Articles | Volume 18, issue 15
https://doi.org/10.5194/acp-18-11409-2018
https://doi.org/10.5194/acp-18-11409-2018
Research article
 | 
15 Aug 2018
Research article |  | 15 Aug 2018

Evaluation of OH and HO2 concentrations and their budgets during photooxidation of 2-methyl-3-butene-2-ol (MBO) in the atmospheric simulation chamber SAPHIR

Anna Novelli, Martin Kaminski, Michael Rolletter, Ismail-Hakki Acir, Birger Bohn, Hans-Peter Dorn, Xin Li, Anna Lutz, Sascha Nehr, Franz Rohrer, Ralf Tillmann, Robert Wegener, Frank Holland, Andreas Hofzumahaus, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Novelli on behalf of the Authors (29 Jun 2018)  Author's response   Manuscript 
ED: Publish subject to minor revisions (review by editor) (12 Jul 2018) by Dwayne Heard
AR by Anna Novelli on behalf of the Authors (18 Jul 2018)  Author's response   Manuscript 
ED: Publish as is (31 Jul 2018) by Dwayne Heard
AR by Anna Novelli on behalf of the Authors (01 Aug 2018)
Download
Short summary
The impact of photooxidation of 2-methyl-3-butene-2-ol (MBO) on the concentration of radical species was studied in the atmospheric simulation chamber SAPHIR. MBO is a volatile organic compound mainly emitted by ponderosa and lodgepole pines which are very abundant in forests in the central-west USA. A very good agreement between measured and modelled radical concentrations and products from the oxidation of MBO was observed in an environment with NO of ~ 200 pptv.
Altmetrics
Final-revised paper
Preprint