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Abstract. The westerly wind travelling at high altitudes over
eastern Asia transports aerosols from the Asian deserts and
urban areas to downwind areas such as Japan. These long-
range-transported aerosols include not only mineral particles
but also microbial particles (bioaerosols), that impact the ice-
cloud formation processes as ice nuclei. However, the de-
tailed relations of airborne bacterial dynamics to ice nucle-
ation in high-elevation aerosols have not been investigated.
Here, we used the aerosol particles captured in the snow
cover at altitudes of 2450 m on Mt Tateyama to investigate
sequential changes in the ice-nucleation activities and bacte-
rial communities in aerosols and elucidate the relationships
between the two processes. After stratification of the snow
layers formed on the walls of a snow pit on Mt Tateyama,
snow samples, including aerosol particles, were collected
from 70 layers at the lower (winter accumulation) and upper
(spring accumulation) parts of the snow wall. The aerosols
recorded in the lower parts mainly came from Siberia (Rus-
sia), northern Asia and the Sea of Japan, whereas those in the
upper parts showed an increase in Asian dust particles origi-
nating from the desert regions and industrial coasts of Asia.
The snow samples exhibited high levels of ice nucleation
corresponding to the increase in Asian dust particles. Am-

plicon sequencing analysis using 16S rRNA genes revealed
that the bacterial communities in the snow samples predom-
inately included plant associated and marine bacteria (phyla
Proteobacteria) during winter, whereas during spring, when
dust events arrived frequently, the majority were terrestrial
bacteria of phyla Actinobacteria and Firmicutes. The relative
abundances of Firmicutes (Bacilli) showed a significant pos-
itive relationship with the ice nucleation in snow samples.
Presumably, Asian dust events change the airborne bacterial
communities over Mt Tateyama and carry terrestrial bacterial
populations, which possibly induce ice-nucleation activities,
thereby indirectly impacting climate change.

1 Introduction

The westerly wind transports mineral particles from the cen-
tral desert areas of the Asian continent, including the Gobi
and Taklimakan deserts, and mineral particles contaminated
by anthropogenic pollutants at continental coasts are dis-
persed eastward over the Sea of Japan to the Japanese main-
land (Duce et al., 1980; Iwasaka et al., 1983; Watanabe et al.,
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2006; J. Huang et al., 2015; Z. Huang et al., 2015, 2017a). In
addition to abiotic particles, the microbial fractions associ-
ated with mineral dust particles, which are commonly known
as “bioaerosols”, include viruses, bacteria, fungi and pollen
as well as plant and animal debris (Jones and Harrison, 2004;
Jaenicke, 2005; Iwasaka et al., 2009; Pointing and Belnap,
2014). Asian dust events remarkably change the airborne
microbial communities in the north-western part of China,
which is close to the Gobi Desert (Tang et al., 2017). More-
over, the airborne bacterial compositions at high altitudes
above Asian dust deposition and areas of anthropogenic pol-
lution, such as Beijing (Li et al., 2010), Osaka (Yamaguchi
et al., 2012), the Noto Peninsula (Maki et al., 2010, 2013)
and the North American mountains (Smith et al., 2012), vary
significantly. Airborne bacteria at high altitudes over eastern
Asia are the focus of this study, because of their impacts on
atmospheric chemical reactions and cloud formation (Pratt et
al., 2009; Morris et al., 2011; Hara et al., 2016a, b). In Japan,
airborne microbial abundances increase in response to atmo-
spheric depressions, which travel from the Asian continent
(Murata and Zhang, 2016; Sugimoto et al., 2012). Since de-
sertification of dryland was thought to increase the transport
of bioaerosols (Huang et al., 2017a, b), the ecological impact
on bioaerosols should be assessed.

Some airborne microorganisms act as ice nuclei that are
related to ice-cloud formation processes, indicating the pos-
sibility that wind-blown bioaerosol particles indirectly con-
tribute to atmospheric radiation transfer and the geochemical
cycle of atmospheric constituents (Mohler et al., 2007; Delort
et al., 2010; Creamean et al., 2013; Joly et al., 2013; Poschl
and Shiraiwa, 2015). In particular, the ice-nucleating cell
components of some bacterial species belonging to the phyla
Proteobacteria and class Bacilli exhibit high nucleation ac-
tivities, initiating ice formation at relatively warmer temper-
atures (from —5 to —2 °C) (Morris et al., 2004) than the inor-
ganic ice nuclei, such as potassium feldspar (approximately
—8°C) (Atkinson et al., 2013). Ice-nucleating bioaerosols
are believed to activate ice-cloud formation more efficiently
than inorganic substances (Hoose and Mohler, 2012; Murray
et al., 2012) and contribute to rapid ice-cloud formation, even
at low concentrations, in the clouds at temperatures between
—8 and —3°C (Hallett and Mossop, 1974). Airborne bac-
teria carried by westerly winds over eastern Asia were also
found to initiate high levels of ice nucleation (Hara et al.,
20164, b). Culture-independent analyses for bacterial taxo-
nomic composition demonstrated high bacterial diversity in
cloudy waters, suggesting that some unculturable bacterial
populations, including the keystone bacteria, primarily in-
fluence ice-cloud formations in North American mountains
(Bowers et al., 2009; Pratt et al., 2009). However, in eastern
Asia where desertification enhances the frequency of dust
events (Huang et al., 2017a, b), the influences of airborne
bacterial dynamics on atmospheric ice nucleation and pre-
cipitation are unclear.
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During the winter and early spring, strong north-westerly
winds carry heavy falls of snow to Mt Tateyama (3015 m
above sea level), which faces the East Sea. The snowfall
sometimes includes natural and anthropogenic dust particles
from the Asian continent. Since ice-nucleating bacteria pos-
sibly contribute to ice-cloud formation and snowfall over
Mt Tateyama, the bacterial communities in the snow cover
can be useful for investigating the impact of airborne bac-
teria on ice-cloud formation processes. The snow cover on
Mt Tateyama exhibits depths ranging from 6 to 10m in the
spring (Osada et al., 2004; Watanabe et al., 2011). The air
temperature, which rarely exceeds freezing from November
to April, generally maintains the frozen condition of the snow
cover until early April. Moreover, the snow cover located at
high altitude avoids wind-blown contamination by regional
soil materials. Previous research demonstrated that chemical
compounds (Osada et al., 2004; Watanabe et al., 2011) and
bioaerosols (Maki et al., 2011; Tanaka et al., 2011) from con-
tinental areas were found in the dirty layers of snow cover on
Mt Tateyama. Therefore, snow samples that include aerosols
from continental areas can be obtained from the snow cover
on Mt Tateyama to analyse the airborne microbial communi-
ties relating to ice nucleation at high altitudes.

This study investigated the ice-nucleation activities of in-
tercontinentally transported aerosols in the snow cover and
identified the airborne bacterial changes relating to ice nu-
cleation. Firstly, we dug a snow wall with a height of 734 cm
in the snow cover on Mt Tateyama in the early spring (April)
and collected snow samples, including aerosols from it. The
snow samples were used for estimating the concentrations
of chemical components and aerosol particles, using chemi-
cal analyses and fluorescence microscopic observations, re-
spectively. The ice-nucleation activities of aerosol particles
in the snow samples were also evaluated by water-droplet
freezing assays. The bacterial community structures in snow
samples were determined using MiSeq sequencing analysis
using PCR-amplified bacterial 16S ribosomal RNA (rRNA)
genes in order to investigate links between ice-nucleation ac-
tivities and the vertical distribution of bacterial taxa in the
SNOW CcoVer.

2 Sampling and methods
2.1 Snow sampling

The snow samples were collected from the snow cover
at  Murododaira (36.57°N, 137.60°E; 2,450m) on
Mt Tateyama on 20 April 2013 (Fig. 1). We dug a snow pit
from the top of the snow cover to the surface of the ground
(743 cm vertical extent) and carefully smoothed the snow
wall in the pit to leave the stratigraphy of the snow layers
undisturbed. After the surface snow was removed from the
snow wall using a sterilised snow sampler (polycarbonate
plates: 3cm x 20 cm x 0.1 cm), a 20 mL sample of snow was
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Figure 1. Map of Mt Tateyama in Japan showing the sampling site, Murododaira (2450 m, MR).

collected at a depth of 10cm from the surface of the snow
wall using a new sterilised snow sampler. The snow samples
were obtained from each 3 cm layer of the snow wall at lower
heights from 164 to 200 cm (lower part) and upper heights
from 560 to 743 cm (upper part). The upper parts frequently
included the dirty layers with natural and/or anthropogenic
dust particles, whereas the lower part was mainly composed
of white layers (non-dirty layers). A total of 70 snow
samples were obtained for use in fluorescence-microscopic
observations, water-droplet freezing assays (ice-nucleation
assay) and DNA sequencing analyses (Fig. 2). Alternative
snow samples were also collected from each 10cm layer
from the top to the bottom of the snow wall for chemical
analyses. The snow samples were preserved at —30 °C, prior
to their use in each experiment.

2.2 Chemical analyses, particle counts and dust event
dating

The snow samples collected from each 10 cm layer were al-
lowed to melt in the laboratory, and their chemical compo-
sitions (anions and cations) were measured using ion chro-
matography (Dionex, ICS-1600 Thermo Fisher Scientific,
Yokohama, Japan) (Watanabe et al., 2012). The values of
nss-Ca?* and nss—SOi_ were calculated from the concen-
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tration of Na* to Ca>* and SO?~, respectively. The accu-
racy of the measured values was approximately 5 %. The
concentrations of formaldehyde (HCHO) and acetaldehyde
(CH3CHO) were determined using high-performance liquid
chromatographic analysis (HPLC, LC-2000Plus, JASCO,
Tokyo, Japan) with a fluorescent derivatising reagent, such
as 1, 3-cyclohexanedione (Iwama et al., 2011; Watanabe et
al., 2012). The detection limits of HCHO and CH3CHO were
0.05 and 0.01 umol kg~ !, respectively.

The 500 uL solution of 70 snow samples collected from
each 3cm layer was fixed with a paraformaldehyde so-
Iution at a final concentration of 1%. The samples were
stained with DAPI (4',6-diamino-2-phenylindole) at a final
concentration of 0.5 ugmL~! for 15 min and filtered through
a 0.22 um pore-size polycarbonate filter (Millipore, Tokyo,
Japan) (Russell et al., 1974). After the filter was placed on a
slide on top of a drop of low-fluorescence immersion oil, a
drop of oil was added and then covered with a slide. Slides
were examined using an epifluorescence microscope (Olym-
pus, Tokyo, Japan) with UV excitation system. A filter tran-
sect was scanned, and the mineral particles (white particles),
organic particles (yellow particles), bacterial cells (blue par-
ticles) and black carbon (black particles) on the filter transect
were counted. In addition, the filter transect could discrimi-
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Figure 2. Sampling and experimental scheme.

nate between yellow and white particles and classify them
into two size categories of <5 and > 5 um.

The attenuated backscatter coefficient and depolarisation
ratio measured by the light detection and ranging (lidar)
system at Toyama (http://www-lidar.nies.go.jp/; last access:
26 March 2018), which is located at a distance of 50km
from Mt Tateyama, were used for evaluating the occurrences
of dust events and anthropogenic pollutants, respectively.
The lidar system was operated by AD-Net (Asian dust and
aerosol lidar observation network) (Shimizu et al., 2016).

2.3 Water-droplet freezing assay

Twenty mL. of melted snow samples (70 samples) of each
3 cm layer were passed through sterilised 0.22 um pore size
membrane filters (Millipore, Billerica, MA, USA) to col-
lect particulate matter. The particulate matter on the filters
was resuspended in 1.0 mL of sterile nano-pure water. Re-
suspended samples were diluted using the nano-pure water
at the dilutions of some folds ranging from 0.1 to 20 and
adjusted to the total particulate densities of approximately
5.0 x 10° particles mL~! (from 1.0 to 2.0 uygmL~"). The to-
tal particulate densities were confirmed using fluorescence
microscopic observations with DAPI staining. Fifty pL of the
liquid was aliquoted into each of 24 wells in a sterile 96-well
microplate. For the first assay, the 96-well microplates were
placed onto an arminum plate and the measured temperature
decreased from 0 to —25°C at a rate of 1.0°Cmin~!. For
each assay, wells of Arizona test dust (ATD; 2.0 ugmL™")
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and nano-pure water were prepared as positive and negative
controls, respectively. Cumulative IN (ice nuclei) concentra-
tions in 1 mL of melted snow at each temperature were cal-
culated using the following equation (Vali, 1971).

. In (Nyota1) — In (Nunfrozen)

IN )
cv

where Nyt is the total number of tubes (24 wells), Nunfrozen
is the number of wells still unfrozen (liquid) at each
temperature, C is the concentration ratio of melted snow
ranging from 0.1 to 20, and V is the volume of melted
snow (0.05mL). In the present study, the measurable ice-
nucleic concentrations in melted snow ranged from 174 to
99400INL~!. The snow samples including high concen-
trations of particulates showed similar levels of IN activi-
ties between unfiltered solutions and particulate resuspend-
ing solutions. The melted snow samples without filtration
and with resuspension showed similar ice-nuclei activities,
demonstrating that the influence of soluble substrates on ice-
nuclei activities can be neglected in this study.

2.4 High-throughput sequencing of bacterial 16S
rRNA genes in the snow samples

The particles in 5 mL melted snow samples collected from
70 layers were pelleted by centrifuging at 20000 x g for
10 min and resuspended into 500 uL of nano-pure water. The
resuspending solutions were used for the extraction of ge-
nomic DNA (gDNA) using a phenol-chloroform method,
which were combined with the microbial-cell degradation
by SDS, proteinase K and lysozyme, as described previ-
ously (Maki et al., 2008). Fragments of the 16S rRNA gene
(approximately 290 bp) were amplified from the extracted
gDNA by PCR using universal bacterial primers 515F and
806R for the V4 region (Caporaso et al., 2011). The first
PCR fragments were amplified again using the second PCR
primers, which targeted the additional sequences of first
PCR primers and included eight tag nucleotides designed
for sample identification barcoding. Thermal cycling condi-
tions were taken from the previous investigation (Maki et al.,
2016). The PCR amplicons were used for high-throughput
sequencing on a MiSeq genome sequencer (Illumina, CA,
USA). The paired-end sequences with an area length of
250bp were grouped based on the tag sequences for each
sample. At the PCR analysis steps, negative controls (nano-
pure water) contained no fragments of 16S rRNA gene am-
plicons showing an absence of artificial contamination.

The forward and reverse paired-end reads in the
raw sequencing database were merged using USEARCH
v.9.0.2132 (Edgar, 2013). After the irregular merged reads
(lengths outside 200-500bp range or exceeding six ho-
mopolymers) were removed by Mothur v1.36.1 (Schloss et
al., 2009), sequences with low Q-scores (> 1 expected error)
and singleton reads were removed. These sequences were
clustered de novo (with a minimum identity of 97 %) into op-
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Figure 3. Vertical profiles for pH, formaldehyde, acetaldehyde and ionic concentration levels in snow samples collected from Murododaira,

Mt Tateyama, in April 2013.

erational taxonomic units (OTUs). The representative OTU
sequences were identified using the RDP classifier (Wang et
al., 2007) implemented in QIIME v9.1.1 (Caporaso et al.,
2010). Greengenes release 13_8 (McDonald et al., 2012) was
used for determining taxonomic compositions. All sequences
have been deposited in the DDBJ database (accession num-
ber of the submission is PRJEB24035).

2.5 Quantitative real-time PCR (qRT-PCR)

A gRT-PCR analysis was employed, following the method
of previous research (Kobayashi et al., 2015a), to investi-
gate the relative abundance of bacteria through amplifica-
tion of their 16S rRNA gene. Standard curves were obtained
using an ABI 7500 system (ABI, CA, USA) and calibrated
by the several dilutions of purified bacterial amplicons. All
the standard curves obtained in this way met the required
standards of efficiency (R > 0.99, E > 90 %). Reactions were
performed in a 20 uL reaction mixture containing 10 uL of
TagMan Gene Expression Master Mix, 0.8 uL. of Primer
F20 (10 pmol uL.=1), 0.8 uL. of Primer R20 (10 pmol uL.~1),
0.4 uL of TagMan probe (10 pmoluL~!) and 2 uL of DNA
template (10ngmL~!) and 6.0 uL of nano-pure water. Am-
plification consisted of initial denaturation at 95 °C for 5 min,
then 50 cycles at 95 °C for 15, followed by annealing and
extension at 59 °C for 60 s. All reaction steps were performed
using the ABI 7500 system.

www.atmos-chem-phys.net/18/8155/2018/

3 Results and discussion

3.1 Vertical distributions of chemical compounds and
particles in snow cover

The majority of snow samples recovered from Mt Tateyama
using the method outlined in Sect. 2.1 were collected from
the snow wall, of which most layers were composed of com-
pacted snow or solid-type snow. The chemical compounds
in the snow samples retained the variations corresponding to
the snow layers, meaning that the snow layers would gener-
ally retain their original chemical and isotopic composition
from the time of the snowfall (Fig. 3). The snow cover layers
were mainly composed of compacted snow (rounded grains),
indicating that the snow samples were consistent with the
records on atmospheric aerosols that were present during de-
position and that they avoided melting. Some dirty layers that
appeared brown-yellow or dark brown could be observed in
four parts of the snow wall, at heights ranging from 599 to
620 cm, from 626 to 644 cm, from 650 to 662 cm and from
716 to 734 cm. The solutions of snow samples from the dirty
layers contained higher concentrations of nss-Ca>t, which
is a tracer of dust mineral particles from Asian deserts, than
non-dirty layers in the lower parts of the snow wall. The nss-
CaT peaks at each of the four dirty layers had maximum
concentrations of 25.4, 47.9, 25.4 and 31.4 peqL~! (Fig. 3).
Highly alkaline Ca is a tracer of mineral dusts from deserts
and loess deposits in China (Suzuki and Tsunogai, 1993).
The deporalisation ratio of lidar measurements also indicated
the four series of Asian dust events that occurred from 12
to 21 February, from 26 February to 13 March, from 18 to
26 March and from 4 to 19 April in 2013 over the north-
western shore of the main island of Japan (Figs. 4, S1 in the
Supplement), corresponding to the four dirty layers found in
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Figure 4. Lidar observation of attenuated backscatter coefficient and depolarisation ratio in Toyama in February (a), March (b) and April (c)
of 2013. Red dotted lines indicate the occurrences of Asian mineral dust events. Bars of light grey, dark grey and yellow below each image
show normal days, anthropogenic pollutant days and Asian mineral dust days, respectively, with reference to the heights of the snow wall of
Murododaira, Mt Tateyama, in April 2013.
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the snow wall. The aerosols, which are transported from the
Asian continent to Japan by the westerly wind, accumulate
in the snow cover on Mt Tateyama from autumn to spring
(Osada et al., 2004). The air back-trajectory analyses indi-

www.atmos-chem-phys.net/18/8155/2018/

cated that, during these periods, air masses came from the
desert areas of the Asian continent (Fig. S2). In addition,
the concentrations of NO; s SO?[ and acetaldehyde, which
originate from the anthropogenic pollution in the continen-
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tal coastal area, also tended to increase in the snow samples
collected from the dirty layers (Fig. 3). The chemical anal-
yses in previous studies also detected anthropogenic pollu-
tants in the snow cover of Mt Tateyama. The snow samples
of dirty layers significantly included high concentrations of
acetaldehyde, which would have been synthesised from or-
ganic pollutants (Iwama et al., 2011; Watanabe et al., 2012).
The natural dust events from desert areas accumulate anthro-
pogenic pollutants across the industrial areas during long-
range-transport processes (J. Huang et al., 2015). The dirty
layers in the snow wall would be formed during the four se-
ries of dust events during spring (March and April) and in-
clude intercontinentally transported aerosols that originated
from the desert areas and industrial coasts of the Asian con-
tinent.

In contrast, the concentrations of formaldehyde photosyn-
thesised from plant products fluctuated in the range of 0.05
to 0.60 umol kg~!, regardless of whether the samples were
collected from non-dirty or dirty layers. Relatively constant
high concentrations of around 0.45 umol kg ~! were observed
in samples from the lower parts (from 167 to 200cm) of
the snow wall (Fig. 3). The concentrations of Na™, which
primarily came from sea salt, increased in the snow sam-
ples in the two layers below the dirty layers (from 695 to
710 cm and from 584 to 589 cm) and in the low parts (from
167 to 200 cm) and ranged from 14.9 to 28.9 ueq L~!. Lidar
measurements showed low ratios of deporalisation and an at-
tenuated backscatter coefficient before the middle of Febru-
ary 2013, indicating a lack of dust events during winter, when
the snow cover from 167 to 200 cm formed (Fig. S1). Before
the middle of February 2013 the air back trajectories fre-
quently came from Siberia (Russia), northern Asia and the
Sea of Japan, and remained over mountains and marine areas
for longer periods than those of April and March (Fig. S2).
Airborne formaldehyde is not only synthesised by anthro-
pogenic pollutants (Watanabe et al., 2012) but also photo-
synthesised from plant products, such as isoprene (Claeys et
al., 2004; Guenther et al., 2006). Formaldehyde detected in
the lower parts of the snow wall was possibly transported
from the mountains. The level of Na™ of marine origin also
increased in the lower parts, suggesting contamination by sea
salt over the Sea of Japan. Consequently, we inferred that the
aerosols recorded in the lower parts of the snow wall mainly
came from Siberia (Russia), northern Asia and the Sea of
Japan, whereas those in the upper parts, which frequently in-
cluded Asian dust particles, originate from the desert regions
and industrial coasts of the Asian continent.

Mineral particles, yellow particles and bacterial particles
were observed in the solutions of snow samples under flu-
orescent microscopic observation, using the DAPI-staining
technique. The total densities of DAPI-fluorescent particles
increased in the snow samples of the four dirty layers and
exhibited peaks ranging from 6.33 x 10° to 4.12 x 107 parti-
clesmL~! (Fig. 5). In particular, yellow particles and bacte-
rial particles in the snow samples from the two dirty layers
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Figure 7. Variations in ice-nuclei particles in the snow samples col-
lected from the dirty layers (orange lines) and non-dirty layer (grey
lines) in the upper parts and all the layers in lower parts (green lines)
of the snow wall at Murododaira, Mt Tateyama, in April 2013. Red
and blue lines indicate experiments using ATD and nano-pure wa-
ter, respectively.

had significantly higher densities, of the order of 107 par-
ticlesmL~!. Black particles were frequently detected, re-
gardless of whether a sample had been collected from a
dirty layer, and the densities fluctuated by approximately
1.00 x 10° particlesmL~!. Bacterial densities determined
using QRT-PCR gradually increased from the lower parts to
the upper parts of the snow wall and exhibited some peaks
of the order of 107 copiesmL ™! in the dirty layers. The non-
dirty snow samples from 698 to 695 cm also indicated high
concentrations of DAPI-fluorescent particles and qRT-PCR-
detected bacteria (Fig. 5). Moreover, the concentrations of
Ca’* and nitrate also increased in this layer (Fig. 3). This
layer could be judged as not dirty, but some particles trans-
ported from the continent would be captured in this layer
for short periods of time. This included Asian dust events,
which have been reported to carry airborne microorganisms
associated with natural mineral particles (Hara and Zhang,
2012) and anthropogenic particles on hazy days (Wei et al.,
2016), leading to an increase in the microbial biomass in
the downwind areas (Maki et al., 2014). The yellow fluo-
rescence particles are organic materials that are interpreted
to originate from dead microbial cells (Mostajir et al., 1995;
Liu et al., 2014). Hara and Zhang (2012) reported that dust
events in Kyushu, Japan, increased the ratio of damaged mi-
crobial cells in airborne microbial communities. Microbial
cells transported by dust events would be exposed to environ-
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Figure 8. Vertical profiles for bacterial compositions at (a) the phylum (class) level and (b) the family level of the partial sequences obtained in
the MiSeq sequencing database (ca. 400 bp) from snow samples collected from Murododaira, Mt Tateyama, in April 2013. Orange rectangles
indicate snow samples from dirty layers.

Table 1. Relatives of the DAPI-fluorescent particles with ice-nucleation activities and some of chemical components®?.

DAPI-fluorescent Ice-nucleation activities? Chemical components
particles

Initial End  IN-T50C Form- Acet- Nat  nss-Ca’t

temperature  temperature aldehyde aldehyde

Yellow > 5 um 0.34* 0.48** 0.54** —0.13 0.40** —-0.23 0.31*
Yellow <5 um 0.47** 0.65** 0.69** —0.06 0.42** —0.34* 0.44**
White > 5 um 0.49** 0.59** 0.69** —0.12 0.50**  —0.40** 0.39**
White <5 um 0.38** 0.51** 0.57** —0.05 0.39** —0.34* 0.42**
Blue 0.43** 0.55%* 0.62** —0.04 0.35%*  —0.41** 0.42**
Black 0.13 0.36** 0.32* 0.08 0.11 0.00 0.26

4 The ** indicates P<0.001 and the * indicates P <0.005. Among the marked values, italic values indicate positive relations and bold values
indicate negative relations. b Initial temperature, end temperature and IN-T50C indicate the initial-freezing temperatures of water droplets, the
temperatures that all wells have been frozen, and the temperatures that 50 % of wells have been frozen, respectively, at water-droplet freezing assay
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mental stressors throughout the atmosphere, increasing the
number of damaged and dead cells in the dirty layers.

3.2 Ice-nucleation activities of snow samples in snow
cover

The ice-nucleation assay using some of the snow samples
collected from the upper parts of the snow wall showed a
higher freezing temperature of water droplets than those from
the lower parts of the snow wall (Fig. 6a). In particular, the
snow samples of dirty layers (from 599 to 620 cm, from 626
to 644 cm, from 650 to 662cm and from 716 to 734 cm)
indicated high freezing temperatures at more than —12°C.
The freezing temperatures showing half the concentrations
of ice-nuclei particles (IN-T50C) are higher in the snow
samples that include high amounts of fluorescent particles
(Fig. 6b). The ice-nuclei particles detected in this study var-
ied from 210 to 442000 particles L~! and were included in
the range that the previous investigations estimated using rain
and snow samples (Fig. 7) (Petters and Wright, 2015). At the
freezing temperatures of —12 °C, the ice-nuclei particles in
most dirty-layer samples increased to more than 10 000 parti-
clesL~!, while most of the non-dirty layer samples and low-
layer samples showed undetectable concentrations. The ice-
nuclei activities in the snow samples are expected to change
in accordance with the characteristics of organic and inor-
ganic matter associated with aerosols. Dust mineral particles
without organic matter, such as ATD, showed lower tem-
peratures (below —15°C) for the initial freezing of water
droplets than snow samples of the dirty layers. Additionally,
the freezing temperatures of snow samples increased signifi-
cantly in relation to the higher densities of fluorescent parti-
cles (P <0.001) (Table 1). This means that the snow samples
including dust and microbial particles have high activities of
ice nucleation. Organic aerosols in the natural atmosphere
are frequently reported to have higher activities of ice nucle-
ation than inorganic particles (Hoose and Mohler, 2012; Mur-
ray et al., 2012). During the spring season, airborne microor-
ganisms associated with Asian dust events possibly increase
the ice-nucleation activities in the atmosphere and thus the
amount of snow falling over Mt Tateyama. For the investi-
gation of the detailed characteristics of bacterial ice nucle-
ation, a total of 11 isolates were obtained from the snow
samples and their ice-nucleation activities were estimated us-
ing the water-droplet freezing assay (Fig. S3). These bacte-
rial isolates showed lower activities of ice nucleation than the
snow samples of the dirty layers. In general, culturable mi-
croorganisms occupied 1-10 % of the environmental micro-
bial communities (Olsen and Bakken, 1987). Accordingly,
the unculturable bacteria are expected to activate the major-
ity of ice nucleation in the snow samples of dirty layers.
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Figure 9. Changes in the bacterial diversity observed in snow
samples collected from the snow wall at heights from 164 to
734 cm (a) and from the partial heights from 560 to 734 cm (b) in
Murododaira, Mt Tateyama, in April 2013. Species were binned at
the 97 % sequence similarity level.

3.3 Analyses of prokaryote community structures

For the analysis of bacterial compositions in the snow sam-
ples, we obtained a total of 17 676 926 reads. Following qual-
ity filtering 6 367 300 merged paired-end sequences with a
median length of 292 bp remained. The sequences of the 16S
rRNA gene were divided into 1451 phylotypes (sequences
with >97 % similarity). Phylogenetic assignment of se-
quences resulted in an overall diversity comprising 33 phyla,
(and candidate divisions), 73 classes (and class-level candi-
date taxa) and 179 families (and family-level candidate taxa).
Most of the phylotypes recovered from the air samples were
related to the phyla Cyanobacteria, Actinobacteria, Firmi-
cutes (Bacilli, Clostridia), Bacteroidetes and Proteobacteria
(Alpha-, Beta- and Gammaproteobacteria), which are typ-
ically well represented in the 16S rRNA gene sequencing
database generated from terrestrial, marine, freshwater and
phyllospheric environments (Fig. 8). Asian dust events dy-
namically change bacterial community structures at high al-
titudes ranging from 200 to 3000 m above the ground (Jeon
et al., 2011; Maki et al, 2013). For the PCR analysis steps,
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Figure 10. Principal coordinates analysis of Bray—Curtis distance matrix displaying phylogenetic clustering by the snow samples collected
from Murododaira, Mt Tateyama, in April 2013. Arrows of four colours indicate the shifts of bacterial compositions in snow samples collected

from the four dirty layers, respectively.

negative controls (no template and a template from unused
filters) did not contain the amplicons of 16S rRNA genes
demonstrating the absence of artificial contamination during
the experimental processes.

The bacterial species numbers estimated by Chao 1 in-
creased as the snow samples were collected from the up-
per parts of the snow wall (Fig. 9). The Chao 1 values were
higher in the snow samples of dirty layers that those of non-
dirty layers (P <0.05). The rarefaction curve of all samples
showed that the bacterial OUT numbers are mostly saturated
at the numbers of determined sequences (data not shown),
suggesting the sequencing database could follow the entire
structure of bacterial communities. On a non-metric multi-
dimensional scaling plot with weighted UniFrac distances,
the snow samples can be categorised into three clusters, cor-
responding to the heights of the snow wall, samples from
the lower parts (from 167 to 200 cm), samples from 563 to
668 cm and samples from 671 to 734 cm (Fig. 10), indicat-
ing the variations in bacteria with respect to the height of the
snow cover above the base. The snow samples from the three
dirty layers (February, March) overlapped with each other in
the cluster of samples from 563 to 668 cm, whereas those
of the other dirty layer (April) formed a different cluster of
samples from 671 to 734 cm. The bacterial community struc-
tures in the clusters started at the low parts of the snow wall,
moved to another coordinate and then returned to the original
areas again, resulting in a “rotation” on the coordinate (indi-
cated by arrows in Fig. 10). During the spring season, the
variations in the taxonomic composition (terrestrial, marine
or plant-associated bacteria) of the airborne bacterial popula-
tions that accumulated on the snow cover would correspond
to the heterogeneous mixtures of dust events responsible for
transporting the bacteria. Presumably, the airborne bacterial

Atmos. Chem. Phys., 18, 8155-8171, 2018

compositions in snow cover at Mt Tateyama are influenced
by the intercontinentally transported aerosols.

3.4 Distribution of prokaryote community structures
in snow cover

Firmicutes (Bacilli) sequences, mainly belonging to the fam-
ily Bacillaceae and Staphylococcaceae (>99.7 % similarity),
dominated the snow samples of dirty layers, at relative abun-
dances ranging from 25.0 to 89.8 % (Fig. 8). The relative
abundance of Firmicutes (Bacilli) sequences showed positive
relations to the white-particle densities in the snow sample,
as well as ice-nucleation activities (P < 0.01) (Table 2). The
Alpha- and Betaproteobacteria sequences maintained high
relative abundances ranging from 40.0 to 79.0 % in the lower
parts of the snow wall (lower than 590 cm: the winter sea-
son accumulation) and were negatively related to the white-
particle densities and the ice-nucleation activities. The rela-
tive abundances of Bacillaceae sequences showed a signifi-
cant positive relationship with the ice-nucleation activities of
the snow samples, whereas Proteobacteria showed a negative
correlation with the ice-nucleation activities (Table 2). Some
isolates of Bacilli obtained from cloud water were confirmed
to activate ice nucleation and Bacilli members have focused
on ice nuclear agents (Matulova et al., 2014; Mortazavi et
al., 2015). Several members of Proteobacteria isolated from
plant bodies showed high activities of ice-nucleation activi-
ties in laboratory experiments (Morris et al., 2004). The snow
samples of dirty layers exhibited higher diversities of bac-
terial compositions than those of other layers, meaning that
the dirty layers included a high numbers of minor bacterial
species. We cannot neglect the fact that the minor members
also have high levels of IN activities, because entire hetero-
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geneous bacterial communities would work as ice nuclei in
this cold freezing assay.

In Proteobacteria sequences, the relative abundances of
Oxalobacteraceae and Sphingomonadaceae sequences pre-
dominantly increased in the snow samples from the lower
parts and showed significant positive relations to the Na™
concentrations (Table 2) (P <0.01). The Alphaproteobac-
teria (in particular Sphingomonadaceae) (Cavicchioli et al.,
2003), which predominately occupy marine bacterial com-
munities, were also detected in the lower parts of the snow
wall (Fig. 8). The dust particles transported across the Sea of
Japan would be mixed with marine bacterial populations as
well as sea salt (Zhang et al., 2006), thereby contributing to
the marine bacterial transport to Mt Tateyama. Marine bac-
teria are frequently prevalent in the troposphere when strong
onshore winds prevail (DeLeon-Rodriguez et al., 2013; Poly-
menakou at al., 2008; Maki et al., 2017).

The snow samples collected from the lower parts of the
snow wall (winter season accumulation) predominantly con-
tained Proteobacteria sequences (Fig. 8), which were related
to the dominant bacterial populations in the phyllosphere
(Redford et al., 2010; Fierer and Lennon, 2011) or freshwater
environments (Nold and Zwart, 1998). Proteobacteria mem-
bers were frequently detected from the air samples collected
over mountains (Bowers et al., 2012) or over the Noto Penin-
sula during periods when a north-westerly wind was blow-
ing (Maki et al., 2010). These results suggest that some pop-
ulations of Proteobacteria on Mt Tateyama originated from
the forest, rivers or lake areas of Siberia (Russia) or northern
Asia.

The relative abundances of Actinobacteria sequences ap-
peared randomly at low rates in the snow samples and
slightly increased in the lower parts of the snow wall. In
particular, Propionibacteriaceae sequences in the phylum
Actinobacteria correlated positively to black-particle densi-
ties (P <0.05) (Fig. 8). The Actinobacteria group (in par-
ticular Propionibacteriaceae) were primarily detected from
anthropogenic particles collected in Beijing, China (Cao
et al., 2014). Natural dust particles from Asian desert ar-
eas are mixed vertically with anthropogenic pollutants over
the Asian continental coasts (J. Huang et al., 2015). How-
ever, non-spore-forming bacteria, such as Propionibacteri-
aceae members, would be damaged by atmospheric stressors
and few remaining populations could arrive in Japan con-
tinuously during the winter and spring seasons. Long-range
transportation would select some bacterial populations from
several terrestrial bacteria associated with dust particles that
originated from the central desert area in Asia or an agricul-
ture field in continental anthropogenic areas.

The concentrations of formaldehyde changed from 0.05
to 0.60 umolkg™! regardless of whether the layers were
dirty and maintained relatively high values in the low layers
from 164 to 200 cm (Fig. 3). The Bacillaceae and Cytopha-
gaceae sequences were significantly dominant in the snow
samples collected from the dirty layers (Fig. 8) and their
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relative abundances positively correlated with the white-
particle densities and the acetaldehyde concentrations (Ta-
ble 2). Airborne acetaldehyde was reported to be photosyn-
thesised from the pollutant organic materials exposed to ra-
diation from sunlight in the atmosphere (Iwama et al., 2011;
Watanabe et al., 2012). Bacillaceae members were the dom-
inant populations at high altitudes above the Taklimakan
Desert (Maki et al., 2008) and Asian downwind areas dur-
ing dust events (Korea: Jeon et al., 2011; Japan: Maki et
al., 2014). The endospore-forming bacteria, such as mem-
bers of the family Bacillaceae, could survive for the dura-
tion of long-distance transit because of their resistance to UV
irradiation and desiccations in the atmosphere (Kobayashi
et al., 2015b). The Bacteroidetes sequences including Cy-
tophagaceae were also often detected from the aerosols sam-
pled at high altitudes during Asian dust events (Maki et al.,
2013, 2015). Since Cytophagaceae members tend to aggre-
gate with the organic particles in terrestrial and aquatic envi-
ronments (Newton et al., 2011), the bacterial cells involved in
aggregations would be protected against atmospheric stres-
sors. Long-range transportation would select the stressor-
resisting bacteria among several bacterial communities as-
sociated with dust events.

4 Conclusions

The sequential changes in airborne bacteria from winter to
spring have been investigated using aerosols that have been
transported over long-distances and preserved in snow cover;
their relations to ice-nucleation activities of snow samples
were also evaluated. During the winter season, the north-
westerly wind would transport members of the phyla Pro-
teobacteria, which are expected to originate from phyllo-
sphere, fresh water in mountainous areas, or marine en-
vironments. The intercontinental dust events during spring
would carry the terrestrial bacteria of Bacilli (Bacillaceae)
and Bacteroidetes (Cytophagaceae) from the Asian continent
to Mt Tateyama, whereas other terrestrial bacteria of Acti-
nobacteria mainly disappear across the Sea of Japan. Asian
dust-associated bacteria, such as Bacilli, showed positive re-
lations to ice-nucleation activities in snow samples. Since the
ice-nucleation activities of bacterial isolates from snow sam-
ples are lower than those of snow samples, unculturable bac-
teria in the snow samples are expected to be responsible for
high levels of ice-nucleation activities. Airborne microorgan-
isms suspended over the Japanese islands might act as ice
nuclei supporting the heavy snow falling over Mt Tateyama
during spring. Furthermore, the characteristics of bioaerosols
deposited onto the snow surface needed to be understood to
highlight the impacts of microorganisms on surface albedo
and the melting rate of snow. In the future, the combination
of sequencing analysis, with physiological experiments tar-
geting bacterial cultures and metagenome analysis targeting
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functional genes, would support elucidating airborne bacte-
rial influences on climate change and human societies.
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