Articles | Volume 18, issue 19
https://doi.org/10.5194/acp-18-14327-2018
https://doi.org/10.5194/acp-18-14327-2018
Research article
 | Highlight paper
 | 
09 Oct 2018
Research article | Highlight paper |  | 09 Oct 2018

Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 1: Method and evaluation

Odran Sourdeval, Edward Gryspeerdt, Martina Krämer, Tom Goren, Julien Delanoë, Armin Afchine, Friederike Hemmer, and Johannes Quaas

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Odran Sourdeval on behalf of the Authors (17 Jul 2018)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (18 Jul 2018) by Matthias Tesche
RR by Anonymous Referee #1 (10 Aug 2018)
RR by Anonymous Referee #2 (17 Aug 2018)
ED: Publish subject to technical corrections (20 Aug 2018) by Matthias Tesche
AR by Odran Sourdeval on behalf of the Authors (28 Aug 2018)  Manuscript 
Short summary
The number concentration of ice crystals (Ni) is a key cloud property that remains very uncertain due to difficulties in determining it using satellites. This lack of global observational constraints limits our ability to constrain this property in models responsible for predicting future climate. This pair of papers fills this gap by showing and analyzing the first rigorously evaluated global climatology of Ni, leading to new information shedding light on the processes that control high clouds.
Altmetrics
Final-revised paper
Preprint