Articles | Volume 18, issue 11
https://doi.org/10.5194/acp-18-8155-2018
https://doi.org/10.5194/acp-18-8155-2018
Research article
 | 
08 Jun 2018
Research article |  | 08 Jun 2018

Long-range-transported bioaerosols captured in snow cover on Mount Tateyama, Japan: impacts of Asian-dust events on airborne bacterial dynamics relating to ice-nucleation activities

Teruya Maki, Shogo Furumoto, Yuya Asahi, Kevin C. Lee, Koichi Watanabe, Kazuma Aoki, Masataka Murakami, Takuya Tajiri, Hiroshi Hasegawa, Asami Mashio, and Yasunobu Iwasaka

Related authors

Characterization of atmospheric bioaerosols along the transport pathway of Asian dust during the Dust-Bioaerosol 2016 Campaign
Kai Tang, Zhongwei Huang, Jianping Huang, Teruya Maki, Shuang Zhang, Atsushi Shimizu, Xiaojun Ma, Jinsen Shi, Jianrong Bi, Tian Zhou, Guoyin Wang, and Lei Zhang
Atmos. Chem. Phys., 18, 7131–7148, https://doi.org/10.5194/acp-18-7131-2018,https://doi.org/10.5194/acp-18-7131-2018, 2018
Short summary
Variations in airborne bacterial communities at high altitudes over the Noto Peninsula (Japan) in response to Asian dust events
Teruya Maki, Kazutaka Hara, Ayumu Iwata, Kevin C. Lee, Kei Kawai, Kenji Kai, Fumihisa Kobayashi, Stephen B. Pointing, Stephen Archer, Hiroshi Hasegawa, and Yasunobu Iwasaka
Atmos. Chem. Phys., 17, 11877–11897, https://doi.org/10.5194/acp-17-11877-2017,https://doi.org/10.5194/acp-17-11877-2017, 2017
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
In situ measurement of organic aerosol molecular markers in urban Hong Kong during a summer period: temporal variations and source apportionment
Hongyong Li, Xiaopu Lyu, Likun Xue, Yunxi Huo, Dawen Yao, Haoxian Lu, and Hai Guo
Atmos. Chem. Phys., 24, 7085–7100, https://doi.org/10.5194/acp-24-7085-2024,https://doi.org/10.5194/acp-24-7085-2024, 2024
Short summary
Technical note: Determining chemical composition of atmospheric single particles by a standard-free mass calibration algorithm
Shao Shi, Jinghao Zhai, Xin Yang, Yechun Ruan, Yuanlong Huang, Xujian Chen, Antai Zhang, Jianhuai Ye, Guomao Zheng, Baohua Cai, Yaling Zeng, Yixiang Wang, Chunbo Xing, Yujie Zhang, Tzung-May Fu, Lei Zhu, Huizhong Shen, and Chen Wang
Atmos. Chem. Phys., 24, 7001–7012, https://doi.org/10.5194/acp-24-7001-2024,https://doi.org/10.5194/acp-24-7001-2024, 2024
Short summary
Different formation pathways of nitrogen-containing organic compounds in aerosols and fog water in northern China
Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, and Xinhui Bi
Atmos. Chem. Phys., 24, 6987–6999, https://doi.org/10.5194/acp-24-6987-2024,https://doi.org/10.5194/acp-24-6987-2024, 2024
Short summary
Impact of weather patterns and meteorological factors on PM2.5 and O3 responses to the COVID-19 lockdown in China
Fuzhen Shen, Michaela I. Hegglin, and Yue Yuan
Atmos. Chem. Phys., 24, 6539–6553, https://doi.org/10.5194/acp-24-6539-2024,https://doi.org/10.5194/acp-24-6539-2024, 2024
Short summary
Daytime and nighttime aerosol soluble iron formation in clean and slightly polluted moist air in a coastal city in eastern China
Wenshuai Li, Yuxuan Qi, Yingchen Liu, Guanru Wu, Yanjing Zhang, Jinhui Shi, Wenjun Qu, Lifang Sheng, Wencai Wang, Daizhou Zhang, and Yang Zhou
Atmos. Chem. Phys., 24, 6495–6508, https://doi.org/10.5194/acp-24-6495-2024,https://doi.org/10.5194/acp-24-6495-2024, 2024
Short summary

Cited articles

Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K. J., Carslaw, K. S., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds, Nature, 498, 355–358, https://doi.org/10.1038/nature12278, 2013. 
Bowers, R. M., Lauber, C. L., Wiedinmyer, C., Hamady, M., Hallar, A. G., Fall, R., Knight, R., and Fierer, N.: Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei, Appl. Environ. Microb., 75, 5121–5130, https://doi.org/10.1128/AEM.00447-09, 2009. 
Bowers, R. M., McCubbinb, I. B., Hallar, A. G., and Fierera, N.: Seasonal variability in airborne bacterial communities at a high-elevation site, Atmos. Environ., 50, 41–49, https://doi.org/10.1016/j.atmosenv.2012.01.005, 2012. 
Cao, C., Jiang, W., Wang, B., Fang, J., Lang, J., Tian, G., Jiang, J., and Zhu, T. F.: Inhalable microorganisms in Beijing's PM2.5 and PM10 pollutants during a severe smog event, Environ. Sci. Technol., 48, 1499–1507, https://doi.org/10.1021/es4048472, 2014. 
Download
Short summary
Atmospheric bacteria are thought to act as ice nuclei influencing the cloud formation. We used the aerosols captured in the snow cover on alpine mountain to investigate the sequential changes of ice-nucleation activities and bacterial communities at high elevation. The snow-cover samples exhibited high ice nucleation corresponding to the increase in natural and anthropogenic dust particles. Terrestrial bacteria (Bacilli) recorded in snow cover increased in relation to ice-nucleation activities.
Altmetrics
Final-revised paper
Preprint