Research article
23 May 2018
Research article
| 23 May 2018
Effectiveness evaluation of temporary emission control action in 2016 in winter in Shijiazhuang, China
Baoshuang Liu et al.
Related authors
Baoshuang Liu, Yanyang Wang, He Meng, Qili Dai, Liuli Diao, Jianhui Wu, Laiyuan Shi, Jing Wang, Yufen Zhang, and Yinchang Feng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-957, https://doi.org/10.5194/acp-2021-957, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Understanding effectiveness of air pollution regulatory measures is critical for control policy formulation. A machine learning and dispersion normalized approaches were applied to decouple meteorological deduced variations in Qingdao, China. Most pollutant concentrations decreased substantially after the Clean Air Action. Largest emission reduction was from coal combustions and steel-related smelting. Qingdao risks increased emissions from the increased vehicular population and ozone pollution.
Baoshuang Liu, Yanyang Wang, He Meng, Qili Dai, Liuli Diao, Jianhui Wu, Laiyuan Shi, Jing Wang, Yufen Zhang, and Yinchang Feng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-957, https://doi.org/10.5194/acp-2021-957, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Understanding effectiveness of air pollution regulatory measures is critical for control policy formulation. A machine learning and dispersion normalized approaches were applied to decouple meteorological deduced variations in Qingdao, China. Most pollutant concentrations decreased substantially after the Clean Air Action. Largest emission reduction was from coal combustions and steel-related smelting. Qingdao risks increased emissions from the increased vehicular population and ozone pollution.
Xinyao Feng, Yingze Tian, Qianqian Xue, Danlin Song, Fengxia Huang, and Yinchang Feng
Atmos. Chem. Phys., 21, 16219–16235, https://doi.org/10.5194/acp-21-16219-2021, https://doi.org/10.5194/acp-21-16219-2021, 2021
Short summary
Short summary
This study focused on PM2.5 compositions and sources and explored their spatiotemporal and policy-related variations based on observation at 19 sites during wintertime of 2015–2019 in a fast-developing megacity. We found that PM2.5 compositions for the outermost zone in 2019 were similar to those for the core zone 2 or 3 years ago. Percentage contributions of coal and biomass combustion dramatically declined in the core zone, while the traffic source showed an increasing trend.
Yingze Tian, Yinchang Feng, Yongli Liang, Yixuan Li, Qianqian Xue, Zongbo Shi, Jingsha Xu, and Roy M. Harrison
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-507, https://doi.org/10.5194/acp-2020-507, 2020
Revised manuscript not accepted
Short summary
Short summary
Size distributions of inorganic and organic components in particulate matter (PM) can provide critical information on sources and pollution processes. Ions, elements, carbon fractions, n-alkanes, PAHs, hopanes and steranes in size-resolved PM were analyzed during one year in a northern Chinese megacity. Results reveal that size distributions of inorganic and organic aerosol components are dependent on seasons and pollution levels as a result of differing sources and physicochemical processes.
Ruihe Lyu, Zongbo Shi, Mohammed Salim Alam, Xuefang Wu, Di Liu, Tuan V. Vu, Christopher Stark, Pingqing Fu, Yinchang Feng, and Roy M. Harrison
Atmos. Chem. Phys., 19, 10865–10881, https://doi.org/10.5194/acp-19-10865-2019, https://doi.org/10.5194/acp-19-10865-2019, 2019
Short summary
Short summary
Severe pollution of the Beijing atmosphere is a frequent occurrence. The airborne particles which characterize the episodes of haze contain a wide range of chemical constituents but organic compounds make up a substantial proportion. In this study individual compounds are analysed under both haze and non-haze conditions, and the measurements are compared with samples collected in London, where the air pollution climate and sources are very different.
Qili Dai, Benjamin C. Schulze, Xiaohui Bi, Alexander A. T. Bui, Fangzhou Guo, Henry W. Wallace, Nancy P. Sanchez, James H. Flynn, Barry L. Lefer, Yinchang Feng, and Robert J. Griffin
Atmos. Chem. Phys., 19, 9641–9661, https://doi.org/10.5194/acp-19-9641-2019, https://doi.org/10.5194/acp-19-9641-2019, 2019
Short summary
Short summary
The formation processes of secondary organic aerosol remain to be fully understood. We reported the measurement data from two field campaigns within Houston, TX, to investigate the effects of aqueous-phase chemistry and photochemistry in processing oxygenated organic aerosol (OOA) in winter and summer. Both photochemistry and aqueous-phase processing appear to facilitate more-oxidized OOA formation. The processing mechanism of less-oxidized OOA apparently depended on relative humidity.
Jing Ding, Pusheng Zhao, Jie Su, Qun Dong, Xiang Du, and Yufen Zhang
Atmos. Chem. Phys., 19, 7939–7954, https://doi.org/10.5194/acp-19-7939-2019, https://doi.org/10.5194/acp-19-7939-2019, 2019
Short summary
Short summary
Aerosol acidity plays a key role in secondary aerosol formation. To provide a more comprehensive reference for aerosol pH and a basis for controlling secondary aerosol generation, this study used the latest data covering four seasons and different particle sizes to obtain the characteristics of aerosol pH and explore the main factors affecting aerosol pH and gas–particle partitioning in the Beijing area.
Xiaohui Bi, Qili Dai, Jianhui Wu, Qing Zhang, Wenhui Zhang, Ruixue Luo, Yuan Cheng, Jiaying Zhang, Lu Wang, Zhuojun Yu, Yufen Zhang, Yingze Tian, and Yinchang Feng
Atmos. Chem. Phys., 19, 3223–3243, https://doi.org/10.5194/acp-19-3223-2019, https://doi.org/10.5194/acp-19-3223-2019, 2019
Short summary
Short summary
Source profiles are of great importance for the application of receptor models in source apportionment studies, as they characterize specific sources from a chemical point of view, revealing the signatures of source emissions. Here, a total of 3326 chemical profiles of the main primary sources across China from 1987 to 2017 are reviewed. The results highlight the urgent need for increased investigation of more specific markers beyond routinely measured components to better discriminate sources.
Ruihe Lyu, Mohammed S. Alam, Christopher Stark, Ruixin Xu, Zongbo Shi, Yinchang Feng, and Roy M. Harrison
Atmos. Chem. Phys., 19, 2233–2246, https://doi.org/10.5194/acp-19-2233-2019, https://doi.org/10.5194/acp-19-2233-2019, 2019
Short summary
Short summary
Organic matter comprises a substantial proportion of the mass of toxic airborne particles which cause poor health and premature death. In this paper, new measurements of three important groups of organic compounds are reported and are analysed to infer their sources and their contributions to airborne particle concentrations.
Benjamin C. Schulze, Henry W. Wallace, Alexander T. Bui, James H. Flynn, Matt H. Erickson, Sergio Alvarez, Qili Dai, Sascha Usenko, Rebecca J. Sheesley, and Robert J. Griffin
Atmos. Chem. Phys., 18, 14217–14241, https://doi.org/10.5194/acp-18-14217-2018, https://doi.org/10.5194/acp-18-14217-2018, 2018
Short summary
Short summary
Atmospheric field measurements at a coastal site near Houston, TX, were used to investigate the influence of shipping vessel emissions on aerosol mass and composition over the Gulf of Mexico. Results suggest that, despite recent regulations, these vessels still produce a considerable fraction of inorganic and organic aerosol mass in the region. Secondary effects of shipping emissions on organic aerosol composition, such as influences on aerosol aging, were also identified.
Congbo Song, Yan Liu, Shida Sun, Luna Sun, Yanjie Zhang, Chao Ma, Jianfei Peng, Qian Li, Jinsheng Zhang, Qili Dai, Baoshuang Liu, Peng Wang, Yi Zhang, Ting Wang, Lin Wu, Min Hu, and Hongjun Mao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-387, https://doi.org/10.5194/acp-2018-387, 2018
Revised manuscript not accepted
Short summary
Short summary
Vehicular emission is a key contributor to ambient volatile organic compounds (VOCs) and NOx in Chinese megacities. Information on real-world emission factors (EFs) for a typical urban fleet is still limited. We found that improvement of fuel quality can significantly reduce feet-average EFs of VOCs (especially for BTEX). Our study provided implications for O3 control in China from the view of primary emission, and highlighted the importance of further control of evaporative emissions.
Xing Peng, Jian Gao, Guoliang Shi, Xurong Shi, Yanqi Huangfu, Jiayuan Liu, Yuechong Zhang, Yinchang Feng, Wei Wang, Ruoyu Ma, Cesunica E. Ivey, and Yi Deng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-997, https://doi.org/10.5194/acp-2017-997, 2018
Preprint withdrawn
Short summary
Short summary
A finding here is that source emission dominates the level of pollutants and short-term meteorological condition determines the variation of pollutants. Primary source impact levels are mainly influenced by source emissions, and secondary source impact levels are mainly influenced by synoptic scale fluctuations and source emissions. The implications of results are for source apportionment analyses conducted with data from different geographical locations and under various weather conditions.
S. Han, Y. Zhang, J. Wu, X. Zhang, Y. Tian, Y. Wang, J. Ding, W. Yan, X. Bi, G. Shi, Z. Cai, Q. Yao, H. Huang, and Y. Feng
Atmos. Chem. Phys., 15, 11165–11177, https://doi.org/10.5194/acp-15-11165-2015, https://doi.org/10.5194/acp-15-11165-2015, 2015
Short summary
Short summary
It is crucial for studying regional-scale PM pollution and for the development of efficient joint control policy to improve understanding of the regional background PM concentration. Based on the vertical variation periodic characteristics of particle mass concentration, the atmospheric boundary layer structure, as well as the vertical distribution of chemical composition and pollution source apportionment, a method to estimate regional background PM concentration is proposed.
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Linking Switzerland's PM10 and PM2.5 oxidative potential (OP) with emission sources
Reversible and irreversible gas–particle partitioning of dicarbonyl compounds observed in the real atmosphere
Molecular characteristics, sources, and formation pathways of organosulfur compounds in ambient aerosol in Guangzhou, South China
Evolution of source attributed organic aerosols and gases in a megacity of central China
Measurement report: Hygroscopic growth of ambient fine particles measured at five sites in China
Measurement report: Optical properties and sources of water-soluble brown carbon in Tianjin, North China – insights from organic molecular compositions
Trends in secondary inorganic aerosol pollution in China and its responses to emission controls of precursors in wintertime
Measurement report: Source apportionment of carbonaceous aerosol using dual-carbon isotopes (13C and 14C) and levoglucosan in three northern Chinese cities during 2018–2019
Chemically speciated mass size distribution, particle density, shape and origin of non-refractory PM1 measured at a rural background site in central Europe
Offline analysis of the chemical composition and hygroscopicity of submicrometer aerosol at an Asian outflow receptor site and comparison with online measurements
High number concentrations of transparent exopolymer particles in ambient aerosol particles and cloud water – a case study at the tropical Atlantic Ocean
Micro-spectroscopic and freezing characterization of ice-nucleating particles collected in the marine boundary layer in the eastern North Atlantic
Oxidation pathways and emission sources of atmospheric particulate nitrate in Seoul: based on δ15N and Δ17O measurements
Measurement report: Characterization and source apportionment of coarse particulate matter in Hong Kong: insights into the constituents of unidentified mass and source origins in a coastal city in southern China
The optical properties and in-situ observational evidence for the formation of brown carbon in clouds
Chemical properties, sources and size-resolved hygroscopicity of submicron black carbon-containing aerosols in urban Shanghai
High atmospheric oxidation capacity drives wintertime nitrate pollution in the eastern Yangtze River Delta of China
Development and evolution of an anomalous Asian dust event across Europe in March 2020
Measurement Report: Effects of anthropogenic emissions and environmental factors on biogenic secondary organic aerosol (BSOA) formation in a coastal city of Southeastern China
What caused a record high PM10 episode in northern Europe in October 2020?
Evidence of haze-driven secondary production of supermicrometer aerosol nitrate and sulfate in size distribution data in South Korea
Sensitivity of low-level clouds and precipitation to anthropogenic aerosol emission in southern West Africa: a DACCIWA case study
Pan-Arctic seasonal cycles and long-term trends of aerosol properties from 10 observatories
Analysis of reduced and oxidized nitrogen-containing organic compounds at a coastal site in summer and winter
Sources and processes of iron aerosols in a megacity in Eastern China
Measurement report: Size-resolved chemical characterisation of aerosols in low-income urban settlements in South Africa
Dramatic changes in atmospheric pollution source contributions for a coastal megacity in North China from 2011 to 2020
Mapping gaseous dimethylamine, trimethylamine, ammonia, and their particulate counterparts in marine atmospheres of China’s marginal seas – Part 2: Spatiotemporal heterogeneity, causes, and hypothesis
Single-particle characterization of polycyclic aromatic hydrocarbons in background air in northern Europe
Regional heterogeneities in the emission of airborne primary sugar compounds and biogenic secondary organic aerosols in the East Asian outflow: evidence for coal combustion as a source of levoglucosan
Influence of organic aerosol molecular composition on particle absorptive properties in autumn Beijing
The importance of alkyl nitrates and sea ice emissions to atmospheric NOx sources and cycling in the summertime Southern Ocean marine boundary layer
Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol
Polycyclic aromatic hydrocarbons (PAHs) and their alkylated-, nitro- and oxy-derivatives in the atmosphere over the Mediterranean and Middle East seas
Measurement report: Particle-size-dependent fluorescence properties of water-soluble organic compounds (WSOCs) and their atmospheric implications for the aging of WSOCs
Impact of non-ideality on reconstructing spatial and temporal variations in aerosol acidity with multiphase buffer theory
Mercury isotopic compositions in fine particles and offshore surface seawater in a coastal area of East China: implications for Hg sources and atmospheric transformations
Real-time chemical speciation and source apportionment of organic aerosol components in Delhi, India, using extractive electrospray ionization mass spectrometry
Urban aerosol chemistry at a land–water transition site during summer – Part 2: Aerosol pH and liquid water content
First insights into northern Africa high-altitude background aerosol chemical composition and source influences
Impact of dry intrusion events on the composition and mixing state of particles during the winter Aerosol and Cloud Experiment in the Eastern North Atlantic (ACE-ENA)
Diverse mixing states of amine-containing single particles in Nanjing, China
Long-range transport of anthropogenic air pollutants into the marine air: insight into fine particle transport and chloride depletion on sea salts
Chemical composition and mixing state of BC-containing particles and the implications on light absorption enhancement
Response of atmospheric composition to COVID-19 lockdown measures during spring in the Paris region (France)
Transport-driven aerosol differences above and below the canopy of a mixed deciduous forest
Origin of water-soluble organic aerosols at the Maïdo high-altitude observatory, Réunion Island, in the tropical Indian Ocean
Sources and nature of ice-nucleating particles in the free troposphere at Jungfraujoch in winter 2017
Spatiotemporal variability in the oxidative potential of ambient fine particulate matter in the Midwestern United States
Measurement report: Spatiotemporal and policy-related variations of PM2.5 composition and sources during 2015–2019 at multiple sites in a Chinese megacity
Stuart K. Grange, Gaëlle Uzu, Samuël Weber, Jean-Luc Jaffrezo, and Christoph Hueglin
Atmos. Chem. Phys., 22, 7029–7050, https://doi.org/10.5194/acp-22-7029-2022, https://doi.org/10.5194/acp-22-7029-2022, 2022
Short summary
Short summary
Oxidative potential (OP), a biologically relevant metric for particulate matter (PM), was linked to PM10 and PM2.5 sources and constituents across Switzerland between 2018 and 2019. Wood burning and non-exhaust traffic emissions were identified as key processes that led to enhanced OP. Therefore, the make-up of the PM mix was very important for OP. The results highlight the importance of the management of wood burning and non-exhaust emissions to reduce OP, and presumably biological harm.
Jingcheng Hu, Zhongming Chen, Xuan Qin, and Ping Dong
Atmos. Chem. Phys., 22, 6971–6987, https://doi.org/10.5194/acp-22-6971-2022, https://doi.org/10.5194/acp-22-6971-2022, 2022
Short summary
Short summary
The gas–particle partitioning process of glyoxal and methylglyoxal could contribute to secondary organic aerosol formation. Here, we launched five observations in different seasons and simultaneously measured glyoxal and methylglyoxal in the gas and particle phases. Compared to reversible pathways, irreversible pathways played a dominant role with a proportion of more than 90 % in the ambient atmosphere, and the proportion was influenced by relative humidity and inorganic components in aerosols.
Hongxing Jiang, Jun Li, Jiao Tang, Min Cui, Shizhen Zhao, Yangzhi Mo, Chongguo Tian, Xiangyun Zhang, Bin Jiang, Yuhong Liao, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 22, 6919–6935, https://doi.org/10.5194/acp-22-6919-2022, https://doi.org/10.5194/acp-22-6919-2022, 2022
Short summary
Short summary
We conducted field observation employing Fourier transform ion cyclotron resonance mass spectrometry to characterize the molecular composition and major formation pathways or sources of organosulfur compounds in Guangzhou, where is heavily influenced by biogenic–anthropogenic interactions and has high relative humidity and temperature. We suggested that heterogeneous reactions such as SO2 uptake and heterogeneous oxidations are important to the molecular variations of organosulfur compounds.
Siyuan Li, Dantong Liu, Shaofei Kong, Yangzhou Wu, Kang Hu, Huang Zheng, Yi Cheng, Shurui Zheng, Xiaotong Jiang, Shuo Ding, Dawei Hu, Quan Liu, Ping Tian, Delong Zhao, and Jiujiang Sheng
Atmos. Chem. Phys., 22, 6937–6951, https://doi.org/10.5194/acp-22-6937-2022, https://doi.org/10.5194/acp-22-6937-2022, 2022
Short summary
Short summary
The understanding of secondary organic aerosols is hindered by the aerosol–gas evolution by different oxidation mechanisms. By concurrently measuring detailed mass spectra of aerosol and gas phases in a megacity online, we identified the primary and secondary source sectors and investigated the transformation between gas and aerosol phases influenced by photooxidation and moisture. The results will help us to understand the respective evolution of major sources in a typical urban environment.
Lu Chen, Fang Zhang, Dongmei Zhang, Xinming Wang, Wei Song, Jieyao Liu, Jingye Ren, Sihui Jiang, Xue Li, and Zhanqing Li
Atmos. Chem. Phys., 22, 6773–6786, https://doi.org/10.5194/acp-22-6773-2022, https://doi.org/10.5194/acp-22-6773-2022, 2022
Short summary
Short summary
Aerosol hygroscopicity is critical when evaluating its effect on visibility and climate. Here, the size-resolved particle hygroscopicity at five sites in China is characterized using field measurements. We show the distinct behavior of hygroscopic particles during pollution evolution among the five sites. Moreover, different hygroscopic behavior during NPF events were also observed. The dataset is helpful for understanding the spatial variability in particle composition and formation mechanisms.
Junjun Deng, Hao Ma, Xinfeng Wang, Shujun Zhong, Zhimin Zhang, Jialei Zhu, Yanbing Fan, Wei Hu, Libin Wu, Xiaodong Li, Lujie Ren, Chandra Mouli Pavuluri, Xiaole Pan, Yele Sun, Zifa Wang, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 22, 6449–6470, https://doi.org/10.5194/acp-22-6449-2022, https://doi.org/10.5194/acp-22-6449-2022, 2022
Short summary
Short summary
Light-absorbing brown carbon (BrC) plays an important role in climate change and atmospheric chemistry. Here we investigated the seasonal and diurnal variations in water-soluble BrC in PM2.5 in the megacity Tianjin in coastal China. Results of the source apportionments from the combination with organic molecular compositions and optical properties of water-soluble BrC reveal a large contribution from primary bioaerosol particles to BrC in the urban atmosphere.
Fanlei Meng, Yibo Zhang, Jiahui Kang, Mathew R. Heal, Stefan Reis, Mengru Wang, Lei Liu, Kai Wang, Shaocai Yu, Pengfei Li, Jing Wei, Yong Hou, Ying Zhang, Xuejun Liu, Zhenling Cui, Wen Xu, and Fusuo Zhang
Atmos. Chem. Phys., 22, 6291–6308, https://doi.org/10.5194/acp-22-6291-2022, https://doi.org/10.5194/acp-22-6291-2022, 2022
Short summary
Short summary
PM2.5 pollution is a pressing environmental issue threatening human health and food security globally. We combined a meta-analysis of nationwide measurements and air quality modeling to identify efficiency gains by striking a balance between controlling NH3 and acid gas emissions. Persistent secondary inorganic aerosol pollution in China is limited by acid gas emissions, while an additional control on NH3 emissions would become more important as reductions in SO2 and NOx emissions progress.
Huiyizhe Zhao, Zhenchuan Niu, Weijian Zhou, Sen Wang, Xue Feng, Shugang Wu, Xuefeng Lu, and Hua Du
Atmos. Chem. Phys., 22, 6255–6274, https://doi.org/10.5194/acp-22-6255-2022, https://doi.org/10.5194/acp-22-6255-2022, 2022
Short summary
Short summary
In this study, we investigated the characteristics and changes in the sources of carbonaceous aerosols in northern Chinese cities using dual-carbon isotopes (13C and 14C) and levoglucosan during 2018 to 2019 and compared them with the research in previous decades. The results show that the contribution of fossil sources has decreased (6–16%) significantly, and non-fossil sources have become the main part of carbonaceous aerosols, which verified the effectiveness of air quality management.
Petra Pokorná, Naděžda Zíková, Petr Vodička, Radek Lhotka, Saliou Mbengue, Adéla Holubová Šmejkalová, Véronique Riffault, Jakub Ondráček, Jaroslav Schwarz, and Vladimír Ždímal
Atmos. Chem. Phys., 22, 5829–5858, https://doi.org/10.5194/acp-22-5829-2022, https://doi.org/10.5194/acp-22-5829-2022, 2022
Short summary
Short summary
By examining individual episodes of high mass and number concentrations, we show that the seasonality in the physicochemical properties of aerosol particles was caused by the sources' diversity and was related to the different air masses and meteorology. We also confirmed the relation between particle size and age that is reflected in oxidation state and shape (difference in densities; effective vs. material). The results have general validity and thus transcend the study regional character.
Yange Deng, Hiroaki Fujinari, Hikari Yai, Kojiro Shimada, Yuzo Miyazaki, Eri Tachibana, Dhananjay K. Deshmukh, Kimitaka Kawamura, Tomoki Nakayama, Shiori Tatsuta, Mingfu Cai, Hanbing Xu, Fei Li, Haobo Tan, Sho Ohata, Yutaka Kondo, Akinori Takami, Shiro Hatakeyama, and Michihiro Mochida
Atmos. Chem. Phys., 22, 5515–5533, https://doi.org/10.5194/acp-22-5515-2022, https://doi.org/10.5194/acp-22-5515-2022, 2022
Short summary
Short summary
Offline analyses of the hygroscopicity and composition of atmospheric aerosols are complementary to online analyses in view of the applicability to broader sizes, specific compound groups, and investigations at remote sites. This offline study characterized the composition of water-soluble matter in aerosols and their humidity-dependent hygroscopicity on Okinawa, a receptor site of East Asian outflow. Further, comparison with online analyses showed the appropriateness of the offline method.
Manuela van Pinxteren, Tiera-Brandy Robinson, Sebastian Zeppenfeld, Xianda Gong, Enno Bahlmann, Khanneh Wadinga Fomba, Nadja Triesch, Frank Stratmann, Oliver Wurl, Anja Engel, Heike Wex, and Hartmut Herrmann
Atmos. Chem. Phys., 22, 5725–5742, https://doi.org/10.5194/acp-22-5725-2022, https://doi.org/10.5194/acp-22-5725-2022, 2022
Short summary
Short summary
A class of marine particles (transparent exopolymer particles, TEPs) that is ubiquitously found in the world oceans was measured for the first time in ambient marine aerosol particles and marine cloud waters in the tropical Atlantic Ocean. TEPs are likely to have good properties for influencing clouds. We show that TEPs are transferred from the ocean to the marine atmosphere via sea-spray formation and our results suggest that they can also form directly in aerosol particles and in cloud water.
Daniel A. Knopf, Joseph C. Charnawskas, Peiwen Wang, Benny Wong, Jay M. Tomlin, Kevin A. Jankowski, Matthew Fraund, Daniel P. Veghte, Swarup China, Alexander Laskin, Ryan C. Moffet, Mary K. Gilles, Josephine Y. Aller, Matthew A. Marcus, Shira Raveh-Rubin, and Jian Wang
Atmos. Chem. Phys., 22, 5377–5398, https://doi.org/10.5194/acp-22-5377-2022, https://doi.org/10.5194/acp-22-5377-2022, 2022
Short summary
Short summary
Marine boundary layer aerosols collected in the remote region of the eastern North Atlantic induce immersion freezing and deposition ice nucleation under typical mixed-phase and cirrus cloud conditions. Corresponding ice nucleation parameterizations for model applications have been derived. Chemical imaging of ambient aerosol and ice-nucleating particles demonstrates that the latter is dominated by sea salt and organics while also representing a major particle type in the particle population.
Saehee Lim, Meehye Lee, Joel Savarino, and Paolo Laj
Atmos. Chem. Phys., 22, 5099–5115, https://doi.org/10.5194/acp-22-5099-2022, https://doi.org/10.5194/acp-22-5099-2022, 2022
Short summary
Short summary
We determined δ15N(NO3−) and Δ17O(NO3−) of PM2.5 in Seoul during 2018–2019 and estimated quantitatively the contribution of oxidation pathways to NO3− formation and NOx emission sources. The nighttime pathway played a significant role in NO3− formation during the winter, and its contribution further increased up to 70 % on haze days when PM2.5 was greater than 75 µg m−3. Vehicle emissions were confirmed as a main NO3− source with an increasing contribution from coal combustion in winter.
Yee Ka Wong, Kin Man Liu, Claisen Yeung, Kenneth K. M. Leung, and Jian Zhen Yu
Atmos. Chem. Phys., 22, 5017–5031, https://doi.org/10.5194/acp-22-5017-2022, https://doi.org/10.5194/acp-22-5017-2022, 2022
Short summary
Short summary
Coarse particulate matter (PM) has been shown to cause adverse health impacts, but compared to PM2.5, the source of coarse PM is less studied through field measurements. We collected chemical composition data for coarse PM in Hong Kong for a 1-year period. Using statistical models, we found that regional transport of fugitive dust is responsible for the elevated coarse PM. This work sets an example of how field measurements can be effectively utilized for evidence-based policymaking.
Ziyong Guo, Yuxiang Yang, Xiaodong Hu, Xiaocong Peng, Yuzhen Fu, Wei Sun, Guohua Zhang, Duohong Chen, Xinhui Bi, Xinming Wang, and Ping'an Peng
Atmos. Chem. Phys., 22, 4827–4839, https://doi.org/10.5194/acp-22-4827-2022, https://doi.org/10.5194/acp-22-4827-2022, 2022
Short summary
Short summary
We show that in-cloud aqueous processing facilitates the formation of brown carbon (BrC), based on the simultaneous measurements of the light-absorption properties of the cloud residuals, cloud interstitial, and cloud-free particles. While extensive laboratory evidence indicated the formation of BrC in aqueous phase, our study represents the first attempt to show the possibility in real clouds, which would have potential implications in the atmospheric evolution and radiation forcing of BrC.
Shijie Cui, Dan Dan Huang, Yangzhou Wu, Junfeng Wang, Fuzhen Shen, Jiukun Xian, Yunjiang Zhang, Hongli Wang, Cheng Huang, Hong Liao, and Xinlei Ge
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-194, https://doi.org/10.5194/acp-2022-194, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Refractory black carbon (rBC) aerosols are important to both air quality and climate change. However, rBC can mix with many other species therefore change its properties significantly. We used a specific set of techniques to exclusively characterize rBC-containing (rBCc) particles in Shanghai. We figured out composition, sources, size distributions and the factors affecting such physicochemical properties. Our findings are valuable to advance the understanding of BC and its pollution control.
Han Zang, Yue Zhao, Juntao Huo, Qianbiao Zhao, Qingyan Fu, Yusen Duan, Jingyuan Shao, Cheng Huang, Jingyu An, Likun Xue, Ziyue Li, Chenxi Li, and Huayun Xiao
Atmos. Chem. Phys., 22, 4355–4374, https://doi.org/10.5194/acp-22-4355-2022, https://doi.org/10.5194/acp-22-4355-2022, 2022
Short summary
Short summary
Particulate nitrate plays an important role in wintertime haze pollution in eastern China, yet quantitative constraints on detailed nitrate formation mechanisms remain limited. Here we quantified the contributions of the heterogeneous N2O5 hydrolysis (66 %) and gas-phase OH + NO2 reaction (32 %) to nitrate formation in this region and identified the atmospheric oxidation capacity (i.e., availability of O3 and OH radicals) as the driving factor of nitrate formation from both processes.
Laura Tositti, Erika Brattich, Claudio Cassardo, Pietro Morozzi, Alessandro Bracci, Angela Marinoni, Silvana Di Sabatino, Federico Porcù, and Alessandro Zappi
Atmos. Chem. Phys., 22, 4047–4073, https://doi.org/10.5194/acp-22-4047-2022, https://doi.org/10.5194/acp-22-4047-2022, 2022
Short summary
Short summary
We present a thorough investigation of an anomalous transport of mineral dust over a region renowned for excess airborne particulate matter, the Italian Po Valley, which occurred in late March 2021. Both the origin of this dust outbreak, which was localized in central Asia (i.e., the so-called Aralkum Desert), and the upstream synoptic conditions, investigated here in extreme detail using multiple integrated observations including in situ measurements and remote sensing, were atypical.
Youwei Hong, Xinbei Xu, Dan Liao, Taotao Liu, Xiaoting Ji, Ke Xu, Chunyang Liao, Ting Wang, Chunshui Lin, and Jinsheng Chen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-220, https://doi.org/10.5194/acp-2022-220, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Secondary organic aerosol (SOA) simulation remains uncertain, due to the unknown SOA formation mechanisms. Aerosol samples with a 4 h time resolution were collected, along with on-line measurements of aerosol chemical compositions and meteorological parameters. We found that anthropogenic emissions, atmospheric oxidation capacity and halogen chemistry have significant effects on the formation of biogenic SOA. The findings of this study are helpful to better explore the missed SOA sources.
Christine D. Groot Zwaaftink, Wenche Aas, Sabine Eckhardt, Nikolaos Evangeliou, Paul Hamer, Mona Johnsrud, Arve Kylling, Stephen M. Platt, Kerstin Stebel, Hilde Uggerud, and Karl Espen Yttri
Atmos. Chem. Phys., 22, 3789–3810, https://doi.org/10.5194/acp-22-3789-2022, https://doi.org/10.5194/acp-22-3789-2022, 2022
Short summary
Short summary
We investigate causes of a poor-air-quality episode in northern Europe in October 2020 during which EU health limits for air quality were vastly exceeded. Such episodes may trigger measures to improve air quality. Analysis based on satellite observations, transport simulations, and surface observations revealed two sources of pollution. Emissions of mineral dust in Central Asia and biomass burning in Ukraine arrived almost simultaneously in Norway, and transport continued into the Arctic.
Joseph Schlosser, Connor Stahl, Armin Sorooshian, Yen Thi-Hoang Le, Ki-Joon Jeon, Peng Xian, Carolyn E. Jordan, Katherine R. Travis, James H. Crawford, Sung Yong Gong, Hye-Jung Shin, In-Ho Song, and Jong-sang Youn
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1098, https://doi.org/10.5194/acp-2021-1098, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
During a major haze pollution episode in March 2019, anthropogenic emissions were dominant in the boundary layer over Incheon and Seoul, South Korea. Using super- and sub-micrometer size- and chemistry-resolved aerosol particle measurements taken during this haze pollution period, this work shows that local emissions and a shallow boundary layer, enhanced humidity, and low temperature promoted local heterogeneous formation of secondary inorganic and organic aerosol species.
Adrien Deroubaix, Laurent Menut, Cyrille Flamant, Peter Knippertz, Andreas H. Fink, Anneke Batenburg, Joel Brito, Cyrielle Denjean, Cheikh Dione, Régis Dupuy, Valerian Hahn, Norbert Kalthoff, Fabienne Lohou, Alfons Schwarzenboeck, Guillaume Siour, Paolo Tuccella, and Christiane Voigt
Atmos. Chem. Phys., 22, 3251–3273, https://doi.org/10.5194/acp-22-3251-2022, https://doi.org/10.5194/acp-22-3251-2022, 2022
Short summary
Short summary
During the summer monsoon in West Africa, pollutants emitted in urbanized areas modify cloud cover and precipitation patterns. We analyze these patterns with the WRF-CHIMERE model, integrating the effects of aerosols on meteorology, based on the numerous observations provided by the Dynamics-Aerosol-Climate-Interactions campaign. This study adds evidence to recent findings that increased pollution levels in West Africa delay the breakup time of low-level clouds and reduce precipitation.
Julia Schmale, Sangeeta Sharma, Stefano Decesari, Jakob Pernov, Andreas Massling, Hans-Christen Hansson, Knut von Salzen, Henrik Skov, Elisabeth Andrews, Patricia K. Quinn, Lucia M. Upchurch, Konstantinos Eleftheriadis, Rita Traversi, Stefania Gilardoni, Mauro Mazzola, James Laing, and Philip Hopke
Atmos. Chem. Phys., 22, 3067–3096, https://doi.org/10.5194/acp-22-3067-2022, https://doi.org/10.5194/acp-22-3067-2022, 2022
Short summary
Short summary
Long-term data sets of Arctic aerosol properties from 10 stations across the Arctic provide evidence that anthropogenic influence on the Arctic atmospheric chemical composition has declined in winter, a season which is typically dominated by mid-latitude emissions. The number of significant trends in summer is smaller than in winter, and overall the pattern is ambiguous with some significant positive and negative trends. This reflects the mixed influence of natural and anthropogenic emissions.
Jenna C. Ditto, Jo Machesky, and Drew R. Gentner
Atmos. Chem. Phys., 22, 3045–3065, https://doi.org/10.5194/acp-22-3045-2022, https://doi.org/10.5194/acp-22-3045-2022, 2022
Short summary
Short summary
We analyzed gases and aerosols sampled in summer and winter in a coastal region that is often downwind of urban areas and observed large contributions of nitrogen-containing organic compounds influenced by a mix of biogenic, anthropogenic, and/or marine sources as well as photochemical and aqueous-phase atmospheric processes. The results show the prevalence of key reduced and oxidized nitrogen functional groups and advance knowledge on the chemical structure of nitrogen-containing compounds.
Yanhong Zhu, Weijun Li, Yue Wang, Jian Zhang, Lei Liu, Liang Xu, Jingsha Xu, Jinhui Shi, Longyi Shao, Pingqing Fu, Daizhou Zhang, and Zongbo Shi
Atmos. Chem. Phys., 22, 2191–2202, https://doi.org/10.5194/acp-22-2191-2022, https://doi.org/10.5194/acp-22-2191-2022, 2022
Short summary
Short summary
The solubilities of iron in fine particles in a megacity in Eastern China were studied under haze, fog, dust, clear, and rain weather conditions. For the first time, a receptor model was used to quantify the sources of dissolved and total iron aerosol. Microscopic analysis further confirmed the aging of iron aerosol during haze and fog conditions that facilitated dissolution of insoluble iron.
Constance Keitumetse Segakweng, Pieter Gideon van Zyl, Cathy Liousse, Johan Paul Beukes, Jan-Stefan Swartz, Eric Gardrat, Maria Dias-Alves, Brigitte Language, Roelof P. Burger, and Stuart J. Piketh
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1026, https://doi.org/10.5194/acp-2021-1026, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
A detailed size-resolved assessment of the chemical characteristics of outdoor and indoor aerosols collected in low-income urban settlements in South Africa indicated the significance of household combustion for cooking and space heating – an important source of pollutants in the developing world – to atmospheric chemical composition, while the regional impacts of industrial sources in the highly industrialised and densely populated north-eastern interior of South Africa were also evident.
Baoshuang Liu, Yanyang Wang, He Meng, Qili Dai, Liuli Diao, Jianhui Wu, Laiyuan Shi, Jing Wang, Yufen Zhang, and Yinchang Feng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-957, https://doi.org/10.5194/acp-2021-957, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Understanding effectiveness of air pollution regulatory measures is critical for control policy formulation. A machine learning and dispersion normalized approaches were applied to decouple meteorological deduced variations in Qingdao, China. Most pollutant concentrations decreased substantially after the Clean Air Action. Largest emission reduction was from coal combustions and steel-related smelting. Qingdao risks increased emissions from the increased vehicular population and ozone pollution.
Yating Gao, Dihui Chen, Yanjie Shen, Yang Gao, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 22, 1515–1528, https://doi.org/10.5194/acp-22-1515-2022, https://doi.org/10.5194/acp-22-1515-2022, 2022
Short summary
Short summary
This study focuses on spatiotemporal heterogeneity of observed gaseous amines, NH3, their particulate counterparts in PM2.5 over different sea zones, and the disproportional release of alkaline gases and corresponding particulate counterparts from seawater in the sea zones in terms of different extents of enrichment of TMAH+ and DMAH+ in the sea surface microlayer (SML). A novel hypothesis is delivered.
Johannes Passig, Julian Schade, Robert Irsig, Thomas Kröger-Badge, Hendryk Czech, Thomas Adam, Henrik Fallgren, Jana Moldanova, Martin Sklorz, Thorsten Streibel, and Ralf Zimmermann
Atmos. Chem. Phys., 22, 1495–1514, https://doi.org/10.5194/acp-22-1495-2022, https://doi.org/10.5194/acp-22-1495-2022, 2022
Short summary
Short summary
The single-particle distribution of health-relevant polycyclic aromatic hydrocarbons (PAHs) was studied at the Swedish coast in autumn. We found PAHs bound to long-range transported particles from eastern and central Europe and also from ship emissions and local sources. This is the first field study using a new technology revealing single-particle data from both inorganic components and PAHs. We discuss PAH profiles that are indicative of several sources and atmospheric aging processes.
Md. Mozammel Haque, Yanlin Zhang, Srinivas Bikkina, Meehye Lee, and Kimitaka Kawamura
Atmos. Chem. Phys., 22, 1373–1393, https://doi.org/10.5194/acp-22-1373-2022, https://doi.org/10.5194/acp-22-1373-2022, 2022
Short summary
Short summary
We attempt to understand the current state of East Asian organic aerosols with both the molecular marker approach and 14° C data of carbonaceous components. A significant positive correlation of nonfossil- and fossil-derived organic carbon with levoglucosan suggests the importance of biomass burning (BB) and coal combustion sources in the East Asian outflow. Thus, attribution of ambient levoglucosan levels over the western North Pacific to the impact of BB emission may cause large uncertainty.
Jing Cai, Cheng Wu, Jiandong Wang, Wei Du, Feixue Zheng, Simo Hakala, Xiaolong Fan, Biwu Chu, Lei Yao, Zemin Feng, Yongchun Liu, Yele Sun, Jun Zheng, Chao Yan, Federico Bianchi, Markku Kulmala, Claudia Mohr, and Kaspar R. Daellenbach
Atmos. Chem. Phys., 22, 1251–1269, https://doi.org/10.5194/acp-22-1251-2022, https://doi.org/10.5194/acp-22-1251-2022, 2022
Short summary
Short summary
This study investigates the connection between organic aerosol (OA) molecular composition and particle absorptive properties in autumn in Beijing. We find that the molecular properties of OA compounds in different episodes influence particle light absorption properties differently: the light absorption enhancement of black carbon and light absorption coefficient of brown carbon were mostly related to more oxygenated OA (low C number and four O atoms) and aromatics/nitro-aromatics, respectively.
Jessica M. Burger, Julie Granger, Emily Joyce, Meredith G. Hastings, Kurt A. M. Spence, and Katye E. Altieri
Atmos. Chem. Phys., 22, 1081–1096, https://doi.org/10.5194/acp-22-1081-2022, https://doi.org/10.5194/acp-22-1081-2022, 2022
Short summary
Short summary
The nitrogen (N) isotopic composition of atmospheric nitrate in the Southern Ocean (SO) marine boundary layer (MBL) reveals the importance of oceanic alkyl nitrate emissions as a source of reactive N to the atmosphere. The oxygen isotopic composition suggests peroxy radicals contribute up to 63 % to NO oxidation and that nitrate forms via the OH pathway. This work improves our understanding of reactive N sources and cycling in a remote marine region, a proxy for the pre-industrial atmosphere.
Dongwook Kim, Changmin Cho, Seokhan Jeong, Soojin Lee, Benjamin A. Nault, Pedro Campuzano-Jost, Douglas A. Day, Jason C. Schroder, Jose L. Jimenez, Rainer Volkamer, Donald R. Blake, Armin Wisthaler, Alan Fried, Joshua P. DiGangi, Glenn S. Diskin, Sally E. Pusede, Samuel R. Hall, Kirk Ullmann, L. Gregory Huey, David J. Tanner, Jack Dibb, Christoph J. Knote, and Kyung-Eun Min
Atmos. Chem. Phys., 22, 805–821, https://doi.org/10.5194/acp-22-805-2022, https://doi.org/10.5194/acp-22-805-2022, 2022
Short summary
Short summary
CHOCHO was simulated using a 0-D box model constrained by measurements during the KORUS-AQ mission. CHOCHO concentration was high in large cities, aromatics being the most important precursors. Loss path to aerosol was the highest sink, contributing to ~ 20 % of secondary organic aerosol formation. Our work highlights that simple CHOCHO surface uptake approach is valid only for low aerosol conditions and more work is required to understand CHOCHO solubility in high-aerosol conditions.
Marco Wietzoreck, Marios Kyprianou, Benjamin A. Musa Bandowe, Siddika Celik, John N. Crowley, Frank Drewnick, Philipp Eger, Nils Friedrich, Minas Iakovides, Petr Kukučka, Jan Kuta, Barbora Nežiková, Petra Pokorná, Petra Přibylová, Roman Prokeš, Roland Rohloff, Ivan Tadic, Sebastian Tauer, Jake Wilson, Hartwig Harder, Jos Lelieveld, Ulrich Pöschl, Euripides G. Stephanou, and Gerhard Lammel
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-32, https://doi.org/10.5194/acp-2022-32, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
A unique dataset of concentrations and sources of PAHs and their alkylated, oxygenated and nitrated derivatives, in total 74 individual species, in the marine atmosphere is presented. Exposure to these substances poses a major health risk. We found very low concentrations over the Arabian Sea, while both local and long-range transported pollution caused elevated levels over the Mediterranean Sea and the Arabian Gulf.
Juanjuan Qin, Jihua Tan, Xueming Zhou, Yanrong Yang, Yuanyuan Qin, Xiaobo Wang, Shaoxuan Shi, Kang Xiao, and Xinming Wang
Atmos. Chem. Phys., 22, 465–479, https://doi.org/10.5194/acp-22-465-2022, https://doi.org/10.5194/acp-22-465-2022, 2022
Short summary
Short summary
Water-soluble organic compounds (WSOCs) play important roles in atmospheric particle formation, migration, and transformation processes. In this work, size-segregated atmospheric particles were collected in a rural area of Beijing, and 3D fluorescence spectroscopy was used to investigate the optical properties of WSOCs as a means of inferring information about their atmospheric sources. It was found that these data could efficiently reveal the secondary transformation processes of WSOCs.
Guangjie Zheng, Hang Su, Siwen Wang, Andrea Pozzer, and Yafang Cheng
Atmos. Chem. Phys., 22, 47–63, https://doi.org/10.5194/acp-22-47-2022, https://doi.org/10.5194/acp-22-47-2022, 2022
Short summary
Short summary
The recently proposed multiphase buffer theory provides a framework to reconstruct long-term trends and spatial variations in aerosol pH, while non-ideality is a major limitation for its broad applications. Here we proposed a parameterization method to estimate the impact of non-ideality and validated it against long-term observations and global simulations. With this method, the multiphase buffer theory can reproduce well aerosol pH variations estimated by comprehensive thermodynamic models.
Lingling Xu, Jiayan Shi, Yuping Chen, Yanru Zhang, Mengrong Yang, Yanting Chen, Liqian Yin, Lei Tong, Hang Xiao, and Jinsheng Chen
Atmos. Chem. Phys., 21, 18543–18555, https://doi.org/10.5194/acp-21-18543-2021, https://doi.org/10.5194/acp-21-18543-2021, 2021
Short summary
Short summary
Mercury (Hg) isotopic compositions in aerosols are the mixed results of emission sources and atmospheric processes. This study presents Hg isotopic compositions in PM2.5 from different types of locations and total Hg from offshore surface seawater. The results indicate that atmospheric transformations induce significant mass independent fractionation of Hg isotopes, which obscures Hg isotopic signatures of initial emissions.
Varun Kumar, Stamatios Giannoukos, Sophie L. Haslett, Yandong Tong, Atinderpal Singh, Amelie Bertrand, Chuan Ping Lee, Dongyu S. Wang, Deepika Bhattu, Giulia Stefenelli, Jay S. Dave, Joseph V. Puthussery, Lu Qi, Pawan Vats, Pragati Rai, Roberto Casotto, Rangu Satish, Suneeti Mishra, Veronika Pospisilova, Claudia Mohr, David M. Bell, Dilip Ganguly, Vishal Verma, Neeraj Rastogi, Urs Baltensperger, Sachchida N. Tripathi, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1033, https://doi.org/10.5194/acp-2021-1033, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
Here we present source apportionment results from the first field deployment in Delhi of an extractive electrospray ionisation time-of-flight mass spectrometer (EESI-TOF). The EESI-TOF is a recently developed instrument capable of providing uniquely detailed online chemical characterization of OA, in particular the SOA fraction. Here, we are able to apportion not only POA but also SOA to specific sources, which is done for the first time in Delhi.
Michael A. Battaglia Jr., Nicholas Balasus, Katherine Ball, Vanessa Caicedo, Ruben Delgado, Annmarie G. Carlton, and Christopher J. Hennigan
Atmos. Chem. Phys., 21, 18271–18281, https://doi.org/10.5194/acp-21-18271-2021, https://doi.org/10.5194/acp-21-18271-2021, 2021
Short summary
Short summary
This study characterizes aerosol liquid water content and aerosol pH at a land–water transition site near Baltimore, Maryland. We characterize the effects of unique meteorology associated with the close proximity to the Chesapeake Bay and episodic NH3 events derived from industrial and agricultural sources on aerosol chemistry during the summer. We also examine two events where primary Bay emissions underwent aging in the polluted urban atmosphere.
Nabil Deabji, Khanneh Wadinga Fomba, Souad El Hajjaji, Abdelwahid Mellouki, Laurent Poulain, Sebastian Zeppenfeld, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 18147–18174, https://doi.org/10.5194/acp-21-18147-2021, https://doi.org/10.5194/acp-21-18147-2021, 2021
Short summary
Short summary
Mountain and high-altitude sites provide representative data for the lower free troposphere, various pathways for aerosol interactions, and changing boundary layer heights useful in understanding atmospheric composition. However, only few studies exist in African regions despite diversity in both natural and anthropogenic emissions. This study provides detailed atmospheric studies in the northern African high-altitude region.
Jay M. Tomlin, Kevin A. Jankowski, Daniel P. Veghte, Swarup China, Peiwen Wang, Matthew Fraund, Johannes Weis, Guangjie Zheng, Yang Wang, Felipe Rivera-Adorno, Shira Raveh-Rubin, Daniel A. Knopf, Jian Wang, Mary K. Gilles, Ryan C. Moffet, and Alexander Laskin
Atmos. Chem. Phys., 21, 18123–18146, https://doi.org/10.5194/acp-21-18123-2021, https://doi.org/10.5194/acp-21-18123-2021, 2021
Short summary
Short summary
Analysis of individual atmospheric particles shows that aerosol transported from North America during meteorological dry intrusion episodes may have a substantial impact on the mixing state and particle-type population over the mid-Atlantic, as organic contribution and particle-type diversity are significantly enhanced during these periods. These observations need to be considered in current atmospheric models.
Qi En Zhong, Chunlei Cheng, Zaihua Wang, Lei Li, Mei Li, Dafeng Ge, Lei Wang, Yuanyuan Li, Wei Nie, Xuguang Chi, Aijun Ding, Suxia Yang, Duohong Chen, and Zhen Zhou
Atmos. Chem. Phys., 21, 17953–17967, https://doi.org/10.5194/acp-21-17953-2021, https://doi.org/10.5194/acp-21-17953-2021, 2021
Short summary
Short summary
Particulate amines play important roles in new particle formation, aerosol acidity, and hygroscopicity. Most of the field observations did not distinguish the different behavior of each type amine under the same ambient influencing factors. In this study, two amine-containing single particles exhibited different mixing states and disparate enrichment of secondary organics, which provide insight into the discriminated fates of organics during the formation and evolution processes.
Liang Xu, Xiaohuan Liu, Huiwang Gao, Xiaohong Yao, Daizhou Zhang, Lei Bi, Lei Liu, Jian Zhang, Yinxiao Zhang, Yuanyuan Wang, Qi Yuan, and Weijun Li
Atmos. Chem. Phys., 21, 17715–17726, https://doi.org/10.5194/acp-21-17715-2021, https://doi.org/10.5194/acp-21-17715-2021, 2021
Short summary
Short summary
We quantified different types of marine aerosols and explored the Cl depletion of sea salt aerosol (SSA) in the eastern China seas and the northwestern Pacific Ocean. We found that anthropogenic acidic gases in the troposphere were transported longer distances compared to the anthropogenic aerosols and could significantly impact remote marine aerosols. Meanwhile, variations of chloride depletion in SSA can serve as a potential indicator for anthropogenic gaseous pollutants in remote marine air.
Jiaxing Sun, Yele Sun, Conghui Xie, Weiqi Xu, Chun Chen, Zhe Wang, Lei Li, Xubing Du, Fugui Huang, Yan Li, Zhijie Li, Xiaole Pan, Nan Ma, Wanyun Xu, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-904, https://doi.org/10.5194/acp-2021-904, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
We analyzed chemical composition and mixing state of BC-containing particles at urban and rural sites in winter in North China Plain and evaluated their impacts on light absorption enhancement. BC was dominantly mixed with organic carbon, nitrate and sulfate and the mixing state evolved significantly as a function of RH at both sites. The absorption enhancement depended strongly on coated secondary inorganic aerosol and was up to ~1.3–1.4 during ageing processes.
Jean-Eudes Petit, Jean-Charles Dupont, Olivier Favez, Valérie Gros, Yunjiang Zhang, Jean Sciare, Leila Simon, François Truong, Nicolas Bonnaire, Tanguy Amodeo, Robert Vautard, and Martial Haeffelin
Atmos. Chem. Phys., 21, 17167–17183, https://doi.org/10.5194/acp-21-17167-2021, https://doi.org/10.5194/acp-21-17167-2021, 2021
Short summary
Short summary
The COVID-19 outbreak led to lockdowns at national scales in spring 2020. Large cuts in emissions occurred, but the quantitative assessment of their role from observations is hindered by weather and interannual variability. That is why we developed an innovative methodology in order to best characterize the impact of lockdown on atmospheric chemistry. We find that a local decrease in traffic-related pollutants triggered a decrease of secondary aerosols and an increase in ozone.
Alexander A. T. Bui, Henry W. Wallace, Sarah Kavassalis, Hariprasad D. Alwe, James H. Flynn, Matt H. Erickson, Sergio Alvarez, Dylan B. Millet, Allison L. Steiner, and Robert J. Griffin
Atmos. Chem. Phys., 21, 17031–17050, https://doi.org/10.5194/acp-21-17031-2021, https://doi.org/10.5194/acp-21-17031-2021, 2021
Short summary
Short summary
Differences in atmospheric species above and below a forest canopy provide insight into the relative importance of local mixing, long-range transport, and chemical processes in determining vertical gradients in atmospheric particles in a forested environment. This helps in understanding the flux of climate-relevant material out of the forest to the atmosphere. We studied this in a remote forest using vertically resolved measurements of gases and particles.
Sharmine Akter Simu, Yuzo Miyazaki, Eri Tachibana, Henning Finkenzeller, Jérôme Brioude, Aurélie Colomb, Olivier Magand, Bert Verreyken, Stephanie Evan, Rainer Volkamer, and Trissevgeni Stavrakou
Atmos. Chem. Phys., 21, 17017–17029, https://doi.org/10.5194/acp-21-17017-2021, https://doi.org/10.5194/acp-21-17017-2021, 2021
Short summary
Short summary
The tropical Indian Ocean (IO) is expected to be a significant source of water-soluble organic carbon (WSOC), which is relevant to cloud formation. Our study showed that marine secondary organic formation dominantly contributed to the aerosol WSOC mass at the high-altitude observatory in the southwest IO in the wet season in both marine boundary layer and free troposphere (FT). This suggests that the effect of marine secondary sources is important up to FT, a process missing in climate models.
Larissa Lacher, Hans-Christian Clemen, Xiaoli Shen, Stephan Mertes, Martin Gysel-Beer, Alireza Moallemi, Martin Steinbacher, Stephan Henne, Harald Saathoff, Ottmar Möhler, Kristina Höhler, Thea Schiebel, Daniel Weber, Jann Schrod, Johannes Schneider, and Zamin A. Kanji
Atmos. Chem. Phys., 21, 16925–16953, https://doi.org/10.5194/acp-21-16925-2021, https://doi.org/10.5194/acp-21-16925-2021, 2021
Short summary
Short summary
We investigate ice-nucleating particle properties at Jungfraujoch during the 2017 joint INUIT/CLACE field campaign, to improve the knowledge about those rare particles in a cloud-relevant environment. By quantifying ice-nucleating particles in parallel to single-particle mass spectrometry measurements, we find that mineral dust and aged sea spray particles are potential candidates for ice-nucleating particles. Our findings are supported by ice residual analysis and source region modeling.
Haoran Yu, Joseph Varghese Puthussery, Yixiang Wang, and Vishal Verma
Atmos. Chem. Phys., 21, 16363–16386, https://doi.org/10.5194/acp-21-16363-2021, https://doi.org/10.5194/acp-21-16363-2021, 2021
Short summary
Short summary
We assessed the oxidative potential (OP) of ambient PM2.5 collected from many sites in the US Midwest through multiple acellular endpoints. Compared to homogeneously distributed PM2.5, OP showed higher spatiotemporal variation. Poor correlations for the regression between mass and OP indicated a limited role of mass in determining the OP. Moreover, weak correlations among different OP endpoints justify the need for using multiple assays to determine oxidative levels of particles.
Xinyao Feng, Yingze Tian, Qianqian Xue, Danlin Song, Fengxia Huang, and Yinchang Feng
Atmos. Chem. Phys., 21, 16219–16235, https://doi.org/10.5194/acp-21-16219-2021, https://doi.org/10.5194/acp-21-16219-2021, 2021
Short summary
Short summary
This study focused on PM2.5 compositions and sources and explored their spatiotemporal and policy-related variations based on observation at 19 sites during wintertime of 2015–2019 in a fast-developing megacity. We found that PM2.5 compositions for the outermost zone in 2019 were similar to those for the core zone 2 or 3 years ago. Percentage contributions of coal and biomass combustion dramatically declined in the core zone, while the traffic source showed an increasing trend.
Cited articles
Almeida, S. M., Lage, J., Fernández, B., Garcia, S., Reis, M. A., and Chaves, P. C.: Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry, Sci. Total Environ., 521–522, 411–420, https://doi.org/10.1016/j.scitotenv.2015.03.112, 2015.
Ancelet, T., Davy, P. K., Mitchell, T., Trompette, W. J., Markwitz, A., and Weatherburn, D. C.: Identification of particulate matter sources on an hourly time-scale in a wood burning community, Environ. Sci. Technol., 46, 4767–4774, https://doi.org/10.1021/es203937y, 2012.
Begum, B. A., Kim, E., Biswas, S. K., and Hopke, P. K.: Investigation of sources of atmospheric aerosol at urban and semi-urban areas in Bangladesh, Atmos. Environ., 38, 3025–3038, https://doi.org/10.1016/j.atmosenv.2004.02.042, 2004.
Bi, J. R., Huang, J. P., Hu, Z. Y., Holben, B. N., and Guo, Z. Q.: Investigating the aerosol optical and radiative characteristics of heavy haze episodes in Beijing during January of 2013, J. Geophys. Res.-Atmos., 119, 9884–9900, https://doi.org/10.1002/2014JD021757, 2014.
Brown, S. G., Eberly, S., Paatero, P., and Norris, G. A.: Methods for estimating uncertainty in PMF solutions: examples with ambient air and water quality data and guidance on reporting PMF results, Sci. Total Environ., 518–519, 626–635, https://doi.org/10.1016/j.scitotenv.2015.01.022, 2015.
Canha, N., Freitas, M. C., Almeida-Silva, M., Almeida, S. M., Dung, H. M., Dionísio, I., Cardoso, J., Pio, C. A., Caseiro, A., Verburg, T. G., and Wolterbeek, H. T.: Burn wood influence on outdoor air quality in a small village: Foros de Arrão, Portugal, J. Radioanal. Nucl. Ch., 291, 83–88, https://doi.org/10.1007/s10967-011-1261-1, 2012.
Cao, J. J., Chow, J. C., Tao, J., Lee, S. C., Watson, J. G., Ho, K. F., Wang, G. H., Zhu, C. S., and Han, Y. M.: Stable carbon isotopes in aerosols from Chinese cities: influence of fossil fuels, Atmos. Environ., 45, 1359–1363, https://doi.org/10.1016/j.atmosenv.2010.10.056, 2011.
Chen, H. and Wang, H.: Haze Days in North China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012, J. Geophys. Res.-Atmos., 120, 5895–5909, https://doi.org/10.1002/2015JD023225, 2015.
Chen, P. L., Wang, T.J., Lu, X.B., Yu, Y.Y., Kasoar, M., Xie, M., and Zhuang, B.L.: Source apportionment of size-fractionated particles during the 2013 Asian Youth Games and the 2014 Youth Olympic Games in Nanjing, China, Sci. Total Environ., 579, 860–870, https://doi.org/10.1016/j.scitotenv.2016.11.014, 2016.
Chen, R., Zhao, Z., and Kan, H.: Heavy smog and hospital visits in Beijing, China, Am. J. Respi. Crit. Care, 188, 1170–1171, https://doi.org/10.1164/rccm.201304-0678LE, 2013.
Chen, X., Balasubramanian, R., Zhu, Q. Y., Behera, S. N., Bo, D. D., Huang, X., Xie, H. Y., and Cheng, J. P.: Characteristics of atmospheric particulate mercury in size-fractionated particles during haze days in Shanghai, Atmos. Environ., 131, 400–408, https://doi.org/10.1016/j.atmosenv.2016.02.019, 2016.
Cheng, Y., He, K. B., Du, Z. Y., Zheng, M., Duan, F. K., and Ma, Y. L.: Humidity plays an important role in the PM2.5 pollution in Beijing, Environ. Pollut., 197, 68–75, https://doi.org/10.1016/j.envpol.2014.11.028, 2015.
Dimitriou, K., Remoundaki, E., Mantas, E., and Kassomenos, P.: Spatial distribution of source areas of PM2.5 by Concentration Weighted Trajectory (CWT) model applied in PM2.5 concentration and composition data, Atmos. Environ., 116, 138–145, https://doi.org/10.1016/j.atmosenv.2015.06.021, 2015.
Du, W. P., Wang, Y. S., Song, T., Xin, J. Y., Cheng, Y. S., and Ji, D. S.: Characteristics of atmospheric pollutants during the period of summer and autumn in Shijiazhuang, Environ. Sci., 31, 1409–1416, 2010 (in Chinese).
Feng, J. L., Yu, H., Su, X. F., Liu, S. H., Li, Y., Pan, Y. P., and Sun, J. H.: Chemical composition and source apportionment of PM2.5 during Chinese Spring Festival at Xinxiang, a heavily polluted city in North China: fireworks and health risks, Atmos. Res., 182, 176–188, https://doi.org/10.1016/j.atmosres.2016.07.028, 2016.
Fu, H. B. and Chen, J. M.: Formation, features and controlling strategies of severe haze-fog pollutions in China, Sci. Total Environ., 578, 121–138, https://doi.org/10.1016/j.scitotenv.2016.10.201, 2017.
Fu, G. Q., Xu, W. Y., Yang, R. F., Li, J. B., and Zhao, C. S.: The distribution and trends of fog and haze in the North China Plain over the past 30 years, Atmos. Chem. Phys., 14, 11949–11958, https://doi.org/10.5194/acp-14-11949-2014, 2014.
Gao, J., Peng, X., Chen, G., Xu, J., Shi, G. L., Zhang, Y. C., and Feng, Y. C.: Insights into the chemical characterization and sources of PM2.5 in Beijing at a 1-h time resolution, Sci. Total Environ., 542, 162–171, https://doi.org/10.1016/j.scitotenv.2015.10.082, 2016.
Gao, M., Guttikunda, S. K., Carmichael, G. R., Wang, Y., Liu, Z., Stanier, C. O., Saide, P. E., and Yu, M.: Health impacts and economic losses assessment of the 2013 severe haze event in Beijing area, Sci. Total Environ., 511, 553–561, https://doi.org/10.1016/j.scitotenv.2015.01.005, 2015.
Gao, X. M., Yang, L. X., Cheng, S. H., Gao, R., Zhou, Y., Xue, L. K., Shou, Y. P., Wang, J., Wang, X. F., Nie, W., Xu, P. J., and Wang, W. X.: Semi-continuous measurement of water-soluble ions in PM2.5 in Jinan, China: Temporal variations and source apportionments, Atmos. Environ., 45, 6048–6056, https://doi.org/10.1016/j.atmosenv.2011.07.041, 2011.
Gu, J. X., Bai, Z. P., Li, A. X., Wu, L. P., Xie, Y. Y., Lei, W. F., Dong, H. Y., and Zhang, X.: Chemical composition of PM2.5 during winter in Tianjin, China, Particuology, 9, 215–221, https://doi.org/10.1016/j.partic.2011.03.001, 2011.
Guo, S., Hu, M., Guo, Q., Zhang, X., Schauer, J. J., and Zhang, R.: Quantitative evaluation of emission controls on primary and secondary organic aerosol sources during Beijing 2008 Olympics, Atmos. Chem. Phys., 13, 8303–8314, https://doi.org/10.5194/acp-13-8303-2013, 2013.
Han, S. Q., Wu, J. H., Zhang, Y. F., Cai, Z. Y., Feng, Y. C., Yao, Q., Li, X. J., Liu, Y. W., and Zhang, M.: Characteristics and formation mechanism of a winter haze-fog episode in Tianjin, China, Atmos. Environ., 98, 323–330, https://doi.org/10.1016/j.atmosenv.2014.08.078, 2014.
Hao, T. Y., Han, S. Q., Chen, S. C., Shan, X. L., Zai, Z. Y., Qiu, X. B., Yao, Q., Liu, J. L., Chen, J., and Meng. L. H.: The role of fog in haze episode in Tianjin, China: A case study for November 2015, Atmos. Res., 194. 235–244, https://doi.org/10.1016/j.atmosres.2017.04.020, 2017.
Jiang, B. F. and Xia, D. H.: Role identification of NH3 in atmospheric secondary new particle formation in haze occurrence of China, Atmos. Environ., 163, 107–117, https://doi.org/10.1016/j.atmosenv.2017.05.035, 2017.
Kabala, C. and Singh, B. R.: Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter, J. Environ. Qual., 30, 485–492, https://doi.org/10.2134/jeq2001.302485x, 2001.
Kong, X. Z., He, W., Qin, N., He, Q. S., Yang, B., Ouyang, H. L., Wang, Q. M., and Xu, F. L.: Comparison of transport pathways and potential sources of PM10, in two cities around a large Chinese lake using the modified trajectory analysis, Atmos. Res., 122, 284–297, https://doi.org/10.1016/j.atmosres.2012.10.012, 2013.
Lee, H., Honda, Y., Hashizume, M., Guo, Y. L., Wu, C. F., Kan, H., Jung, K., Lim, Y. H., Yi, S., and Kim, H.: Short-term exposure to fine and coarse particles and mortality: a multicity time-series study in East Asia, Environ. Pollut., 207, 43–51, https://doi.org/10.1016/j.envpol.2015.08.036, 2015.
Li, H. M., Wang, Q. G., Shao, M., Wang, J. H., Wang, C., Sun, Y. X., Qian, X., Wu, H. F., Yang, M., and Li, F. Y.: Fractionation of airborne particulate bound elements in haze-fog episode and associated health risks in a megacity of southeast China, Environ. Pollut., 208, 655–662, https://doi.org/10.1016/j.envpol.2015.10.042, 2016.
Li, J. J., Wang, G. H., Ren, Y. Q., Wang, J. Y., Wu, C., Han, Y. N., Zhang, L., Cheng, C. L., and Meng, J. J.: Identification of chemical compositions and sources of atmospheric aerosols in Xi'an, inland China during two types of haze events, Sci. Total Environ., 566–567, 230–237, https://doi.org/10.1016/j.scitotenv.2016.05.057, 2016.
Li, M., Tang, G. Q., Huang, J., Liu, A. R., An, J. L., and Wang, Y. S.: Characteristics of winter atmospheric mixing layer height in Beijing–Tianjin–Hebei region and their relationship with the atmospheric pollution, Environ. Sci., 36, 1935–1943, 2015 (in Chinese).
Lin, Y.-C., Tsai, C.-J., Wu, Y.-C., Zhang, R., Chi, K.-H., Huang, Y.-T., Lin, S.-H., and Hsu, S.-C.: Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: size distribution, potential source, and fingerprinting metal ratio, Atmos. Chem. Phys., 15, 4117–4130, https://doi.org/10.5194/acp-15-4117-2015, 2015.
Liu, B. S., Song, N., Dai, Q. L., Mei, R. B., Sui, B. H., Bi, X. H., and Feng, Y. C.: Chemical composition and source apportionment of ambient PM2.5 during the non-heating period in Taian, China, Atmos. Res., 170, 23–33, https://doi.org/10.1016/j.atmosres.2015.11.002, 2016.
Liu, B. S., Wu, J. H., Zhang, J. Y., Wang, L., Yang, J. M., Liang, D. N., Dai, Q. L., Bi, X. H., Feng, Y. C., Zhang, Y. F., and Zhang, Q.X.: Characterization and source apportionment of PM2.5 based on error estimation from EPA PMF 5.0 model at a medium city in China, Environ. Pollut., 222, 10–22, https://doi.org/10.1016/j.envpol.2017.01.005, 2017a.
Liu, B. S., Yang, J. M., Yuan, J., Wang, J., Dai, Q. L., Li, T. K., Bi, X. H., Feng, Y. C., Xiao, Z. M., Zhang, Y. F., and Xu, H.: Source apportionment of atmospheric pollutants based on the online data by using PMF and ME2 models at a megacity, China, Atmos. Res., 185, 22–31, https://doi.org/10.1016/j.atmosres.2016.10.023, 2017b.
Liu, B. S., Li, T. K., Yang, J. M., Wu, J. H., Gao, J. X., Bi, X. H., Feng, Y. C., Zhang, Y. F., and Yang, H. H.: Source apportionment and a novel approach of estimating regional contributions to ambient PM2.5 in Haikou, China, Environ. Pollut., 223, 334–345, https://doi.org/10.1016/j.envpol.2017.01.030, 2017c.
Liu, G., Li, J. H., Wu, D., and Xu, H.: Chemical composition and source apportionment of the ambient PM2.5 in Hangzhou, China, Particuology, 18, 135–143, https://doi.org/10.1016/j.partic.2014.03.011, 2015.
Liu, H., Wang, X. M., Zhang, J. P., He, K. B., Wu, Y., and Xu, J. Y.: Emission controls and changes in air quality in Guangzhou during the Asian Games, Atmos. Environ., 76, 81–93, https://doi.org/10.1016/j.atmosenv.2012.08.004, 2013.
Ma, Z. Z., Li, Z., Jiang, J. K., Ye, Z. X., Deng, J. G., and Duan, L.: Characteristics of water-soluble inorganic ions in PM2.5 emitted from coal fired power plants, Environ. Sci., 36, 2361–2366, 2015 (in Chinese).
Mansha, M., Ghauri, B., Rahman, S., and Amman, A.: Characterization and source apportionment of ambient air particulate matter (PM2.5) in Karachi, Sci. Total Environ., 425, 176–183, https://doi.org/10.1016/j.scitotenv.2011.10.056, 2012.
Meng, C. C., Wang, L. T., Zhang, F. F., Wei, Z., Ma, S. M., Ma, X., and Yang, J.: Characteristics of concentrations and water-soluble inorganic ions in PM2.5 in Handan City, Hebei province, China, Atmos. Res., 171, 133–146, https://doi.org/10.1016/j.atmosres.2015.12.013, 2016.
Morishita, M., Gerald, J., Keeler, G. J., Kamal, A. S., Wagner, J. G., Harkema, J. R., and Rohr, A. C.: Source identification of ambient PM2.5 for inhalation exposure studies in Steubenville, Ohio using highly time-resolved measurements, Atmos. Environ., 45, 7688–7697, https://doi.org/10.1016/j.atmosenv.2010.12.032, 2011.
Paatero, P.: User's Guide for Positive Matrix Factorization Programs PMF2 and PMF3, Part 1: Tutorial, University of Helsinki, Helsinki, Finland (February), 2000.
Paatero, P. and Hopke, P. K.: Discarding or down-weighting high-noise variables in factor analytic models, Anal. Chim. Acta, 490, 277–289, https://doi.org/10.1016/S0003-2670(02)01643-4, 2003.
Paatero, P. and Tapper, U.: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, 5, 111–126, https://doi.org/10.1002/env.3170050203, 1994.
Pan, Q., Yu, Y., Tang, Z., Xi, M., and Zang, G.: Haze, a hotbed of respiratory-associated infectious diseases, and a new challenge for disease control and prevention in China, Am. J. Infect. Control, 42, p. 688, https://doi.org/10.1016/j.ajic.2014.03.001, 2014.
Peng, W., Yang, J. N., Wagner, F., and Mauzerall, D. L.: Substantial air quality and climate co-benefits achievable now with sectoral mitigation strategies in China, Sci. Total Environ., 598, 1076–1084, https://doi.org/10.1016/j.scitotenv.2017.03.287, 2017.
Qin, K., Wu, L. X., Wong, M. S., Letu, H., Hu, M. Y., Lang, H. M., Sheng, S. J., Teng, J. Y., Xiao, X., and Yuan, L. M.: Trans-boundary aerosol transport during a winter haze episode in China revealed by ground-based Lidar and CALIPSO satellite, Atmos. Environ., 141, 20–29, https://doi.org/10.1016/j.atmosenv.2016.06.042, 2016.
Quinn, P. K., and Bates, T. S.: North American, Asian, and Indian haze: similar regional impacts on climate? Geophys. Res. Lett., 30, 193–228, https://doi.org/10.1029/2003GL016934, 2003.
Santacatalina, M., Reche, C., Minguillón, M. C., Escrig, A., Sanfelix, V., Carratalá, A., Nicolás, J. F., Yubero, E., Crespo, J., Alastuey, A., Monfort, E., Miró, J. V., and Querol, X.: Impact of fugitive emissions in ambient PM levels and composition: A case study in Southeast Spain, Sci. Total Environ., 408, 4999–5009, https://doi.org/10.1016/j.scitotenv.2010.07.040, 2010.
Shafer, M. M., Toner, B. M., Overdier, J. T., Schauer, J. J., Fakra, S. C., Hu, S., Herner, J. D., and Ayala, A.: Chemical speciation of vanadium in particulate matter emitted from diesel vehicles and urban atmospheric aerosols, Environ. Sci. Technol., 46, 189–195, https://doi.org/10.1021/es200463c, 2012.
Shen, X. J., Sun, J. Y., Zhang, X. Y., Zhang, Y. M., Zhang, L., Che, H. C., Ma, Q. L., Yu, X. M., Yue, Y., and Zhang, Y. W.: Characterization of submicron aerosols and effect on visibility during a severe haze-fog episode in Yangtze River Delta, China, Atmos. Environ., 120, 307–316, https://doi.org/10.1016/j.atmosenv.2015.09.011, 2015.
Shen, Z. X., Cao, J., Arimoto, R., Han, Y. M., Zhu, C.S., Tian, J., and Liu, S. X.: Chemical characteristics of fine particles (PM1) from Xi'an, China, Aerosol Sci. Technol., 44, 461–472, https://doi.org/10.1080/02786821003738908, 2010.
Srimuruganandam, B., and Nagendra, S. M. S.: Application of positive matrix factorization in characterization of PM10 and PM2.5 emission sources at urban roadside, Chemosphere, 88, 120–130, https://doi.org/10.1016/j.chemosphere.2012.02.083, 2012.
Sun, X., Yin, Y., Sun, Y. W., Sun, Y., Liu, W., and Han, Y.: Seasonal and vertical variations in aerosol distribution over Shijiazhuang, China, Atmos. Environ., 81, 245–252, https://doi.org/10.1016/j.atmosenv.2013.08.009, 2013.
Sun, Y. L., Wang, Z. F., Wild, O., Xu, W. Q., Chen, C., Fu, P. Q., Du, W., Zhou, L. B., Zhang, Q., Han, T. T., Wang, Q. Q., Pan, X. L., Zheng, H. T., Li, J., Guo, X. F., Liu, J. G., and Worsnop, D. R.: “APEC Blue”: Secondary Aerosol Reductions from Emission Controls in Beijing, Sci. Rep., 6, 20668, https://doi.org/10.1038/srep20668, 2016.
Tai, A. P. K., Mickley, L. J., and Jacob, D. J.: Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: implications for the sensitivity of PM2.5 to climate change, Atmos. Environ., 44, 3976–3984, https://doi.org/10.1016/j.atmosenv.2010.06.060, 2010.
Tao, J., Zhang, L., Engling, G., Zhang, R., Yang, Y., Cao, J. J., Zhu, C. S., Wang, Q. Y., and Luo, L.: Chemical composition of PM2.5 in an urban environment in Chengdu, China: importance of springtime dust storms and biomass burning, Atmos. Res., 122, 270–283, https://doi.org/10.1016/j.atmosres.2012.11.004, 2013a.
Tao, J., Cheng, T. T., Zhang, R. J., Cao, J. J., Zhu, L. H., Wang, Q. Y., Luo, L., and Zhang, L. M.: Chemical Composition of PM2.5 at an Urban Site of Chengdu in Southwestern China, Adv. Atmos. Sci., 30, 1070–1084, 2013b.
Tao, M., Chen, L., Xiong, X., Zhang, M., Ma, P., Tao, J., and Wang, Z.: Formation process of the widespread extreme haze pollution over northern China in January 2013: Implications for regional air quality and climate, Atmos. Environ., 98, 417–425, https://doi.org/10.1016/j.atmosenv.2014.09.026, 2014.
UNEP (United Nations Environmental Programme): Independent Environmental Assessment Beijing 2008 Olympic Games, Nairobi, Kenya, 2009, available at: https://www.unenvironment.org/resources/report/ (last access: 23 September 2017), 2010.
Wang, G., Zhang, R., Gomez, M. E., Yang, L., Levy Zamora, M., Hu, M., Lin, Y., Peng, J., Guo, S., Meng, J., Li, J., Cheng, C., Hu, T., Ren, Y., Wang, Y., Gao, J., Cao, J., An, Z., Zhou, W., Li, G., Wang, J., Tian, P., Marrero-Ortiz, W., Secrest, J., Du, Z., Zheng, J., Shang, D., Zeng, L., Shao, M., Wang, W., Huang, Y., Wang, Y., Zhu, Y., Li, Y., Hu, J., Pan, B., Cai, L., Cheng, Y., Ji, Y., Zhang, F., Rosenfeld, D., Liss, P. S., Duce, R. A., Kolb, C. E., and Molina, M. J.: Persistent sulfate formation from London Fog to Chinese haze, P. Natl. Acad. Sci. USA., 113, 13630–13635, https://doi.org/10.1073/pnas.1616540113, 2016.
Wang, G., Cheng, S. Y., Wei, W., Yang, X. W., Wang, X. Q. Jia, J., Lang, J. L., and Lv, Z.: Characteristics and emission-reduction measures evaluation of PM2.5 during the two major events: APEC and Parade, Sci. Total Environ., 595, 81–92, https://doi.org/10.1016/j.scitotenv.2017.03.231, 2017.
Wang, H. B., Zhao, L. J., Xie, Y. J., and Hu, Q. M.: “APEC blue” – The effects and implications of joint pollution prevention and control program, Sci. Total Environ., 553, 429–438, https://doi.org/10.1016/j.scitotenv.2016.02.122, 2016.
Wang, H. L., Qiao, L. P., Lou, S. R., Zhou, M., Ding, A. J., Huang, H. Y., Chen, J. M., Wang, Q., Tao, S. K., Chen, C. H., Li, L., and Huang, C.: Chemical composition of PM2.5 and meteorological impact among three years in urban Shanghai, China, J. Clean. Prod., 112, 1302–1311, https://doi.org/10.1016/j.jclepro.2015.04.099, 2016.
Wang, L. T., Wei, Z., Yang, J., Zhang, Y., Zhang, F. F., Su, J., Meng, C. C., and Zhang, Q.: The 2013 severe haze over southern Hebei, China: model evaluation, source apportionment, and policy implications, Atmos. Chem. Phys., 14, 3151–3173, https://doi.org/10.5194/acp-14-3151-2014, 2014.
Wang, M., Zhu, T., Zheng, J., Zhang, R. Y., Zhang, S. Q., Xie, X. X., Han, Y. Q., and Li, Y.: Use of a mobile laboratory to evaluate changes in on-road air pollutants during the Beijing 2008 Summer Olympics, Atmos. Chem. Phys., 9, 8247–8263, https://doi.org/10.5194/acp-9-8247-2009, 2009.
Wang, P., Cao, J. J., Shen, Z. X., Han, Y. M., Lee, S. C., Huang, Y., Zhu, C. S., Wang, Q. Y., Xu, H. M., and Huang, R. J.: Spatial and seasonal variations of PM2.5 mass and species during 2010 in Xi'an, China, Sci. Total Environ., 508, 477–487, https://doi.org/10.1016/j.scitotenv.2014.11.007, 2015.
Wang, Q. Z., Zhuang, G. S., Huang, K., Liu, T. N., Deng, C. R., Xu, J., Lin, Y. F., Guo, Z. G., Chen, Y., Fu, Q. Y., and Fu, J. S.: Probing the severe haze pollution in three typical regions of China: Characteristics, sources and regional impacts, Atmos. Environ., 120, 76–88, https://doi.org/10.1016/j.atmosenv.2015.08.076, 2015.
Wang, T., Nie, W., Gao, J., Xue, L. K., Gao, X. M., Wang, X. F., Qiu, J., Poon, C. N., Meinardi, S., Blake, D., Wang, S. L., Ding, A. J., Chai, F. H., Zhang, Q. Z., and Wang, W. X.: Air quality during the 2008 Beijing Olympics: secondary pollutants and regional impact, Atmos. Chem. Phys., 10, 7603–7615, https://doi.org/10.5194/acp-10-7603-2010, 2010.
Wang, Y. Q., Zhang, X. Y., and Draxler, R.: TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data, Environ. Modell. Softw., 24, 938–939, https://doi.org/10.1016/j.envsoft.2009.01.004, 2009.
Wu, D., Liao, G. L., Deng, X. J., Bi, X. Y., Tan, H. B., Li, F., Jiang, C. L., Xia, D., and Fan, S. J.: Transport condition of surface layer under haze weather over the Pearl River Delta, Acta. Meteorol. Sin., 68, 680–688, 2008 (in Chinese).
Wu, H., Zhang, Y. F., Han, S. Q., Wu, J. H., Bi, X. H., Shi, G. L., Wang, J., Yao, Q., Cai, Z. Y., Liu, J. L., and Feng, Y. C.: Vertical characteristics of PM2.5 during the heating season in Tianjin, China, Sci. Total Environ., 523, 152–160, https://doi.org/10.1016/j.scitotenv.2015.03.119, 2015.
Yang, H. N., Chen, J., Wen, J. J., Tian, H. Z., and Liu, X. G.: Composition and sources of PM2.5 around the heating periods of 2013 and 2014 in Beijing: Implications for efficient mitigation measures, Atmos. Environ., 124, 378–386, https://doi.org/10.1016/j.atmosenv.2015.05.015, 2016.
Yang, L. L., Feng, Y., Jin, W., Li, Y. Q., Zhou, J. B., Jiang, J. B., and Li, Z. G.: Pollution characteristic of water soluble inorganic ion in atmospheric particles in Shijiazhuang, Adm. Tech. Environ. Monit., 26, 17–21, 2016 (in Chinese).
Yang, Y., Liu, X. G., Qu, Y., Wang, J. L., An, J. L., Zhang, Y. H. G., and Zhang, F.: Formation mechanism of continuous extreme haze episodes in the megacity Beijing, China, in January 2013, Atmos. Res., 155, 192–203, https://doi.org/10.1016/j.atmosres.2014.11.023, 2015.
Yao, L., Yang, L. X., Yuan, Q., Yan, C., Dong, C., Meng, C. P., Sui, X., Yang, F., Lu, Y. L., and Wang, W. X.: Sources apportionment of PM2.5 in a background site in the North China Plain, Sci. Total Environ., 541, 590–598, https://doi.org/10.1016/j.scitotenv.2015.09.123, 2016.
Zhang, J. K., Sun, Y., Liu, Z. R., Ji, D. S., Hu, B., Liu, Q., and Wang, Y. S.: Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013, Atmos. Chem. Phys., 14, 2887–2903, https://doi.org/10.5194/acp-14-2887-2014, 2014.
Zhang, L., Wang, T., Lv, M. Y., and Zhang, Q.: On the severe haze in Beijing during January 2013: unraveling the effects of meteorological anomalies with WRF-Chem, Atmos. Environ., 104, 11–21, https://doi.org/10.1016/j.atmosenv.2015.01.001, 2015.
Zhang, Q. H., Zhang, J. P., and Xue, H. W.: The challenge of improving visibility in Beijing, Atmos. Chem. Phys., 10, 7821–7827, https://doi.org/10.5194/acp-10-7821-2010, 2010.
Zhang, T., Cao, J. J., Tie, X. X., Shen, Z. X., Liu, S. X., Ding, H., Han, Y. M., Wang, G. H., Ho, K. F., Qiang, J., and Li, W. T.: Water-soluble ions in atmospheric aerosols measured in Xi'an, China: seasonal variations and sources, Atmos. Res., 102, 110–119, https://doi.org/10.1016/j.atmosres.2011.06.014, 2011.
Zhang, X. Y., Wang, L., Wang, W. H., Cao, D. J., and Ye, D .X.: Long-term trend and spatiotemporal variations of haze over China by satellite observations from 1979 to 2013, Atmos. Environ., 119, 362–373, https://doi.org/10.1016/j.atmosenv.2015.08.053, 2015.
Zhang, Z. L., Wang, J., Chen, L. H., Chen, X. Y., Sun, G. Y., Zhong, N. S., Kan, H. D., and Lu, W. J.: Impact of haze and air pollution-related hazards on hospital admissions in Guangzhou, China, Environ. Sci. Pollut. R., 21, 4236–4244, https://doi.org/10.1007/s11356-013-2374-6, 2014.
Zhao, B., Wang, P., Ma, J. Z., Zhu, S., Pozzer, A., and Li, W.: A high-resolution emission inventory of primary pollutants for the Huabei region, China, Atmos. Chem. Phys., 12, 481–501, https://doi.org/10.5194/acp-12-481-2012, 2012.
Zhao, P. S., Zhang, X. L., and Xu, X. F.: Long-term visibility trends and characteristics in the region of Beijing, Tianjin, and Hebei, China, Atmos. Res., 101, 711–718, https://doi.org/10.1016/j.atmosres.2011.04.019, 2011.
Zhou, M. G., He, G. J., Fan, M. Y., Wang, Z. X., Liu, Y., Ma, J., Ma, Z. W., Liu, J. M., Liu, Y. N., and Wang, L. D.: Smog episodes, fine particulate pollution and mortality in China, Environ. Res., 136, 396–404, https://doi.org/10.1016/j.envres.2014.09.038, 2015.
Zhu, L., Huang, X., Shi, H., Cai, X. H., and Song, Y.: Transport pathways and potential sources of PM10 in Beijing, Atmos. Environ., 45, 594–604, https://doi.org/10.1016/j.atmosenv.2010.10.040, 2011.
Altmetrics
Final-revised paper
Preprint