligible, source. Therefore, more than any other OH vibrational level, rotational relaxation of v = 9 is expected to 

follow the exponential-gap model of Polanyi and Woodall (1972). Figure 4 presents the observed rotational population 

distribution reported by Noll et al. (2018) for v = 9 together with fits we performed using one simple and one bimodal 25 

Boltzmann distribution functions. In the former case, only rotational lines with energy less than 250 cm-1 are considered. 

From Fig. 4, we conclude that neglecting the bimodal behaviour of the rotational population distributions and considering 

only a few rotational lines involving the lowest quantum numbers leads to unacceptably large systematic errors in the 

extracted OH rotational temperatures. The lower temperature value for the bulk of the population obtained from the fit using 

a two-temperature, bimodal Boltzmann distribution is 20 K smaller than the temperature obtained using a single Boltzmann 30 

function and only a few low-level rotational transitions. 

We recently considered two-temperature fits for selected OH vibrational bands from the Oliva et al. (2015) data set 

(Kalogerakis et al., 2018). The OH(v) rotational temperatures inferred from single and two-temperature Boltzmann 

distribution functions are generally different. Based on the information above, it becomes clear the observed trend for single-
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temperature fits does not reflect real temperature changes; it is an artefact that arises from neglecting the bimodal character 

of the OH rotational population distribution. Although this effect is most pronounced for the largest OH(v) levels, e.g., v = 8, 

9, differences for the lowest observed vibrational levels, v = 2, 3, appear to be comparable to the estimated uncertainties. The 

majority of the OH(v) product from the H + O3 reaction is generated in the highly vibrationally excited levels v = 7-9, while 

collisional or radiative relaxation is needed to generate the lowest vibrational levels. Thus, it is reasonable to expect that the 5 

lower vibrational levels have undergone more extensive thermalization. At the same time, however, we do not fully 

understand all the relevant collisional relaxation processes and the variability of the bimodal character in the OH rotational 

population distributions. Thus, although we could state with confidence that not accounting for the bimodality in the 

rotational population distributions introduces large systematic errors for the highest OH vibrational levels, it is presently 

difficult to assess the extent to which changes in the rotational temperatures for OH(low-v) are influenced by variations in 10 

the fraction of the rotational population distribution that is not in thermal equilibrium. 

The most important finding of this Technical Note is the demonstration that the traditional approach in aeronomy to 

determine OH rotational temperatures using only a pair or a few rotational lines involving the lowest rotational quantum 

levels does not account for the bimodality of the observed mesospheric OH rotational population distributions and can lead 

to unacceptably large systematic errors in the OH rotational temperature determination, especially for OH(high v). To 15 

mitigate this problem, the recommended approach would be to concurrently obtain information on the non-equilibrated, 

high-rotational level tail of the OH(v) rotational population distribution. The adequate resolution and sensitivity to record the 

full rotational population distribution may not always be available, but even establishing a lower limit for the ratio of the 

high-rotational level population versus the low-rotational level population would be helpful in assessing potential systematic 

errors. Without this type of information, it is not clear what portion of the observed variability in the OH rotational 20 

temperature of any specific vibrational level could be attributed to changes in the non-thermalized rotational population. 

4 Summary and Conclusions 

Evidence from theoretical calculations and laboratory experiments demonstrates that rotational energy transfer between a 

Boltzmann distribution of rotationally excited molecules and a thermal bath leads to bimodal distributions. Such behaviour 

has indeed been reported in atmospheric observations of mesospheric OH. The common approach in aeronomy of 25 

considering only a few OH rotational lines with the lowest rotational excitation to determine the rotational temperature does 

not account for the bimodality of the OH(v) rotational population distributions and can lead to large systematic errors 

overestimating the rotational temperature. These errors are largest for the highest OH(v) vibrational levels and their 

magnitude can reach several degrees Kelvin. This effect provides an explanation for the apparent vibrational-level 

dependence of OH rotational temperatures reported from previous atmospheric observations. Careful consideration of the 30 

highly rotationally excited portion of the rotational population distributions under study is required for a reliable 

determination of rotational temperatures from mesospheric OH(v) Meinel band observations. 
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FIGURES 

Figure 1: The OH(v) rotational temperature dependence on the vibrational level v, as reported by recent simultaneous 

observations of multiple vibrational levels using high-resolution astronomical instruments. 
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Figure 2: Temporal evolution of a delta function initial rotational population distribution relaxing in a bath gas according to an 

exponential-gap model with unrestricted J. Adapted from Fig. 4 of Polanyi and Woodall (1972). The alternating black and grey 5 
labels indicate reduced time units. 
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Figure 3: Experimental results (circles) of Kliner and Farrow (1999) for rotational relaxation of OH(v = 0, N = 1-12) colliding with 

N2 bath gas and fits to single-temperature and two-temperature Boltzmann distribution functions. The two characteristic 

temperatures represent the initial OH distributions and the final fully thermalized gas. The relative weight of the two Boltzmann 

distributions changes as the relaxation process evolves in time. The grey labels show the product time × pressure corresponding to 5 
the experimental measurements. 
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Figure 4: Mesospheric OH(v = 9) rotational population distribution based on the observations of Noll et al. (2018; Figure 3b). The 

dotted grey line shows the result of a single-temperature fit for E < 250 cm-1. The black solid line shows a two-temperature fit 

using all the data points. Not considering the bimodality of the rotational population results in large systematic errors because the 5 
contributions of the non-thermalized Boltzmann distribution to the low rotational energy region are not accounted for.  


