Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 18, issue 16
Atmos. Chem. Phys., 18, 12011–12044, 2018
https://doi.org/10.5194/acp-18-12011-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: The 10th International Carbon Dioxide Conference (ICDC10)...

Atmos. Chem. Phys., 18, 12011–12044, 2018
https://doi.org/10.5194/acp-18-12011-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 22 Aug 2018

Research article | 22 Aug 2018

A comparison of posterior atmospheric CO2 adjustments obtained from in situ and GOSAT constrained flux inversions

Saroja M. Polavarapu et al.

Viewed

Total article views: 1,289 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
829 418 42 1,289 107 33 43
  • HTML: 829
  • PDF: 418
  • XML: 42
  • Total: 1,289
  • Supplement: 107
  • BibTeX: 33
  • EndNote: 43
Views and downloads (calculated since 10 Jan 2018)
Cumulative views and downloads (calculated since 10 Jan 2018)

Viewed (geographical distribution)

Total article views: 1,292 (including HTML, PDF, and XML) Thereof 1,277 with geography defined and 15 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 20 Sep 2020
Publications Copernicus
Download
Short summary
A new diagnostic reveals how fluxes constrained by two different CO2 observing systems inform atmospheric CO2 simulations. The potential for GOSAT data to better resolve zonally asymmetric structures in the tropics year-round and in the northern extratropics in most seasons is shown. Using in situ data yields a better match to independent observations on the global, annual scale. Such complementarity of the observing systems can be exploited in greenhouse gas data assimilation systems.
A new diagnostic reveals how fluxes constrained by two different CO2 observing systems inform...
Citation
Altmetrics
Final-revised paper
Preprint