Articles | Volume 18, issue 15
Research article
13 Aug 2018
Research article |  | 13 Aug 2018

The representation of solar cycle signals in stratospheric ozone – Part 2: Analysis of global models

Amanda C. Maycock, Katja Matthes, Susann Tegtmeier, Hauke Schmidt, Rémi Thiéblemont, Lon Hood, Hideharu Akiyoshi, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Oliver Kirner, Markus Kunze, Marion Marchand, Daniel R. Marsh, Martine Michou, David Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Yousuke Yamashita, and Kohei Yoshida


Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Amanda Maycock on behalf of the Authors (04 Dec 2017)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (19 Dec 2017) by Peter Hess
RR by Anonymous Referee #2 (22 Jan 2018)
ED: Reconsider after major revisions (03 Feb 2018) by Peter Hess
AR by Amanda Maycock on behalf of the Authors (22 Mar 2018)  Author's response    Manuscript
ED: Publish subject to technical corrections (05 Apr 2018) by Peter Hess
Short summary
The 11-year solar cycle is an important driver of climate variability. Changes in incoming solar ultraviolet radiation affect atmospheric ozone, which in turn influences atmospheric temperatures. Constraining the impact of the solar cycle on ozone is therefore important for understanding climate variability. This study examines the representation of the solar influence on ozone in numerical models used to simulate past and future climate. We highlight important differences among model datasets.
Final-revised paper