Articles | Volume 18, issue 4
https://doi.org/10.5194/acp-18-2573-2018
https://doi.org/10.5194/acp-18-2573-2018
Research article
 | 
21 Feb 2018
Research article |  | 21 Feb 2018

Characteristics and source apportionment of fine haze aerosol in Beijing during the winter of 2013

Xiaona Shang, Kai Zhang, Fan Meng, Shihao Wang, Meehye Lee, Inseon Suh, Daigon Kim, Kwonho Jeon, Hyunju Park, Xuezhong Wang, and Yuxi Zhao

Related authors

Measurement report: Saccharide composition in atmospheric fine particulate matter during spring at the remote sites of southwest China and estimates of source contributions
Zhenzhen Wang, Di Wu, Zhuoyu Li, Xiaona Shang, Qing Li, Xiang Li, Renjie Chen, Haidong Kan, Huiling Ouyang, Xu Tang, and Jianmin Chen
Atmos. Chem. Phys., 21, 12227–12241, https://doi.org/10.5194/acp-21-12227-2021,https://doi.org/10.5194/acp-21-12227-2021, 2021
Short summary
Physical and chemical constraints on transformation and mass-increase of fine aerosols in northeast Asia
Saehee Lim, Meehye Lee, Paolo Laj, Sang-Woo Kim, Kang-Ho Ahn, Junsoo Gil, Xiaona Shang, Marco Zanatta, and Kyeong-Sik Kang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1247,https://doi.org/10.5194/acp-2020-1247, 2021
Preprint withdrawn
Short summary
A semicontinuous study on the ecotoxicity of atmospheric particles using a versatile aerosol concentration enrichment system (VACES): development and field characterization
Xiaona Shang, Ling Li, Xinlian Zhang, Huihui Kang, Guodong Sui, Gehui Wang, Xingnan Ye, Hang Xiao, and Jianmin Chen
Atmos. Meas. Tech., 14, 1037–1045, https://doi.org/10.5194/amt-14-1037-2021,https://doi.org/10.5194/amt-14-1037-2021, 2021
Short summary
Diagnosis of dust- and haze pollution-impacted PM10, PM2.5, and PM1 aerosols observed at Gosan Climate Observatory
Xiaona Shang, Meehye Lee, Saehee Lim, Örjan Gustafsson, Gangwoong Lee, and Limseok Chang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-721,https://doi.org/10.5194/acp-2018-721, 2018
Preprint withdrawn
Short summary
Photochemical aging of aerosol particles in different air masses arriving at Baengnyeong Island, Korea
Eunha Kang, Meehye Lee, William H. Brune, Taehyoung Lee, Taehyun Park, Joonyoung Ahn, and Xiaona Shang
Atmos. Chem. Phys., 18, 6661–6677, https://doi.org/10.5194/acp-18-6661-2018,https://doi.org/10.5194/acp-18-6661-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Marine organic aerosol at Mace Head: effects from phytoplankton and source region variability
Emmanuel Chevassus, Kirsten N. Fossum, Darius Ceburnis, Lu Lei, Chunshui Lin, Wei Xu, Colin O'Dowd, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 25, 4107–4129, https://doi.org/10.5194/acp-25-4107-2025,https://doi.org/10.5194/acp-25-4107-2025, 2025
Short summary
Measurement report: Sources and meteorology influencing highly time-resolved PM2.5 trace elements at three urban sites in the extremely polluted Indo-Gangetic Plain in India
Ashutosh K. Shukla, Sachchida N. Tripathi, Shamitaksha Talukdar, Vishnu Murari, Sreenivas Gaddamidi, Manousos-Ioannis Manousakas, Vipul Lalchandani, Kuldeep Dixit, Vinayak M. Ruge, Peeyush Khare, Mayank Kumar, Vikram Singh, Neeraj Rastogi, Suresh Tiwari, Atul K. Srivastava, Dilip Ganguly, Kaspar Rudolf Daellenbach, and André S. H. Prévôt
Atmos. Chem. Phys., 25, 3765–3784, https://doi.org/10.5194/acp-25-3765-2025,https://doi.org/10.5194/acp-25-3765-2025, 2025
Short summary
Formation of highly absorptive secondary brown carbon through nighttime multiphase chemistry of biomass burning emissions
Ye Kuang, Biao Luo, Shan Huang, Junwen Liu, Weiwei Hu, Yuwen Peng, Duohong Chen, Dingli Yue, Wanyun Xu, Bin Yuan, and Min Shao
Atmos. Chem. Phys., 25, 3737–3752, https://doi.org/10.5194/acp-25-3737-2025,https://doi.org/10.5194/acp-25-3737-2025, 2025
Short summary
Measurement report: Vertically resolved atmospheric properties observed over the Southern Great Plains with the ArcticShark uncrewed aerial system
Fan Mei, Qi Zhang, Damao Zhang, Jerome D. Fast, Gourihar Kulkarni, Mikhail S. Pekour, Christopher R. Niedek, Susanne Glienke, Israel Silber, Beat Schmid, Jason M. Tomlinson, Hardeep S. Mehta, Xena Mansoura, Zezhen Cheng, Gregory W. Vandergrift, Nurun Nahar Lata, Swarup China, and Zihua Zhu
Atmos. Chem. Phys., 25, 3425–3444, https://doi.org/10.5194/acp-25-3425-2025,https://doi.org/10.5194/acp-25-3425-2025, 2025
Short summary
Non-biogenic sources are an important but overlooked contributor to aerosol isoprene-derived organosulfates during winter in northern China
Ting Yang, Yu Xu, Yu-Chen Wang, Yi-Jia Ma, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
Atmos. Chem. Phys., 25, 2967–2978, https://doi.org/10.5194/acp-25-2967-2025,https://doi.org/10.5194/acp-25-2967-2025, 2025
Short summary

Cited articles

Abuduwaili, J., Zhaoyong, Z., Jiang, F., and Liu, D.: The disastrous effects of salt dust deposition on cotton leaf photosynthesis and the cell physiological properties in the Ebinur basin in northwest China, PloS one, 10, e0124546, https://doi.org/10.1371/journal.pone.0124546, 2015.
Balasubramanian, R., Victor, T., and Begum, R.: Impact of biomass burning on rainwater acidity and com-position in Singapore, J. Geophys. Res., 104, 26881–26890, https://doi.org/10.1029/1999JD900247, 1999.
Baranyai, E., Simon, E., Braun, M., Tóthmérész, B., Posta, J., and Fábián, I.: The effect of a fireworks event on the amount and elemental concentration of deposited dust collected in the city of Debrecen, Hungary, Air Qual. Atmos. Health, 8, 359–365, https://doi.org/10.1007/s11869-014-0290-7, 2015.
CAAC 2013: Clean Air Alliance of China, State Council air pollution prevention and control action plan, issue II, October 2013, http://en.cleanairchina.org/product/6346.html (English translation), last access: 8 October 2015.
CAAC 2015: Clean Air Alliance of China, China Air Quality Management Assessment Report, Issue II, December 2015, http://en.cleanairchina.org/product/7386.html, last access: 30 May 2017.
Download
Short summary
The main sources of PM2.5 during the 2013–2014 winter period in Beijing were identified as soil dust, traffic emission, biomass combustion, industrial emission, and coal combustion. A red-alert haze was almost equally contributed by local traffic and transported coal combustion emissions from Beijing vicinities. This study emphasizes the role of weather condition in haze formation by building up stagnant condition that facilitates the transport of emissions from Beijing's neighboring cities.
Share
Altmetrics
Final-revised paper
Preprint