Technical note
28 Feb 2019
Technical note | 28 Feb 2019
Technical note: Bimodality in mesospheric OH rotational population distributions and implications for temperature measurements
Konstantinos S. Kalogerakis
Related authors
New insights for mesospheric OH: multi-quantum vibrational relaxation as a driver for non-local thermodynamic equilibrium
Konstantinos S. Kalogerakis, Daniel Matsiev, Philip C. Cosby, James A. Dodd, Stefano Falcinelli, Jonas Hedin, Alexander A. Kutepov, Stefan Noll, Peter A. Panka, Constantin Romanescu, and Jérôme E. Thiebaud
Ann. Geophys., 36, 13–24, https://doi.org/10.5194/angeo-36-13-2018,https://doi.org/10.5194/angeo-36-13-2018, 2018
Short summary
New insights for mesospheric OH: multi-quantum vibrational relaxation as a driver for non-local thermodynamic equilibrium
Konstantinos S. Kalogerakis, Daniel Matsiev, Philip C. Cosby, James A. Dodd, Stefano Falcinelli, Jonas Hedin, Alexander A. Kutepov, Stefan Noll, Peter A. Panka, Constantin Romanescu, and Jérôme E. Thiebaud
Ann. Geophys., 36, 13–24, https://doi.org/10.5194/angeo-36-13-2018,https://doi.org/10.5194/angeo-36-13-2018, 2018
Short summary
Related subject area
Global nighttime atomic oxygen abundances from GOMOS hydroxyl airglow measurements in the mesopause region
Qiuyu Chen, Martin Kaufmann, Yajun Zhu, Jilin Liu, Ralf Koppmann, and Martin Riese
Atmos. Chem. Phys., 19, 13891–13910, https://doi.org/10.5194/acp-19-13891-2019,https://doi.org/10.5194/acp-19-13891-2019, 2019
Short summary
How long do satellites need to overlap? Evaluation of climate data stability from overlapping satellite records
Elizabeth C. Weatherhead, Jerald Harder, Eduardo A. Araujo-Pradere, Greg Bodeker, Jason M. English, Lawrence E. Flynn, Stacey M. Frith, Jeffrey K. Lazo, Peter Pilewskie, Mark Weber, and Thomas N. Woods
Atmos. Chem. Phys., 17, 15069–15093, https://doi.org/10.5194/acp-17-15069-2017,https://doi.org/10.5194/acp-17-15069-2017, 2017
Short summary
Resolving the mesospheric nighttime 4.3 µm emission puzzle: comparison of the CO2(ν3) and OH(ν) emission models
Peter A. Panka, Alexander A. Kutepov, Konstantinos S. Kalogerakis, Diego Janches, James M. Russell, Ladislav Rezac, Artem G. Feofilov, Martin G. Mlynczak, and Erdal Yiğit
Atmos. Chem. Phys., 17, 9751–9760, https://doi.org/10.5194/acp-17-9751-2017,https://doi.org/10.5194/acp-17-9751-2017, 2017
Short summary
TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece
Melina-Maria Zempila, Jos H. G. M. van Geffen, Michael Taylor, Ilias Fountoulakis, Maria-Elissavet Koukouli, Michiel van Weele, Ronald J. van der A, Alkiviadis Bais, Charikleia Meleti, and Dimitrios Balis
Atmos. Chem. Phys., 17, 7157–7174, https://doi.org/10.5194/acp-17-7157-2017,https://doi.org/10.5194/acp-17-7157-2017, 2017
Short summary
CO2(ν2)-O quenching rate coefficient derived from coincidental SABER/TIMED and Fort Collins lidar observations of the mesosphere and lower thermosphere
A. G. Feofilov, A. A. Kutepov, C.-Y. She, A. K. Smith, W. D. Pesnell, and R. A. Goldberg
Atmos. Chem. Phys., 12, 9013–9023, https://doi.org/10.5194/acp-12-9013-2012,https://doi.org/10.5194/acp-12-9013-2012, 2012
Relativistic electron beams above thunderclouds
M. Füllekrug, R. Roussel-Dupré, E. M. D. Symbalisty, J. J. Colman, O. Chanrion, S. Soula, O. van der Velde, A. Odzimek, A. J. Bennett, V. P. Pasko, and T. Neubert
Atmos. Chem. Phys., 11, 7747–7754, https://doi.org/10.5194/acp-11-7747-2011,https://doi.org/10.5194/acp-11-7747-2011, 2011
Cited articles
Adler-Golden, S.: Kinetic parameters for OH nightglow modeling consistent
with recent laboratory measurements, J. Geophys. Res., 102, 19969–19976,
1997.
Anlauf, K. G., Kuntz, P. J., Maylotte, D. H., Pacey, P. D., and Polanyi, J.
C.: Energy distribution among reaction products. Part 2. –
H+X2 and
X+HY, Discuss. Faraday Soc. 44, 183–193,
https://doi.org/10.1039/DF9674400183, 1967.
Beaud, P., Radi, P. P., Franzke, D., Frey, H.-M., Mischler, B., Tzannis, A.
P., and Gerber, T.: Picosecond investigation of the collisional deactivation
of OH A
2Σ+(v
, N
, 12) in an
atmospheric-pressure flame, Appl. Opt., 37, 3354–3367, 1998.
Brooke, J. S. A., Bernath, P. F., Western, C. M., Sneden, C., Afşar, M.,
Li, G., and Gordon, I. E.: Line strengths of rovibrational and rotational
transitions in the
X2Π ground state of OH, J. Quant. Spectrosc.
Ra., 168, 142–157, 2016.
Charters, P. E. and Polanyi, J. C.: Energy distribution among reaction
products. Part 1 – The reaction atomic hydrogen plus molecular chlorine,
Faraday Soc. Discuss., 33, 107–117, 1962.
Dodd, J. A., Blumberg, W. A. M., Lipson, S. J., Lowell, J. R., Armstrong, P.
S., Smith, D. R., and Huppi, E. R.: OH(v, N) column densities from
high-resolution Earth-limb spectra, Geophys. Res. Lett., 20, 305–308, 1993.
Dodd, J. A., Lipson, S. J., Lowell, J. R., Armstrong, P. S., Blumberg, W. A.
M., Nadile, R. M., and Green, B. D.: Analysis of hydroxyl Earthlimb airglow
emissions: Kinetic model for state-to-state dynamics of OH (v, N), J.
Geophys. Res.-Atmos., 99, 3559–3585, 1994.
Fei, R., Lambert, H. M., Carrington, T., Filseth, S. V., Sadowski, C. M.,
and Dugan, C. H.: Direct measurement of thermal rate constants for
state-to-state rotational energy transfer in collisions of
CN(
XΣ2Σ+, v
=2,
N) with He, J. Chem. Phys. 100, 1190–1201,
1998.
Funke, B., López-Puertas, M., García-Comas, M., Kaufmann, M.,
Höpfner, M., and Stiller, G. P.: GRANADA: a Generic RAdiative traNsfer AnD
non-LTE population algorithm, J. Quant. Spectrosc. Ra., 113,
1771–1817, 2012.
Gericke, K.-H., Klee, S., Comes, F. J., and Dixon, R. N.: Dynamics of
H2O2 photodissociation: OH product state and momentum distribution
characterized by sub-Doppler and polarization spectroscopy, J. Chem.
Phys., 85, 4463–4479, 1986.
Grygalashvyly, M.: Several notes on the OH
* layer, Ann. Geophys., 33, 923–930,
https://doi.org/10.5194/angeo-33-923-2015, 2015.
Hickson, K. M., Sadowski, C. M., and Smith, I. W. M.: Rate coefficients for
rotational energy transfer from the levels OH(X
2Π3∕2, v
=1,
j
= 3.5–8.5) in collisions with He, Ar,
N2 and
HNO3, Phys.
Chem. Chem. Phys., 4, 5613–5621, 2002.
Holtzclaw, K. W., Upschulte, B. L., Caledonia, G. E., Cronin, J. F., Green,
B. D., Lipson, S. J., Blumberg, W. A. M., and Dodd, J. A.: Rotational relaxation
of high-N states of OH (X
2Π, v
=1–3) by
O2, J. Geophys.
Res., 102, 4521–4528, 1997.
Kalogerakis, K. S.: Data set from Oliva et al. (2015),
https://doi.org/10.17605/OSF.IO/NKWPJ, 2017.
Kalogerakis, K. S., Smith, G. P., and Copeland, R. A.: Collisional removal
of OH(X
2Π, v
= 9) by O,
O2,
O3,
N2, and
CO2,
J. Geophys. Res., 116, D20307, https://doi.org/10.1029/2011JD015734, 2011.
Kalogerakis, K. S., Matsiev, D., Sharma, R., and Wintersteiner, P. W.:
Resolving the mesospheric nighttime 4.3
µm emission puzzle: Laboratory
demonstration of new mechanism for OH(v) relaxation, Geophys. Res. Lett.,
43, 8835–8843, https://doi.org/10.1002/2016GL069645, 2016.
Kalogerakis, K. S., Matsiev, D., Cosby, P. C., Dodd, J. A., Falcinelli, S.,
Hedin, J., Kutepov, A. A., Noll, S., Panka, P. A., Romanescu, C., and
Thiebaud, J. E.: New insights for mesospheric OH: multi-quantum vibrational
relaxation as a driver for non-local thermodynamic equilibrium, Ann.
Geophys., 36, 13–24, https://doi.org/10.5194/angeo-36-13-2018, 2018.
Knopp, G., Radi, P., Tulej, M., Gerber, T., and Beaud, P.: Collision induced
rotational energy transfer probed by time-resolved coherent anti-Stokes Raman
scattering, J. Chem. Phys. 118, 8223–8233,
https://doi.org/10.1063/1.1566437, 2003.
Meriwether, J. W.: A review of the photochemistry of selected nightglow
emissions from the mesopause, J. Geophys. Res.-Atmos., 94, 14629–14646,
1989.
Noll, S., Kausch, W., Kimeswenger, S., Unterguggenberger, S., and Jones, A.
M.: OH populations and temperatures from simultaneous spectroscopic
observations of 25 bands, Atmos. Chem. Phys., 15, 3647–3669,
https://doi.org/10.5194/acp-15-3647-2015, 2015.
Noll, S., Kausch, W., Kimeswenger, S., Unterguggenberger, S., and Jones, A.
M.: Comparison of VLT/X-shooter OH and
O2 rotational temperatures
with consideration of TIMED/SABER emission and temperature profiles, Atmos.
Chem. Phys., 16, 5021–5042, https://doi.org/10.5194/acp-16-5021-2016, 2016.
Noll, S., Proxauf, B., Kausch, W., and Kimeswenger, S.: Mechanisms for
varying non-LTE contributions to OH rotational temperatures from measurements
and modelling. II. Kinetic model, J. Atmos. Sol.-Terr. Phy., 175, 100–119,
2018.
Oliva, E., Origlia, L., Scuderi, S., Benatti, S., Carleo, I., Lapenna, E.,
Mucciarelli, A., Baffa, C., Biliotti, V., Carbonaro, L., Falcini, G., Giani,
E., Iuzzolino, M., Massi, F., Sanna, N., Sozzi, M., Tozzi, A., Ghedina, A.,
Ghinassi, F., Lodi, M., Harutyunyan, A., and Pedani, M.: Lines and continuum
sky emission in the near infrared: observational constraints from deep high
spectral resolution spectra with GIANO-TNG, Astron. Astrophys., 581, 1–6,
https://doi.org/10.1051/0004-6361/201526291, 2015.
Pendleton Jr., W., Espy, P., Baker, D., Steed, A., Fetrow, M., and
Henriksen, K.: Observation of OH Meinel (7, 4) P(N D 13) transitions in the
night airglow, J. Geophys. Res., 94, 505–510,
https://doi.org/10.1029/JA094iA01p00505, 1989.
Perminov, V. I. and Semenov, A. I.: The nonequilibrium of the rotational
temperature of OH bands under high level rotational excitation, Geomagn.
Aeronomy, 32, 306–308, 1992.
Sivjee, G. G.: Airglow hydroxyl emissions, Planet. Space Sci., 40, 235–242,
1992.
von Savigny, C.: Airglow in the Earth atmosphere: basic characteristics and
excitation mechanisms, ChemTexts, 3, 14, https://doi.org/10.1007/s40828-017-0051-y,
2017.