Articles | Volume 18, issue 7
https://doi.org/10.5194/acp-18-4425-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-4425-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of convective ice evaporation on interannual variability of tropical tropopause layer water vapor
Hao Ye
Department of Atmospheric Sciences, Texas A&M University, College
Station, TX, USA
Department of Atmospheric Sciences, Texas A&M University, College
Station, TX, USA
Department of Atmospheric Sciences, Texas A&M University, College
Station, TX, USA
Related authors
Luis F. Millán, Peter Hoor, Michaela I. Hegglin, Gloria L. Manney, Harald Boenisch, Paul Jeffery, Daniel Kunkel, Irina Petropavlovskikh, Hao Ye, Thierry Leblanc, and Kaley Walker
Atmos. Chem. Phys., 24, 7927–7959, https://doi.org/10.5194/acp-24-7927-2024, https://doi.org/10.5194/acp-24-7927-2024, 2024
Short summary
Short summary
In the Observed Composition Trends And Variability in the UTLS (OCTAV-UTLS) Stratosphere-troposphere Processes And their Role in Climate (SPARC) activity, we have mapped multiplatform ozone datasets into coordinate systems to systematically evaluate the influence of these coordinates on binned climatological variability. This effort unifies the work of studies that focused on individual coordinate system variability. Our goal was to create the most comprehensive assessment of this topic.
Luis F. Millán, Peter Hoor, Michaela I. Hegglin, Gloria L. Manney, Harald Boenisch, Paul Jeffery, Daniel Kunkel, Irina Petropavlovskikh, Hao Ye, Thierry Leblanc, and Kaley Walker
Atmos. Chem. Phys., 24, 7927–7959, https://doi.org/10.5194/acp-24-7927-2024, https://doi.org/10.5194/acp-24-7927-2024, 2024
Short summary
Short summary
In the Observed Composition Trends And Variability in the UTLS (OCTAV-UTLS) Stratosphere-troposphere Processes And their Role in Climate (SPARC) activity, we have mapped multiplatform ozone datasets into coordinate systems to systematically evaluate the influence of these coordinates on binned climatological variability. This effort unifies the work of studies that focused on individual coordinate system variability. Our goal was to create the most comprehensive assessment of this topic.
Jangho Lee, Jeffrey C. Mast, and Andrew E. Dessler
Atmos. Chem. Phys., 21, 11889–11904, https://doi.org/10.5194/acp-21-11889-2021, https://doi.org/10.5194/acp-21-11889-2021, 2021
Short summary
Short summary
This paper investigates the impact of global warming on heat and humidity extremes. There are three major findings in this study. We quantify how unforced variability in the climate impacts can lead to large variations where heat waves occur, we find that all heat extremes increase as the climate warms, especially between 1.5 and 2.0 °C of the average global warming, and we show that the economic inequity of facing extreme heat will worsen in a warmer world.
Xun Wang and Andrew E. Dessler
Atmos. Chem. Phys., 20, 13267–13282, https://doi.org/10.5194/acp-20-13267-2020, https://doi.org/10.5194/acp-20-13267-2020, 2020
Short summary
Short summary
We investigate the response of stratospheric water vapor (SWV) to different forcing agents, including greenhouse gases and aerosols. For most forcing agents, the SWV response is dominated by a slow response, which is coupled to surface temperature changes and exhibits a similar sensitivity to the surface temperature across all forcing agents. The fast SWV adjustment due to forcing is important when the forcing agent directly heats the cold-point region, e.g., black carbon.
Wandi Yu, Andrew E. Dessler, Mijeong Park, and Eric J. Jensen
Atmos. Chem. Phys., 20, 12153–12161, https://doi.org/10.5194/acp-20-12153-2020, https://doi.org/10.5194/acp-20-12153-2020, 2020
Short summary
Short summary
The stratospheric water vapor mixing ratio over North America (NA) region is up to ~ 1 ppmv higher when deep convection occurs. We find substantial consistency in the interannual variations of NA water vapor anomaly and deep convection and explain both the summer seasonal cycle and interannual variability of the convective moistening efficiency. We show that the NA anticyclone and tropical upper tropospheric temperature determine how much deep convection moistens the lower stratosphere.
Xun Wang, Andrew E. Dessler, Mark R. Schoeberl, Wandi Yu, and Tao Wang
Atmos. Chem. Phys., 19, 14621–14636, https://doi.org/10.5194/acp-19-14621-2019, https://doi.org/10.5194/acp-19-14621-2019, 2019
Short summary
Short summary
We use a trajectory model to diagnose mechanisms that produce the observed and modeled tropical lower stratospheric water vapor seasonal cycle. We confirm that the seasonal cycle of water vapor is primarily determined by the seasonal cycle of tropical tropopause layer (TTL) temperatures. However, between 10° N and 40° N, we find that evaporation of convective ice in the TTL plays a key role contributing to the water vapor seasonal cycle there. The Asian monsoon region is the most important region.
Andrew E. Dessler, Thorsten Mauritsen, and Bjorn Stevens
Atmos. Chem. Phys., 18, 5147–5155, https://doi.org/10.5194/acp-18-5147-2018, https://doi.org/10.5194/acp-18-5147-2018, 2018
Short summary
Short summary
One of the most important parameters in climate science is the equilibrium climate sensitivity (ECS). Estimates of this quantity based on 20th-century observations suggest low values of ECS (below 2 °C). We show that these calculations may be significantly in error. Together with other recent work on this problem, it seems probable that the ECS is larger than suggested by the 20th-century observations.
Kevin M. Smalley, Andrew E. Dessler, Slimane Bekki, Makoto Deushi, Marion Marchand, Olaf Morgenstern, David A. Plummer, Kiyotaka Shibata, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 17, 8031–8044, https://doi.org/10.5194/acp-17-8031-2017, https://doi.org/10.5194/acp-17-8031-2017, 2017
Short summary
Short summary
This paper explains a new way to evaluate simulated lower-stratospheric water vapor. We use a multivariate linear regression to predict 21st century lower stratospheric water vapor within 12 chemistry climate models using tropospheric warming, the Brewer–Dobson circulation, and the quasi-biennial oscillation as predictors. This methodology produce strong fits to simulated water vapor, and potentially represents a superior method to evaluate model trends in lower-stratospheric water vapor.
T. Wang, A. E. Dessler, M. R. Schoeberl, W. J. Randel, and J.-E. Kim
Atmos. Chem. Phys., 15, 3517–3526, https://doi.org/10.5194/acp-15-3517-2015, https://doi.org/10.5194/acp-15-3517-2015, 2015
Short summary
Short summary
We investigated the impacts of vertical temperature structures on trajectory simulations of stratospheric dehydration and water vapor by using 1) MERRA temperatures on model levels; 2) GPS temperatures at finer vertical resolutions; and 3) adjusted MERRA temperatures with finer vertical structures induced by waves. We show that despite the fact that temperatures at finer vertical structures tend to dry air by 0.1-0.3ppmv, the interannual variability in different runs is essentially the same.
T. Wang, W. J. Randel, A. E. Dessler, M. R. Schoeberl, and D. E. Kinnison
Atmos. Chem. Phys., 14, 7135–7147, https://doi.org/10.5194/acp-14-7135-2014, https://doi.org/10.5194/acp-14-7135-2014, 2014
M. R. Schoeberl, A. E. Dessler, and T. Wang
Atmos. Chem. Phys., 13, 7783–7793, https://doi.org/10.5194/acp-13-7783-2013, https://doi.org/10.5194/acp-13-7783-2013, 2013
Related subject area
Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Investigating long-term changes in polar stratospheric clouds above Antarctica during past decades: a temperature-based approach using spaceborne lidar detections
A simple model to assess the impact of gravity waves on ice-crystal populations in the tropical tropopause layer
Simulation of convective moistening of the extratropical lower stratosphere using a numerical weather prediction model
Convective hydration in the tropical tropopause layer during the StratoClim aircraft campaign: pathway of an observed hydration patch
Lagrangian simulation of ice particles and resulting dehydration in the polar winter stratosphere
Technical note: A noniterative approach to modelling moist thermodynamics
Denitrification by large NAT particles: the impact of reduced settling velocities and hints on particle characteristics
Arctic stratospheric dehydration – Part 2: Microphysical modeling
Heterogeneous formation of polar stratospheric clouds – Part 2: Nucleation of ice on synoptic scales
Heterogeneous formation of polar stratospheric clouds – Part 1: Nucleation of nitric acid trihydrate (NAT)
Cirrus and water vapor transport in the tropical tropopause layer – Part 1: A specific case modeling study
Mathilde Leroux and Vincent Noel
Atmos. Chem. Phys., 24, 6433–6454, https://doi.org/10.5194/acp-24-6433-2024, https://doi.org/10.5194/acp-24-6433-2024, 2024
Short summary
Short summary
This study investigates the long-term changes in the polar stratospheric cloud (PSC) season from 1980 to 2021 above Antarctica. We analyzed CALIOP observations from 2006 to 2020 to build a statistical temperature-based model. We applied our model to gridded reanalysis temperatures, leading to an integrated view of PSC occurrence that is free from sampling issues, allowing us to document the past evolution of the PSC season.
Milena Corcos, Albert Hertzog, Riwal Plougonven, and Aurélien Podglajen
Atmos. Chem. Phys., 23, 6923–6939, https://doi.org/10.5194/acp-23-6923-2023, https://doi.org/10.5194/acp-23-6923-2023, 2023
Short summary
Short summary
The role of gravity waves on tropical cirrus clouds and air-parcel dehydration was studied using the combination of Lagrangian observations of temperature fluctuations from superpressure balloons and a 1.5D model. The inclusion of the gravity waves to a reference simulation of a slow ascent around the cold-point tropopause drastically increases ice-crystal density, cloud fraction, and air-parcel dehydration, and it produces a crystal size distribution that agrees better with observations.
Zhipeng Qu, Yi Huang, Paul A. Vaillancourt, Jason N. S. Cole, Jason A. Milbrandt, Man-Kong Yau, Kaley Walker, and Jean de Grandpré
Atmos. Chem. Phys., 20, 2143–2159, https://doi.org/10.5194/acp-20-2143-2020, https://doi.org/10.5194/acp-20-2143-2020, 2020
Short summary
Short summary
This study aims to better understand the mechanism of transport of water vapour through the mid-latitude tropopause. The results affirm the strong influence of overshooting convection on lower-stratospheric water vapour and highlight the importance of both dynamics and cloud microphysics in simulating water vapour distribution in the region of the upper troposphere–lower stratosphere.
Keun-Ok Lee, Thibaut Dauhut, Jean-Pierre Chaboureau, Sergey Khaykin, Martina Krämer, and Christian Rolf
Atmos. Chem. Phys., 19, 11803–11820, https://doi.org/10.5194/acp-19-11803-2019, https://doi.org/10.5194/acp-19-11803-2019, 2019
Short summary
Short summary
This study focuses on the hydration patch that was measured during the StratoClim field campaign and the corresponding convective overshoots over the Sichuan Basin. Through analysis using airborne and spaceborne measurements and the numerical simulation using a non-hydrostatic model, we show the key hydration process and pathway of the hydration patch in tropical tropopause layer.
Ines Tritscher, Jens-Uwe Grooß, Reinhold Spang, Michael C. Pitts, Lamont R. Poole, Rolf Müller, and Martin Riese
Atmos. Chem. Phys., 19, 543–563, https://doi.org/10.5194/acp-19-543-2019, https://doi.org/10.5194/acp-19-543-2019, 2019
Short summary
Short summary
We present Lagrangian simulations of polar stratospheric clouds (PSCs) for the Arctic winter 2009/2010 and the Antarctic winter 2011 using the Chemical Lagrangian Model of the Stratosphere (CLaMS). The paper comprises a detailed model description with ice PSCs and related dehydration being the focus of this study. Comparisons between our simulations and observations from different satellites on season-long and vortex-wide scales as well as for single PSC events show an overall good agreement.
Nadya Moisseeva and Roland Stull
Atmos. Chem. Phys., 17, 15037–15043, https://doi.org/10.5194/acp-17-15037-2017, https://doi.org/10.5194/acp-17-15037-2017, 2017
Short summary
Short summary
This technical note presents simple noniterative approximations for two common thermodynamic relationships used for moist convection. The method offers roughly 2 orders of magnitude improvement in accuracy over the only existing noniterative solution. The proposed approach alleviates the need for costly numerical integration of saturated thermodynamic equations within numerical weather prediction models and in theoretical studies.
W. Woiwode, J.-U. Grooß, H. Oelhaf, S. Molleker, S. Borrmann, A. Ebersoldt, W. Frey, T. Gulde, S. Khaykin, G. Maucher, C. Piesch, and J. Orphal
Atmos. Chem. Phys., 14, 11525–11544, https://doi.org/10.5194/acp-14-11525-2014, https://doi.org/10.5194/acp-14-11525-2014, 2014
I. Engel, B. P. Luo, S. M. Khaykin, F. G. Wienhold, H. Vömel, R. Kivi, C. R. Hoyle, J.-U. Grooß, M. C. Pitts, and T. Peter
Atmos. Chem. Phys., 14, 3231–3246, https://doi.org/10.5194/acp-14-3231-2014, https://doi.org/10.5194/acp-14-3231-2014, 2014
I. Engel, B. P. Luo, M. C. Pitts, L. R. Poole, C. R. Hoyle, J.-U. Grooß, A. Dörnbrack, and T. Peter
Atmos. Chem. Phys., 13, 10769–10785, https://doi.org/10.5194/acp-13-10769-2013, https://doi.org/10.5194/acp-13-10769-2013, 2013
C. R. Hoyle, I. Engel, B. P. Luo, M. C. Pitts, L. R. Poole, J.-U. Grooß, and T. Peter
Atmos. Chem. Phys., 13, 9577–9595, https://doi.org/10.5194/acp-13-9577-2013, https://doi.org/10.5194/acp-13-9577-2013, 2013
T. Dinh, D. R. Durran, and T. Ackerman
Atmos. Chem. Phys., 12, 9799–9815, https://doi.org/10.5194/acp-12-9799-2012, https://doi.org/10.5194/acp-12-9799-2012, 2012
Cited articles
Anderson, J. G., Wilmouth, D. M., Smith, J. B., and Sayres, D. S.: UV
dosage levels in summer: Increased risk of ozone loss from convectively
injected water vapor, Science, 337, 835–839, 2012. a
Bacmeister, J. T., Suarez, M. J., and Robertson, F. R.: Rain reevaporation,
boundary layer–convection interactions, and Pacific rainfall patterns in an
AGCM, J. Atmos. Sci., 63, 3383–3403, 2006. a
Barahona, D., Molod, A., Bacmeister, J., Nenes, A., Gettelman, A., Morrison,
H., Phillips, V., and Eichmann, A.: Development of two-moment cloud
microphysics for liquid and ice within the NASA Goddard Earth Observing
System Model (GEOS-5), Geosci. Model Dev., 7, 1733–1766,
https://doi.org/10.5194/gmd-7-1733-2014, 2014. a
Bergman, J. W., Jensen, E. J., Pfister, L., and Yang, Q.: Seasonal
differences
of vertical-transport efficiency in the tropical tropopause layer: On the
interplay between tropical deep convection, large-scale vertical ascent, and
horizontal circulations, J. Geophys. Res.-Atmos., 117, D05302,
https://doi.org/10.1029/2011JD016992,
2012. a
Bosilovich, M., Lucchesi, R., and Suarez, M.: MERRA-2: File specification,
GMAO
Office Note No. 9 (Version 1.1), Tech. Rep. Version 1.1, Global Modeling and
Assimilation Office, 2016. a
Bowman, K. P.: Large-scale isentropic mixing properties of the Antarctic
polar
vortex from analyzed winds, J. Geophys. Res.-Atmos., 98,
23013–23027, 1993. a
Bowman, K. P. and Carrie, G. D.: The mean-meridional transport circulation of
the troposphere in an idealized GCM, J. Atmos. Sci., 59,
1502–1514, 2002. a
Carminati, F., Ricaud, P., Pommereau, J.-P., Rivière, E., Khaykin, S.,
Attié, J.-L., and Warner, J.: Impact of tropical land convection on the
water vapour budget in the tropical tropopause layer, Atmos. Chem. Phys., 14,
6195–6211, https://doi.org/10.5194/acp-14-6195-2014, 2014. a, b
Corti, T., Luo, B. P., De Reus, M., Brunner, D., Cairo, F., Mahoney, M. J., Martucci, G.,
Matthey, R., Mitev, V., Dos Santos, F. H., Schiller, C., Shur, G., Sitnikov, N. M., Spelten, N., Vössing, H. J., Borrmann, S., and Peter, T.: Unprecedented evidence
for deep convection hydrating the tropical stratosphere, Geophys. Res.
Lett., 35, L10810, https://doi.org/10.1029/2008GL033641, 2008. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda,
M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H.,
Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim
reanalysis: Configuration and performance of the data assimilation system,
Q. J. Roy. Meteor. Soc., 137, 553–597, 2011. a
Dessler, A. and Sherwood, S.: Effect of convection on the summertime
extratropical lower stratosphere, J. Geophys. Res.-Atmos., 109, D23301, https://doi.org/10.1029/2004JD005209, 2004. a, b
Dessler, A., Hanisco, T., and Fueglistaler, S.: Effects of convective ice
lofting on H2O and HDO in the tropical tropopause layer, J.
Geophys. Res.-Atmos., 112, D18309, https://doi.org/10.1029/2007JD008609, 2007. a, b
Dessler, A., Ye, H., Wang, T., Schoeberl, M., Oman, L., Douglass, A., Butler,
A., Rosenlof, K., Davis, S., and Portmann, R.: Transport of ice into the
stratosphere and the humidification of the stratosphere over the 21st
century, Geophys. Res. Lett., 43, 2323–2329, https://doi.org/10.1002/2016GL067991, 2016. a, b, c, d, e, f
Dhomse, S., Weber, M., and Burrows, J.: The relationship between tropospheric
wave forcing and tropical lower stratospheric water vapor, Atmos. Chem.
Phys., 8, 471–480, https://doi.org/10.5194/acp-8-471-2008, 2008. a, b, c
Dvortsov, V. L. and Solomon, S.: Response of the stratospheric temperatures
and
ozone to past and future increases in stratospheric humidity, J.
Geophys. Res.-Atmos., 106, 7505–7514, 2001. a
Forster, P. M. de F. and Shine, K. P.: Stratospheric water vapor
changes as a possible contributor to observed stratospheric cooling,
Geophys. Res. Lett., 26, 3309–3312, 1999. a
Frey, W., Schofield, R., Hoor, P., Kunkel, D., Ravegnani, F., Ulanovsky, A.,
Viciani, S., D'Amato, F., and Lane, T. P.: The impact of overshooting deep
convection on local transport and mixing in the tropical upper
troposphere/lower stratosphere (UTLS), Atmos. Chem. Phys., 15, 6467–6486,
https://doi.org/10.5194/acp-15-6467-2015, 2015. a, b
Fueglistaler, S. and Haynes, P.: Control of interannual and longer-term
variability of stratospheric water vapor, J. Geophys. Res.-Atmos., 110, D24108, https://doi.org/10.1029/2005JD006019, 2005. a, b
Fueglistaler, S., Dessler, A., Dunkerton, T., Folkins, I., Fu, Q., and Mote,
P. W.: Tropical tropopause layer, Rev. Geophys., 47, RG1004, https://doi.org/10.1029/2008RG000267, 2009. a, b
Fueglistaler, S., Abalos, M., Flannaghan, T. J., Lin, P., and Randel, W. J.:
Variability and trends in dynamical forcing of tropical lower stratospheric
temperatures, Atmos. Chem. Phys., 14, 13439–13453,
https://doi.org/10.5194/acp-14-13439-2014, 2014. a
Gettelman, A., Liu, X., Ghan, S. J., Morrison, H., Park, S., Conley, A.,
Klein,
S. A., Boyle, J., Mitchell, D., and Li, J.-L.: Global simulations of ice
nucleation and ice supersaturation with an improved cloud scheme in the
Community Atmosphere Model, J. Geophys. Res.-Atmos.,
115, D18216, https://doi.org/10.1029/2009JD013797, 2010. a
Gilford, D. M., Solomon, S., and Portmann, R. W.: Radiative impacts of the
2011
abrupt drops in water vapor and ozone in the tropical tropopause layer,
J. Clim., 29, 595–612, 2016. a
Giorgetta, M. A. and Bengtsson, L.: Potential role of the quasi-biennial
oscillation in the stratosphere-troposphere exchange as found in water vapor
in general circulation model experiments, J. Geophys. Res.-Atmos., 104, 6003–6019, 1999. a
Hassim, M. E. E. and Lane, T. P.: A model study on the influence of
overshooting convection on TTL water vapour, Atmos. Chem. Phys., 10,
9833–9849, https://doi.org/10.5194/acp-10-9833-2010, 2010. a, b
Herman, R. L., Ray, E. A., Rosenlof, K. H., Bedka, K. M., Schwartz, M. J.,
Read, W. G., Troy, R. F., Chin, K., Christensen, L. E., Fu, D., Stachnik, R.
A., Bui, T. P., and Dean-Day, J. M.: Enhanced stratospheric water vapor over
the summertime continental United States and the role of overshooting
convection, Atmos. Chem. Phys., 17, 6113–6124,
https://doi.org/10.5194/acp-17-6113-2017, 2017. a
Hu, D., Tian, W., Guan, Z., Guo, Y., and Dhomse, S.: Longitudinal asymmetric
trends of tropical cold-point tropopause temperature and their link to
strengthened Walker circulation, J. Clim., 29, 7755–7771, 2016. a
Khaykin, S., Pommereau, J.-P., Korshunov, L., Yushkov, V., Nielsen, J.,
Larsen, N., Christensen, T., Garnier, A., Lukyanov, A., and Williams, E.:
Hydration of the lower stratosphere by ice crystal geysers over land
convective systems, Atmos. Chem. Phys., 9, 2275–2287,
https://doi.org/10.5194/acp-9-2275-2009, 2009. a, b
Konopka, P., Ploeger, F., Tao, M., and Riese, M.: Zonally resolved impact of
ENSO on the stratospheric circulation and water vapor entry values, J. Geophys. Res.-Atmos., 121, 11486–11501, https://doi.org/10.1002/2015JD024698, 2016. a, b
Lambert, A., Read, W. G., Livesey, N. J., Santee, M. L., Manney, G. L., Froidevaux, L., Wu, D. L.,
Schwartz, M. J., Pumphrey, H. C., Jimenez, C., Nedoluha, G. E., Cofield, R. E., Cuddy, D. T.,
Daffer, W. H., Drouin, B. J., Fuller, R. A., Jarnot, R. F., Knosp, B. W., Pickett, H. M.,
Perun, V. S., Snyder, W. V., Stek, P. C., Thurstans, R. P., Wagner, P. A., Waters, J. W., Jucks, K. W.,
Toon, G. C., Stachnik, R. A., Bernath, P. F., Boone, C. D., Walker, K. A., Urban, J., Murtagh, D., Elkins, J. W., and Atlas, E.: Validation of the Aura
Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide
measurements, J. Geophys. Res.-Atmos., 112, D24S36, https://doi.org/10.1029/2007JD008724, 2007. a
Lee, J., Yang, P., Dessler, A. E., Gao, B.-C., and Platnick, S.: Distribution
and radiative forcing of tropical thin cirrus clouds, J.
Atmos. Sci., 66, 3721–3731, 2009. a
Liang, C., Eldering, A., Gettelman, A., Tian, B., Wong, S., Fetzer, E., and
Liou, K.: Record of tropical interannual variability of temperature and water
vapor from a combined AIRS-MLS data set, J. Geophys. Res.-Atmos., 116, D06103, https://doi.org/10.1029/2010JD014841, 2011. a, b, c, d
Liess, S. and Geller, M. A.: On the relationship between QBO and distribution
of tropical deep convection, J. Geophys. Res.-Atmos.,
117, D03108, https://doi.org/10.1029/2011JD016317, 2012. a, b
Livesey, N. J., Read, W. G., Wagner, P. A., Froidevaux, L., Lambert, A.,
Manney, G. L., Millán-Valle, L. F., Pumphrey, H. C., Santee, M. L.,
Schwartz, M. J., Wang, S., Fuller, R. A., Jarnot, R. F., Knosp, B. W., and
Martinez, E.: Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS),
Version 4.2x Level 2 data quality and description document, Tech. Rep. JPL
D-33509, Tech. Rep. version 4.2x-3.0, NASA Jet Propulsion Laboratory, 2017. a, b
Molod, A., Takacs, L., Suarez, M., Bacmeister, J., Song, I.-S., and Eichmann,
A.: The GEOS-5 atmospheric general circulation model: Mean climate and
development from MERRA to Fortuna, Technical Report Series on Global Modeling
and Data Assimilation Volume 28, NASA Goddard Space Flight Center, 2012. a
Mote, P. W., Rosenlof, K. H., McIntyre, M. E., Carr, E. S., Gille, J. C.,
Holton, J. R., Kinnersley, J. S., Pumphrey, H. C., Russell, J. M., and
Waters, J. W.: An atmospheric tape recorder: The imprint of tropical
tropopause temperatures on stratospheric water vapor, J. Geophys.
Res.-Atmos., 101, 3989–4006, 1996. a, b
Murphy, D. and Koop, T.: Review of the vapour pressures of ice and
supercooled
water for atmospheric applications, Q. J. Roy.
Meteor. Soc., 131, 1539–1565, 2005. a
Oman, L. D. and Douglass, A. R.: Improvements in total column ozone in
GEOSCCM
and comparisons with a new ozone-depleting substances scenario, J.
Geophys. Res.-Atmos., 119, 5613–5624, 2014. a
Pawson, S., Stolarski, R. S., Douglass, A. R., Newman, P. A., Nielsen, J. E.,
Frith, S. M., and Gupta, M. L.: Goddard Earth Observing System
chemistry-climate model simulations of stratospheric ozone-temperature
coupling between 1950 and 2005, J. Geophys. Res.-Atmos.,
113, D12103, https://doi.org/10.1029/2007JD009511, 2008. a
Pfister, L., Selkirk, H. B., Jensen, E. J., Schoeberl, M. R., Toon, O. B.,
Browell, E. V., Grant, W. B., Gary, B., Mahoney, M. J., Bui, T. V., and
Hintsa, E.: Aircraft observations of thin cirrus clouds near the tropical
tropopause, J. Geophys. Res.-Atmos., 106, 9765–9786,
2001. a
Pfister, L., Ueyama, R., Ryoo, J.-M., Hillyard, P. W., and Legg, M. J.:
Convective cloud top height, available at: https://bocachica.arc.nasa.gov/~lpfister/cloudtop/, last access: 26 February 2017.
Plumb, R. A. and Bell, R. C.: A model of the quasi-biennial oscillation on an
equatorial beta-plane, Q. J. Roy. Meteor. Soc.,
108, 335–352, 1982. a
Read, W. G., Lambert, A., Bacmeister, J., Cofield, R. E., Christensen, L. E., Cuddy, D. T., Daffer, W. H.,
Drouin, B. J., Fetzer, E., Froidevaux, L., Fuller, R., Herman, R., Jarnot, R. F.,
Jiang, J. H., Jiang, Y. B., Kelly, K., Knosp, B. W., Kovalenko, L. J., Livesey, N. J.,
Liu, H.-C., Manney, G. L., Pickett, H. M., Pumphrey, H. C., Rosenlof, K. H.,
Sabounchi, X., Santee, M. L., Schwartz, M. J., Snyder, W. V., Stek, P. C., Su, H., Takacs, L. L.,
Thurstans, R. P., Vömel, H., Wagner, P. A., Waters, J. W., Webster, C. R., Weinstock, E. M., and Wu, D. L.: Aura Microwave
Limb Sounder upper tropospheric and lower stratospheric H2O and relative
humidity with respect to ice validation, J. Geophys. Res.-Atmos., 112, D24S35, https://doi.org/10.1029/2007JD008752, 2007. a
Schiller, C., Grooß, J.-U., Konopka, P., Plöger, F., Silva dos
Santos, F. H., and Spelten, N.: Hydration and dehydration at the tropical
tropopause, Atmos. Chem. Phys., 9, 9647–9660,
https://doi.org/10.5194/acp-9-9647-2009, 2009. a
Schoeberl, M. R. and Dessler, A. E.: Dehydration of the stratosphere, Atmos.
Chem. Phys., 11, 8433–8446, https://doi.org/10.5194/acp-11-8433-2011, 2011. a, b, c, d
Schoeberl, M. R., Dessler, A. E., and Wang, T.: Simulation of stratospheric
water vapor and trends using three reanalyses, Atmos. Chem. Phys., 12,
6475–6487, https://doi.org/10.5194/acp-12-6475-2012, 2012. a
Schoeberl, M. R., Dessler, A. E., and Wang, T.: Modeling upper tropospheric
and lower stratospheric water vapor anomalies, Atmos. Chem. Phys., 13,
7783–7793, https://doi.org/10.5194/acp-13-7783-2013, 2013. a
Schwartz, M. J., Read, W. G., Santee, M. L., Livesey, N. J., Froidevaux, L.,
Lambert, A., and Manney, G. L.: Convectively injected water vapor in the
North American summer lowermost stratosphere, Geophys. Res. Lett.,
40, 2316–2321, 2013. a
Sherwood, S. C. and Dessler, A. E.: On the control of stratospheric humidity,
Geophys. Res. Lett., 27, 2513–2516, 2000. a
Smalley, K. M., Dessler, A. E., Bekki, S., Deushi, M., Marchand, M.,
Morgenstern, O., Plummer, D. A., Shibata, K., Yamashita, Y., and Zeng, G.:
Contribution of different processes to changes in tropical
lower-stratospheric water vapor in chemistry–climate models, Atmos. Chem.
Phys., 17, 8031–8044, https://doi.org/10.5194/acp-17-8031-2017, 2017. a
Solomon, S., Rosenlof, K. H., Portmann, R. W., Daniel, J. S., Davis, S. M.,
Sanford, T. J., and Plattner, G.-K.: Contributions of stratospheric water
vapor to decadal changes in the rate of global warming, Science, 327,
1219–1223, 2010. a
Stenke, A. and Grewe, V.: Simulation of stratospheric water vapor trends:
impact on stratospheric ozone chemistry, Atmos. Chem. Phys., 5, 1257–1272,
https://doi.org/10.5194/acp-5-1257-2005, 2005. a
Sun, Y. and Huang, Y.: An examination of convective moistening of the lower
stratosphere using satellite data, Earth Space Sci., 2, 320–330,
2015. a
Wang, T. and Dessler, A. E.: Analysis of cirrus in the tropical tropopause
layer from CALIPSO and MLS data: A water perspective, J. Geophys.
Res.-Atmos., 117, D04211, https://doi.org/10.1029/2011JD016442, 2012.
a
Wang, T., Randel, W. J., Dessler, A. E., Schoeberl, M. R., and Kinnison, D.
E.: Trajectory model simulations of ozone (O3) and carbon monoxide (CO) in
the lower stratosphere, Atmos. Chem. Phys., 14, 7135–7147,
https://doi.org/10.5194/acp-14-7135-2014, 2014. . a
Wang, W., Matthes, K., and Schmidt, T.: Quantifying contributions to the
recent temperature variability in the tropical tropopause layer, Atmos. Chem.
Phys., 15, 5815–5826, https://doi.org/10.5194/acp-15-5815-2015, 2015. a, b
Wright, J., Fu, R., Fueglistaler, S., Liu, Y., and Zhang, Y.: The influence
of
summertime convection over Southeast Asia on water vapor in the tropical
stratosphere, J. Geophys. Res.-Atmos., 116, D12302, https://doi.org/10.1029/2010JD015416, 2011. a
Wright, J. S., Sobel, A. H., and Schmidt, G. A.: Influence of condensate
evaporation on water vapor and its stable isotopes in a GCM, Geophys.
Res. Lett., 36, L12804, https://doi.org/{10.1029/2009GL038091}, 2009. a
Ye, H.: Programs for a recent paper Ye et al., 2018, available at: https://github.com/yehao2013/Ye-et-al-2018, last access: 26 March 2018.
Ye, H., Dessler, A., and Yu, W.: WV-TTL: water vapor mixing ratio from GEOSCCM and trajectory model simulations in tropical tropopause
layer, available at: https://doi.org/10.5281/zenodo.1205759, 2018.
Yulaeva, E., Holton, J. R., and Wallace, J. M.: On the cause of the annual
cycle in tropical lower-stratospheric temperatures, J. Atmos.
Sci., 51, 169–174, 1994. a
Zhou, C., Dessler, A., Zelinka, M., Yang, P., and Wang, T.: Cirrus feedback
on
interannual climate fluctuations, Geophys. Res. Lett., 41,
9166–9173, 2014. a
Short summary
The deep convection in tropics can inject cloud ice into tropical tropopause layer (TTL), which moistens and increases water vapor there. We primarily study the spatial distribution of impacts from several physical processes on TTL water vapor from observations and trajectory model simulations. The analysis shows the potential moistening impact from evaporation of cloud ice on TTL water vapor. A chemistry–climate model is used to confirm the impact from evaporation of convective ice.
The deep convection in tropics can inject cloud ice into tropical tropopause layer (TTL), which...
Altmetrics
Final-revised paper
Preprint