Articles | Volume 18, issue 15
https://doi.org/10.5194/acp-18-11097-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-18-11097-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A global synthesis inversion analysis of recent variability in CO2 fluxes using GOSAT and in situ observations
James S. Wang
CORRESPONDING AUTHOR
Universities Space Research Association, Columbia, MD, USA
NASA Goddard Space Flight Center, Greenbelt, MD, USA
S. Randolph Kawa
NASA Goddard Space Flight Center, Greenbelt, MD, USA
G. James Collatz
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Motoki Sasakawa
National Institute for Environmental Studies, Center for Global
Environmental Research, Ibaraki, Tsukuba Onogawa, Japan
Luciana V. Gatti
Instituto de Pesquisas Energéticas e Nucleares (IPEN) – Comissão
Nacional de Energia Nuclear (CNEN), São Paulo, Brazil
Toshinobu Machida
National Institute for Environmental Studies, Center for Global
Environmental Research, Ibaraki, Tsukuba Onogawa, Japan
Yuping Liu
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Science Systems and Applications, Inc., Lanham, MD, USA
Michael E. Manyin
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Science Systems and Applications, Inc., Lanham, MD, USA
Related authors
No articles found.
Sara Hyvärinen, Maria Katariina Tenkanen, Aki Tsuruta, Anttoni Erkkilä, Kimmo Rautiainen, Hermanni Aaltonen, Motoki Sasakawa, and Tuula Aalto
EGUsphere, https://doi.org/10.5194/egusphere-2025-2794, https://doi.org/10.5194/egusphere-2025-2794, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We analyzed spring methane emissions from northern high-latitude wetlands using satellite thaw data and inverse modeling (2011–2021). Comparing region-based and grid-based approaches, we found that emissions varied with the length of the melting season, which depended on air temperature. We found spring melting season emissions ranged from 0.45 Tg to 1.83 Tg depending on the approach, with no clear trend over the period. Our methods allow for seasonal methane monitoring across different scales.
Yosuke Niwa, Yasunori Tohjima, Yukio Terao, Tazu Saeki, Akihiko Ito, Taku Umezawa, Kyohei Yamada, Motoki Sasakawa, Toshinobu Machida, Shin-Ichiro Nakaoka, Hideki Nara, Hiroshi Tanimoto, Hitoshi Mukai, Yukio Yoshida, Shinji Morimoto, Shinya Takatsuji, Kazuhiro Tsuboi, Yousuke Sawa, Hidekazu Matsueda, Kentaro Ishijima, Ryo Fujita, Daisuke Goto, Xin Lan, Kenneth Schuldt, Michal Heliasz, Tobias Biermann, Lukasz Chmura, Jarsolaw Necki, Irène Xueref-Remy, and Damiano Sferlazzo
Atmos. Chem. Phys., 25, 6757–6785, https://doi.org/10.5194/acp-25-6757-2025, https://doi.org/10.5194/acp-25-6757-2025, 2025
Short summary
Short summary
This study estimated regional and sectoral emission contributions to the unprecedented surge of atmospheric methane for 2020–2022. The methane is the second most important greenhouse gas, and its emissions reduction is urgently required to mitigate global warming. Numerical modeling-based estimates with three different sets of atmospheric observations consistently suggested large contributions of biogenic emissions from South Asia and Southeast Asia to the surge of atmospheric methane.
Caterina Mogno, Peter R. Colarco, Allison B. Collow, Sampa Das, Sarah A. Strode, Vanessa Valenti, Michael E. Manyin, Qing Liang, Luke Oman, Stephen D. Steenrod, and K. Emma Knowland
EGUsphere, https://doi.org/10.5194/egusphere-2025-2354, https://doi.org/10.5194/egusphere-2025-2354, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We investigated a climate model's ability to simulate atmospheric aerosols focusing on the relationship between mass and optical properties, by comparing predictions with observations. Our analysis revealed that model errors in aerosol scattering primarily stem from inaccurate particle mass concentrations and relative humidity, rather than flawed optical property assumptions in the model. These findings point out improvements for enhancing the accuracy for aerosols representation in our model.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Motoki Sasakawa, Noritsugu Tsuda, Toshinobu Machida, Mikhail Arshinov, Denis Davydov, Aleksandr Fofonov, and Boris Belan
Atmos. Meas. Tech., 18, 1717–1730, https://doi.org/10.5194/amt-18-1717-2025, https://doi.org/10.5194/amt-18-1717-2025, 2025
Short summary
Short summary
Standard gases are essential for accurate greenhouse gas measurements. However, exchanging cylinders at remote sites presents logistical challenges, requiring systems that minimize gas consumption. We developed methods for calculating greenhouse gas mole fractions and uncertainties using our original system designed to reduce standard gas use. We validated its long-term stability through instrument comparisons. The system has proven effective for maintaining observations at remote sites.
Rona Louise Thompson, Nalini Krishnankutty, Ignacio Pisso, Philipp Schneider, Kerstin Stebel, Motoki Sasakawa, Andreas Stohl, and Stephen Platt
EGUsphere, https://doi.org/10.5194/egusphere-2025-147, https://doi.org/10.5194/egusphere-2025-147, 2025
Short summary
Short summary
Satellite remote sensing of atmospheric mixing ratios of greenhouse gases (GHGs) can provide information on the emissions of these GHGs. This study presents a novel method to use atmospheric column mixing ratios with a Lagrangian model of atmospheric transport to estimate GHG emissions. This method can reduce model errors resulting from how an observation is represented by an atmospheric model potentially reducing the errors in the GHG emissions derived.
Chiranjit Das, Ravi Kumar Kunchala, Prabir K. Patra, Naveen Chandra, Kentaro Ishijima, and Toshinobu Machida
EGUsphere, https://doi.org/10.5194/egusphere-2024-3976, https://doi.org/10.5194/egusphere-2024-3976, 2025
Preprint archived
Short summary
Short summary
Our study compares model CO2 with aircraft and OCO-2 data to identify transport model errors to better policy-related flux estimation. The model align better with aircraft data than satellite data, especially over oceans, but struggles near the surface due to inaccurate CO2 estimates. Over the Amazon and Asian megacities, differences arise from limited measurements and coarse model resolution, highlighting the need for improved monitoring and higher-resolution data to capture emissions better.
Yunqian Zhu, Hideharu Akiyoshi, Valentina Aquila, Elisabeth Asher, Ewa M. Bednarz, Slimane Bekki, Christoph Brühl, Amy H. Butler, Parker Case, Simon Chabrillat, Gabriel Chiodo, Margot Clyne, Lola Falletti, Peter R. Colarco, Eric Fleming, Andrin Jörimann, Mahesh Kovilakam, Gerbrand Koren, Ales Kuchar, Nicolas Lebas, Qing Liang, Cheng-Cheng Liu, Graham Mann, Michael Manyin, Marion Marchand, Olaf Morgenstern, Paul Newman, Luke D. Oman, Freja F. Østerstrøm, Yifeng Peng, David Plummer, Ilaria Quaglia, William Randel, Samuel Rémy, Takashi Sekiya, Stephen Steenrod, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, Rei Ueyama, Daniele Visioni, Xinyue Wang, Shingo Watanabe, Yousuke Yamashita, Pengfei Yu, Wandi Yu, Jun Zhang, and Zhihong Zhuo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3412, https://doi.org/10.5194/egusphere-2024-3412, 2024
Short summary
Short summary
To understand the climate impact of the 2022 Hunga volcanic eruption, we developed a climate model-observation comparison project. The paper describes the protocols and models that participate in the experiments. We designed several experiments to achieve our goal of this activity: 1. evaluate the climate model performance; 2. understand the Earth system responses to this eruption.
Amir H. Souri, Bryan N. Duncan, Sarah A. Strode, Daniel C. Anderson, Michael E. Manyin, Junhua Liu, Luke D. Oman, Zhen Zhang, and Brad Weir
Atmos. Chem. Phys., 24, 8677–8701, https://doi.org/10.5194/acp-24-8677-2024, https://doi.org/10.5194/acp-24-8677-2024, 2024
Short summary
Short summary
We explore a new method of using the wealth of information obtained from satellite observations of Aura OMI NO2, HCHO, and MERRA-2 reanalysis in NASA’s GEOS model equipped with an efficient tropospheric OH (TOH) estimator to enhance the representation of TOH spatial distribution and its long-term trends. This new framework helps us pinpoint regional inaccuracies in TOH and differentiate between established prior knowledge and newly acquired information from satellites on TOH trends.
Astrid Müller, Hiroshi Tanimoto, Takafumi Sugita, Prabir K. Patra, Shin-ichiro Nakaoka, Toshinobu Machida, Isamu Morino, André Butz, and Kei Shiomi
Atmos. Meas. Tech., 17, 1297–1316, https://doi.org/10.5194/amt-17-1297-2024, https://doi.org/10.5194/amt-17-1297-2024, 2024
Short summary
Short summary
Satellite CH4 observations with high accuracy are needed to understand changes in atmospheric CH4 concentrations. But over oceans, reference data are limited. We combine various ship and aircraft observations with the help of atmospheric chemistry models to derive observation-based column-averaged mixing ratios of CH4 (obs. XCH4). We discuss three different approaches and demonstrate the applicability of the new reference dataset for carbon cycle studies and satellite evaluation.
Jianping Mao, James B. Abshire, S. Randy Kawa, Xiaoli Sun, and Haris Riris
Atmos. Meas. Tech., 17, 1061–1074, https://doi.org/10.5194/amt-17-1061-2024, https://doi.org/10.5194/amt-17-1061-2024, 2024
Short summary
Short summary
NASA Goddard Space Flight Center has developed an integrated-path, differential absorption lidar approach to measure column-averaged atmospheric CO2 (XCO2). We demonstrated the lidar’s capability to measure XCO2 to cloud tops ,as well as to the ground, with the data from the summer 2017 airborne campaign in the US and Canada. This active remote sensing technique can provide all-sky data coverage and high-quality XCO2 measurements for future airborne science campaigns and space missions.
Sophie Wittig, Antoine Berchet, Isabelle Pison, Marielle Saunois, Joël Thanwerdas, Adrien Martinez, Jean-Daniel Paris, Toshinobu Machida, Motoki Sasakawa, Douglas E. J. Worthy, Xin Lan, Rona L. Thompson, Espen Sollum, and Mikhail Arshinov
Atmos. Chem. Phys., 23, 6457–6485, https://doi.org/10.5194/acp-23-6457-2023, https://doi.org/10.5194/acp-23-6457-2023, 2023
Short summary
Short summary
Here, an inverse modelling approach is applied to estimate CH4 sources and sinks in the Arctic from 2008 to 2019. We study the magnitude, seasonal patterns and trends from different sources during recent years. We also assess how the current observation network helps to constrain fluxes. We find that constraints are only significant for North America and, to a lesser extent, West Siberia, where the observation network is relatively dense. We find no clear trend over the period of inversion.
Sourish Basu, Xin Lan, Edward Dlugokencky, Sylvia Michel, Stefan Schwietzke, John B. Miller, Lori Bruhwiler, Youmi Oh, Pieter P. Tans, Francesco Apadula, Luciana V. Gatti, Armin Jordan, Jaroslaw Necki, Motoki Sasakawa, Shinji Morimoto, Tatiana Di Iorio, Haeyoung Lee, Jgor Arduini, and Giovanni Manca
Atmos. Chem. Phys., 22, 15351–15377, https://doi.org/10.5194/acp-22-15351-2022, https://doi.org/10.5194/acp-22-15351-2022, 2022
Short summary
Short summary
Atmospheric methane (CH4) has been growing steadily since 2007 for reasons that are not well understood. Here we determine sources of methane using a technique informed by atmospheric measurements of CH4 and its isotopologue 13CH4. Measurements of 13CH4 provide for better separation of microbial, fossil, and fire sources of methane than CH4 measurements alone. Compared to previous assessments such as the Global Carbon Project, we find a larger microbial contribution to the post-2007 increase.
Xiaoli Sun, Paul T. Kolbeck, James B. Abshire, Stephan R. Kawa, and Jianping Mao
Earth Syst. Sci. Data, 14, 3821–3833, https://doi.org/10.5194/essd-14-3821-2022, https://doi.org/10.5194/essd-14-3821-2022, 2022
Short summary
Short summary
We describe the measurement and data processing of the atmospheric backscatter profile data by our CO2 Sounder lidar from the 2017 ASCENDS/ABoVE airborne campaign. It is an additional data set from the column average CO2 mixing ratio measurements from laser sounding. It not only helps to interpret the CO2 mixing ratio measurement but also give a standalone data set for atmosphere backscattering study at 1572 nm wavelength.
Shohei Nomura, Manish Naja, M. Kawser Ahmed, Hitoshi Mukai, Yukio Terao, Toshinobu Machida, Motoki Sasakawa, and Prabir K. Patra
Atmos. Chem. Phys., 21, 16427–16452, https://doi.org/10.5194/acp-21-16427-2021, https://doi.org/10.5194/acp-21-16427-2021, 2021
Short summary
Short summary
Long-term measurements of greenhouse gases (GHGs) in India and Bangladesh unveiled specific characteristics in their variations in these regions. Plants including rice cultivated in winter and summer strongly affected seasonal variations and levels in CO2 and CH4. Long-term variability of GHGs showed quite different features in their growth rates from those in Mauna Loa. GHG trends in this region seemed to be hardly affected by El Niño–Southern Oscillation (ENSO).
Huisheng Bian, Eunjee Lee, Randal D. Koster, Donifan Barahona, Mian Chin, Peter R. Colarco, Anton Darmenov, Sarith Mahanama, Michael Manyin, Peter Norris, John Shilling, Hongbin Yu, and Fanwei Zeng
Atmos. Chem. Phys., 21, 14177–14197, https://doi.org/10.5194/acp-21-14177-2021, https://doi.org/10.5194/acp-21-14177-2021, 2021
Short summary
Short summary
The study using the NASA Earth system model shows ~2.6 % increase in burning season gross primary production and ~1.5 % increase in annual net primary production across the Amazon Basin during 2010–2016 due to the change in surface downward direct and diffuse photosynthetically active radiation by biomass burning aerosols. Such an aerosol effect is strongly dependent on the presence of clouds. The cloud fraction at which aerosols switch from stimulating to inhibiting plant growth occurs at ~0.8.
Brad Weir, Lesley E. Ott, George J. Collatz, Stephan R. Kawa, Benjamin Poulter, Abhishek Chatterjee, Tomohiro Oda, and Steven Pawson
Atmos. Chem. Phys., 21, 9609–9628, https://doi.org/10.5194/acp-21-9609-2021, https://doi.org/10.5194/acp-21-9609-2021, 2021
Short summary
Short summary
We present a collection of carbon surface fluxes, the Low-order Flux Inversion (LoFI), derived from satellite observations of the Earth's surface and calibrated to match long-term inventories and atmospheric and oceanic records. Simulations using LoFI reproduce background atmospheric carbon dioxide measurements with comparable skill to the leading surface flux products. Available both retrospectively and as a forecast, LoFI enables the study of the carbon cycle as it occurs.
Yosuke Niwa, Yousuke Sawa, Hideki Nara, Toshinobu Machida, Hidekazu Matsueda, Taku Umezawa, Akihiko Ito, Shin-Ichiro Nakaoka, Hiroshi Tanimoto, and Yasunori Tohjima
Atmos. Chem. Phys., 21, 9455–9473, https://doi.org/10.5194/acp-21-9455-2021, https://doi.org/10.5194/acp-21-9455-2021, 2021
Short summary
Short summary
Fires in Equatorial Asia release a large amount of carbon into the atmosphere. Extensively using high-precision atmospheric carbon dioxide (CO2) data from a commercial aircraft observation project, we estimated fire carbon emissions in Equatorial Asia induced by the big El Niño event in 2015. Additional shipboard measurement data elucidated the validity of the analysis and the best estimate indicated 273 Tg C for fire emissions during September–October 2015.
Astrid Müller, Hiroshi Tanimoto, Takafumi Sugita, Toshinobu Machida, Shin-ichiro Nakaoka, Prabir K. Patra, Joshua Laughner, and David Crisp
Atmos. Chem. Phys., 21, 8255–8271, https://doi.org/10.5194/acp-21-8255-2021, https://doi.org/10.5194/acp-21-8255-2021, 2021
Short summary
Short summary
Over oceans, high uncertainties in satellite CO2 retrievals exist due to limited reference data. We combine commercial ship and aircraft observations and, with the aid of model calculations, obtain column-averaged mixing ratios of CO2 (XCO2) data over the Pacific Ocean. This new dataset has great potential as a robust reference for XCO2 measured from space and can help to better understand changes in the carbon cycle in response to climate change using satellite observations.
Shamil Maksyutov, Tomohiro Oda, Makoto Saito, Rajesh Janardanan, Dmitry Belikov, Johannes W. Kaiser, Ruslan Zhuravlev, Alexander Ganshin, Vinu K. Valsala, Arlyn Andrews, Lukasz Chmura, Edward Dlugokencky, László Haszpra, Ray L. Langenfelds, Toshinobu Machida, Takakiyo Nakazawa, Michel Ramonet, Colm Sweeney, and Douglas Worthy
Atmos. Chem. Phys., 21, 1245–1266, https://doi.org/10.5194/acp-21-1245-2021, https://doi.org/10.5194/acp-21-1245-2021, 2021
Short summary
Short summary
In order to improve the top-down estimation of the anthropogenic greenhouse gas emissions, a high-resolution inverse modelling technique was developed for applications to global transport modelling of carbon dioxide and other greenhouse gases. A coupled Eulerian–Lagrangian transport model and its adjoint are combined with surface fluxes at 0.1° resolution to provide high-resolution forward simulation and inverse modelling of surface fluxes accounting for signals from emission hot spots.
Cited articles
Andres, R. J., Boden, T. A., and Marland, G.: Monthly Fossil-Fuel CO2
Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree
Longitude, Carbon Dioxide Information Analysis Center, Oak Ridge National
Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.,
https://doi.org/10.3334/CDIAC/ffe.MonthlyMass.2012, 2012.
Andrews, A. E., Kofler, J., Bakwin, P. S., Zhao, C., and Tans, P.: Carbon
Dioxide and Carbon Monoxide Dry Air Mole Fractions from the NOAA ESRL Tall
Tower Network, 1992–2009, Version: 2011-08-31, available at:
ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/in-situ/tower/ (last
access: 2 March 2018), 2009.
ASCENDS Ad Hoc Science Definition Team: Active Sensing of CO2
Emissions over Nights, Days, and Seasons (ASCENDS) Mission Science Mission
Definition Study (draft), available at:
https://cce.nasa.gov/ascends_2015/ASCENDS_FinalDraft_4_27_15.pdf (last
access: 11 August 2017), 2015.
Baker, D. F., Law, R. M., Gurney, K. R., Rayner, P., Peylin, P., Denning, A.
S., Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fung, I. Y.,
Heimann, M., John, J., Maki, T., Maksyutov, S., Masarie, K., Prather, M.,
Pak, B., Taguchi, S., and Zhu, Z.: TransCom 3 inversion intercomparison:
Impact of transport model errors on the interannual variability of regional
CO2 fluxes, 1988–2003, Global Biogeochem. Cy., 20, GB1002,
https://doi.org/10.1029/2004GB002439, 2006.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S.,
Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A.,
Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W.,
Paw U, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala,
T., Wilson, K., and Wofsy, S.: FLUXNET: A new tool to study the temporal and
spatial variability of ecosystem–scale carbon dioxide, water vapor, and
energy flux densities, B. Am. Meteorol. Soc., 82, 2415–2434, 2001.
Basu, S., Guerlet, S., Butz, A., Houweling, S., Hasekamp, O., Aben, I.,
Krummel, P., Steele, P., Langenfelds, R., Torn, M., Biraud, S., Stephens,
B., Andrews, A., and Worthy, D.: Global CO2 fluxes estimated from GOSAT
retrievals of total column CO2, Atmos. Chem. Phys., 13, 8695–8717,
https://doi.org/10.5194/acp-13-8695-2013, 2013.
Belikov, D. A., Maksyutov, S., Krol, M., Fraser, A., Rigby, M., Bian, H. S.,
Agusti-Panareda, A., Bergmann, D., Bousquet, P., Cameron-Smith, P.,
Chipperfield, M. P., Fortems-Cheiney, A., Gloor, E., Haynes, K., Hess, P.,
Houweling, S., Kawa, S. R., Law, R. M., Loh, Z., Meng, L., Palmer, P. I.,
Patra, P. K., Prinn, R. G., Saito, R., and Wilson, C.: Off-line algorithm
for calculation of vertical tracer transport in the troposphere due to deep
convection, Atmos. Chem. Phys., 13, 1093–1114, https://doi.org/10.5194/acp-13-1093-2013,
2013.
Butler, M. P., Davis, K. J., Denning, A. S., and Kawa, S. R.: Using
continental observations in global atmospheric inversions of CO2: North
American carbon sources and sinks, Tellus, 62B, 550–572,
https://doi.org/10.1111/j.1600-0889.2010.00501.x, 2010.
Chatterjee, A. and Michalak, A. M.: Technical Note: Comparison of ensemble
Kalman filter and variational approaches for CO2 data assimilation,
Atmos. Chem. Phys., 13, 11643–11660, https://doi.org/10.5194/acp-13-11643-2013, 2013.
Chevallier, F., Wang, T., Ciais, P., Maignan, F., Bocquet, M., Arain, M. A.,
Cescatti, A., Chen, J., Dolman, A. J., Law, B. E., Margolis, H. A.,
Montagnani, L., and Moors, E. J.: What eddy-covariance measurements tell us
about prior land flux errors in CO2-flux inversion schemes, Global
Biogeochem. Cycles, 26, GB1021, https://doi.org/10.1029/2010GB003974, 2012.
Chevallier, F., Palmer, P. I., Feng, L., Boesch, H., O'Dell, C. W., and
Bousquet, P.: Toward robust and consistent regional CO2 flux
estimates from in situ and spaceborne measurements of atmospheric
CO2, Geophys. Res. Lett., 41, 1065–1070, https://doi.org/10.1002/2013GL058772,
2014.
Ciais, P., Rayner, P., Chevallier, F., Bousquet, P., Logan, M., Peylin, P.,
and Ramonet, M.: Atmospheric inversions for estimating CO2 fluxes:
methods and perspectives, Clim. Change, 103, 69–92, https://doi.org/10.1007/s10584-010-9909-3, 2010.
Connor, B. J., Bösch, H., Toon, G., Sen, B., Miller, C., and Crisp, D.:
Orbiting Carbon Observatory: Inverse method and prospective error analysis,
J. Geophys. Res., 113, A05305, https://doi.org/10.1029/2006JD008336, 2008.
Cooperative Global Atmospheric Data Integration Project: Multi-laboratory
compilation of synchronized and gap-filled atmospheric carbon dioxide records
for the period 1979–2012
(obspack_co2_1_GLOBALVIEW-CO2_2013_v1.0.4_2013-12-23), Compiled by NOAA
Global Monitoring Division: Boulder, Colorado, USA,
https://doi.org/10.3334/OBSPACK/1002, updated annually, 2013.
Crisp, D.: Measuring atmospheric carbon dioxide from space with the Orbiting
Carbon Observatory-2 (OCO-2), Proc. SPIE 9607, Earth Observ. Syst., XX,
960702, https://doi.org/10.1117/12.2187291, 2015.
Deng, F., Jones, D. B. A., Henze, D. K., Bousserez, N., Bowman, K. W.,
Fisher, J. B., Nassar, R., O'Dell, C., Wunch, D., Wennberg, P. O., Kort, E.
A., Wofsy, S. C., Blumenstock, T., Deutscher, N. M., Griffith, D. W. T.,
Hase, F., Heikkinen, P., Sherlock, V., Strong, K., Sussmann, R., and
Warneke, T.: Inferring regional sources and sinks of atmospheric
CO2 from GOSAT XCO2 data, Atmos. Chem. Phys., 14, 3703–3727,
https://doi.org/10.5194/acp-14-3703-2014, 2014.
Deng, F., Jones, D. B. A., O'Dell, C. W., Nassar, R., and Parazoo, N. C.:
Combining GOSAT XCO2 observations over land and ocean to improve
regional CO2 flux estimates, J. Geophys. Res.-Atmos., 121, 1896–1913,
https://doi.org/10.1002/2015JD024157, 2016.
Dlugokencky, E. J., Lang, P. M., Masarie, K. A., Crotwell, A. M., and
Crotwell, M. J.: Atmospheric Carbon Dioxide Dry Air Mole Fractions from the
NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1968–2012,
Version: 2013-08-28, available at:
ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/
(last access: 18 February 2014), 2013.
Eldering, A., Wennberg, P. O., Crisp, D., Schimel, D. S., Gunson, M. R.,
Chatterjee, A., Liu, J., Schwandner, F. M., Sun, Y., O'Dell, C. W.,
Frankenberg, C., Taylor, T., Fisher, B., Osterman, G. B., Wunch, D.,
Hakkarainen, J., Tamminen, J., and Weir, B.: The Orbiting Carbon
Observatory-2 early science investigations of regional carbon dioxide
fluxes, Science, 358, eaam5745, https://doi.org/10.1126/science.aam5745, 2017.
Engelen, R. J., Denning, A. S., and Gurney, K. R.: On error estimation in
atmospheric CO2 inversions, J. Geophys. Res., 107, 4635,
https://doi.org/10.1029/2002JD002195, 2002.
Enting, I. G. and Mansbridge, J. V.: Seasonal sources and sinks of
atmospheric CO2: Direct inversion of filtered data, Tellus, 41B,
111–126, 1989.
Enting, I. G., Trudinger, C. M., and Francey, R. J.: A synthesis inversion
of the concentration and δ13C of atmospheric CO2, Tellus,
47B, 35–52, 1995.
Feng, L., Palmer, P. I., Boesch, H., and Dance, S.: Estimating surface
CO2 fluxes from space-borne CO2 dry air mole fraction observations
using an ensemble Kalman Filter, Atmos. Chem. Phys., 9, 2619–2633,
https://doi.org/10.5194/acp-9-2619-2009, 2009.
Feng, L., Palmer, P. I., Parker, R. J., Deutscher, N. M., Feist, D. G.,
Kivi, R., Morino, I., and Sussmann, R.: Estimates of European uptake of
CO2 inferred from GOSAT retrievals: sensitivity to
measurement bias inside and outside Europe, Atmos. Chem. Phys., 16,
1289–1302, https://doi.org/10.5194/acp-16-1289-2016, 2016.
Frankenberg, C., Kulawik, S. S., Wofsy, S. C., Chevallier, F., Daube, B.,
Kort, E. A., O'Dell, C., Olsen, E. T., and Osterman, G.: Using airborne
HIAPER Pole-to-Pole Observations (HIPPO) to evaluate model and remote sensing
estimates of atmospheric carbon dioxide, Atmos. Chem. Phys., 16, 7867–7878,
https://doi.org/10.5194/acp-16-7867-2016, 2016.
Gatti, L. V., Gloor, M., Miller, J. B., Doughty, C. E., Malhi, Y.,
Domingues, L. G., Basso, L. S., Martinewski, A., Correia, C. S. C., Borges,
V. F., Freitas, S., Braz, R., Anderson, L. O., Rocha, H., Grace, J.,
Phillips, O., and Lloyd, J.: Drought sensitivity of Amazonian carbon balance
revealed by atmospheric measurements, Nature, 506, 76–80,
https://doi.org/10.1038/nature12957, 2014.
Gatti, L., Gloor, E., and Miller, J.: Greenhouse gas profile measurements
(CO, CO2, CH4) above the forest canopy at four sites for the
Amazonica project, NCAS British Atmospheric Data Centre,
available at: http://catalogue.ceda.ac.uk/uuid/7201536a8b7a1a96de584e9b746acee3, last access: 5 December 2016.
Giglio, L., Csiszar, I., and Justice, C. O.: Global distribution and
seasonality of active fires as observed with the Terra and Aqua Moderate
Resolution Imaging Spectroradiometer (MODIS) sensors, J. Geophys. Res., 111,
G02016, https://doi.org/10.1029/2005JG000142, 2006.
Giglio, L., Randerson, J. T., van der Werf, G. R., Kasibhatla, P. S.,
Collatz, G. J., Morton, D. C., and DeFries, R. S.: Assessing variability and
long-term trends in burned area by merging multiple satellite fire products,
Biogeosciences, 7, 1171–1186, https://doi.org/10.5194/bg-7-1171-2010, 2010.
Gourdji, S. M., Mueller, K. L., Yadav, V., Huntzinger, D. N., Andrews, A. E.,
Trudeau, M., Petron, G., Nehrkorn, T., Eluszkiewicz, J., Henderson, J., Wen,
D., Lin, J., Fischer, M., Sweeney, C., and Michalak, A. M.: North American
CO2 exchange: inter-comparison of modeled estimates with results from a
fine-scale atmospheric inversion, Biogeosciences, 9, 457–475,
https://doi.org/10.5194/bg-9-457-2012, 2012.
Guerlet, S., Basu, S., Butz, A., Krol, M., Hahne, P., Houweling, S.,
Hasekamp, O. P., and Aben, I.: Reduced carbon uptake during the 2010
Northern Hemisphere summer from GOSAT, Geophys. Res. Lett., 40, 2378–2383,
https://doi.org/10.1002/grl.50402, 2013.
Gurney, K., Law, R., Rayner, P., and Denning, A. S.: TransCom 3 Experimental
Protocol, Department of Atmospheric Science, Colorado State University, USA,
Paper 707, available at:
http://transcom.project.asu.edu/download/transcom03/protocol.revised.feb.trunc.pdf,
(last access: 26 July 2018), 2000.
Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D.,
Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fan, S., Fung, I. Y.,
Gloor, M., Heimann, M., Higuchi, K., John, J., Maki, T., Maksyutov, S.,
Masarie, K., Peylin, P., Prather, M., Pak, B. C., Randerson, J., Sarmiento,
J., Taguchi, S., Takahashi, T., and Yuen, C.-W.: Towards robust regional
estimates of CO2 sources and sinks using atmospheric transport
models, Nature, 415, 626–630, 2002.
Hayes, D. J., Turner, D. P., Stinson, G., McGuire, A. D., Wei, Y., West, T.
O., Heath, L. S., deJong, B., McConkey, B. G., Birdsey, R. A., Kurz, W. A.,
Jacobson, A. R., Huntzinger, D. N., Pan, Y., Post, W. M., and Cook, R. B.:
Reconciling estimates of the contemporary North American carbon balance among
terrestrial biosphere models, atmospheric inversions, and a new approach for
estimating net ecosystem exchange from inventory-based data, Global Change
Biol., 18, 1282–1299, https://doi.org/10.1111/j.1365-2486.2011.02627.x, 2012.
Houborg, R., Rodell, M., Li, B., Reichle, R., and Zaitchik, B.: Drought
indicators based on model assimilated GRACE terrestrial water storage
observations, Water Resour. Res, 48, W07525, https://doi.org/10.1029/2011WR011291, 2012.
Houweling, S., Baker, D., Basu, S., Boesch, H., Butz, A., Chevallier, F.,
Deng, F., Dlugokencky, E. J., Feng, L., Ganshin, A., Hasekamp, O., Jones,
D., Maksyutov, S., Marshall, J., Oda, T., O'Dell, C. W., Oshchepkov, S.,
Palmer, P. I., Peylin, P., Poussi, Z., Reum, F., Takagi, H., Yoshida, Y.,
and Zhuravlev, R.: An intercomparison of inverse models for estimating
sources and sinks of CO2 using GOSAT measurements, J. Geophys. Res.-Atmos.,
120, 5253–5266, https://doi.org/10.1002/2014JD022962, 2015.
Kaminski, T., Rayner, P. J., Heimann, M., and Enting, I. G.: On aggregation
errors in atmospheric transport inversions, J. Geophys. Res., 106,
4703–4715, 2001.
Kawa, S. R., Erickson III, D. J., Pawson, S., and Zhu, Z.: Global
CO2 transport simulations using meteorological data from the NASA data
assimilation system, J. Geophys. Res., 109, D18312,
https://doi.org/10.1029/2004JD004554, 2004.
Kawa, S. R., Mao, J., Abshire, J. B., Collatz, G. J., Sun, X., and Weaver,
C. J.: Simulation studies for a space-based CO2 lidar mission, Tellus
B, 62, 759–769, https://doi.org/10.1111/j.1600-0889.2010.00486.x, 2010.
Kim, J., Kim, H. M., Cho, C.-H., Boo, K.-O., Jacobson, A. R., Sasakawa, M.,
Machida, T., Arshinov, M., and Fedoseev, N.: Impact of Siberian
observations on the optimization of surface CO2 flux, Atmos. Chem. Phys.,
17, 2881–2899, https://doi.org/10.5194/acp-17-2881-2017, 2017.
Kulawik, S., Wunch, D., O'Dell, C., Frankenberg, C., Reuter, M., Oda, T.,
Chevallier, F., Sherlock, V., Buchwitz, M., Osterman, G., Miller, C. E.,
Wennberg, P. O., Griffith, D., Morino, I., Dubey, M. K., Deutscher, N. M.,
Notholt, J., Hase, F., Warneke, T., Sussmann, R., Robinson, J., Strong, K.,
Schneider, M., De Mazière, M., Shiomi, K., Feist, D. G., Iraci, L. T.,
and Wolf, J.: Consistent evaluation of ACOS-GOSAT, BESD-SCIAMACHY,
CarbonTracker, and MACC through comparisons to TCCON, Atmos. Meas. Tech., 9,
683–709, https://doi.org/10.5194/amt-9-683-2016, 2016.
Law, R. M., Peters, W., Rödenbeck, C., Aulagnier, C., Baker, I.,
Bergmann, D. J., Bousquet, P., Brandt, J., Bruhwiler, L., Cameron-Smith, P.
J., Christensen, J. H., Delage, F., Denning, A. S., Fan, S., Geels, C.,
Houweling, S., Imasu, R., Karstens, U., Kawa, S. R., Kleist, J., Krol, M. C.,
Lin, S.-J., Lokupitiya, R., Maki, T., Maksyutov, S., Niwa, Y., Onishi, R.,
Parazoo, N., Patra, P. K., Pieterse, G., Rivier, L., Satoh, M., Serrar, S.,
Taguchi, S., Takigawa, M., Vautard, R., Vermeulen, A. T., and Zhu, Z.:
TransCom model simulations of hourly atmospheric CO2: Experimental
overview and diurnal cycle results for 2002, Global Biogeochem. Cy., 22,
GB3009, https://doi.org/10.1029/2007GB003050, 2008.
Le Quéré, C., Andres, R. J., Boden, T., Conway, T., Houghton, R. A.,
House, J. I., Marland, G., Peters, G. P., van der Werf, G. R., Ahlström,
A., Andrew, R. M., Bopp, L., Canadell, J. G., Ciais, P., Doney, S. C.,
Enright, C., Friedlingstein, P., Huntingford, C., Jain, A. K., Jourdain, C.,
Kato, E., Keeling, R. F., Klein Goldewijk, K., Levis, S., Levy, P., Lomas,
M., Poulter, B., Raupach, M. R., Schwinger, J., Sitch, S., Stocker, B. D.,
Viovy, N., Zaehle, S., and Zeng, N.: The global carbon budget 1959–2011,
Earth Syst. Sci. Data, 5, 165–185, https://doi.org/10.5194/essd-5-165-2013, 2013.
Le Quéré, C., Moriarty, R., Andrew, R. M., Canadell, J. G., Sitch,
S., Korsbakken, J. I., Friedlingstein, P., Peters, G. P., Andres, R. J.,
Boden, T. A., Houghton, R. A., House, J. I., Keeling, R. F., Tans, P.,
Arneth, A., Bakker, D. C. E., Barbero, L., Bopp, L., Chang, J., Chevallier,
F., Chini, L. P., Ciais, P., Fader, M., Feely, R. A., Gkritzalis, T.,
Harris, I., Hauck, J., Ilyina, T., Jain, A. K., Kato, E., Kitidis, V., Klein
Goldewijk, K., Koven, C., Landschützer, P., Lauvset, S. K., Lefévre,
N., Lenton, A., Lima, I. D., Metzl, N., Millero, F., Munro, D. R., Murata,
A., Nabel, J., Nakaoka, S., Nojiri, Y., O'Brien, K., Olsen, A., Ono, T.,
Pérez, F. F., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G.,
Rödenbeck, C., Saito, S., Schuster, U., Schwinger, J., Séférian,
R., Steinhoff, T., Stocker, B. D., Sutton, A. J., Takahashi, T., Tilbrook,
B., van der Laan-Luijkx, I. T., van der Werf, G. R., van Heuven, S.,
Vandemark, D., Viovy, N., Wiltshire, A., Zaehle, S., and Zeng, N.: Global
Carbon Budget 2015, Earth Syst. Sci. Data, 7, 349–396,
https://doi.org/10.5194/essd-7-349-2015, 2015.
Lindqvist, H., O'Dell, C. W., Basu, S., Boesch, H., Chevallier, F.,
Deutscher, N., Feng, L., Fisher, B., Hase, F., Inoue, M., Kivi, R.,
Morino, I., Palmer, P. I., Parker, R., Schneider, M., Sussmann, R.,
and Yoshida, Y.: Does GOSAT capture the true seasonal cycle of carbon
dioxide?, Atmos. Chem. Phys., 15, 13023–13040, https://doi.org/10.5194/acp-15-13023-2015, 2015.
Liu, J., Bowman, K. W., Lee, M., Henze, D. K., Bousserez, N., Brix, H.,
Collatz, G. J., Menemenlis, D., Ott, L., Pawson, S., Jones, D., and Nassar,
R.: Carbon monitoring system flux estimation and attribution: Impact of
ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric
sources and sinks, Tellus B, 66, 22486, https://doi.org/10.3402/tellusb.v66.22486,
2014.
Los, S. O., Collatz, G. J., Sellers, P. J., Malmström, C. M., Pollack,
N. H., DeFries, R. S., Bounoua, L., Parris, M. T., Tucker, C. J., and
Dazlich, D. A.: A global 9-yr biophysical land surface dataset from NOAA
AVHRR data, J. Hydrometeorol., 1, 183–199, 2000.
Maksyutov, S., Takagi, H., Valsala, V. K., Saito, M., Oda, T., Saeki, T.,
Belikov, D. A., Saito, R., Ito, A., Yoshida, Y., Morino, I., Uchino, O.,
Andres, R. J., and Yokota, T.: Regional CO2 flux estimates for 2009–2010
based on GOSAT and ground-based CO2 observations, Atmos. Chem. Phys., 13,
9351–9373, https://doi.org/10.5194/acp-13-9351-2013, 2013.
Nassar, R., Jones, D. B. A., Suntharalingam, P., Chen, J. M., Andres, R. J.,
Wecht, K. J., Yantosca, R. M., Kulawik, S. S., Bowman, K. W., Worden, J. R.,
Machida, T., and Matsueda, H.: Modeling global atmospheric CO2 with
improved emission inventories and CO2 production from the oxidation of
other carbon species, Geosci. Model Dev., 3, 689–716,
https://doi.org/10.5194/gmd-3-689-2010, 2010.
Niwa, Y., Machida, T., Sawa, Y., Matsueda, H., Schuck, T. J.,
Brenninkmeijer, C. A. M., Imasu, R., and Satoh, M.: Imposing strong
constraints on tropical terrestrial CO2 fluxes using passenger aircraft
based measurements, J. Geophys. Res., 117, D11303, https://doi.org/10.1029/2012JD017474,
2012.
O'Dell, C. W., Connor, B., Bösch, H., O'Brien, D., Frankenberg, C., Castano,
R., Christi, M., Eldering, D., Fisher, B., Gunson, M., McDuffie, J., Miller,
C. E., Natraj, V., Oyafuso, F., Polonsky, I., Smyth, M., Taylor, T., Toon, G.
C., Wennberg, P. O., and Wunch, D.: The ACOS CO2 retrieval algorithm – Part
1: Description and validation against synthetic observations, Atmos. Meas.
Tech., 5, 99–121, https://doi.org/10.5194/amt-5-99-2012, 2012.
Olsen, S. C. and Randerson, J. T.: Differences between surface and column
atmospheric CO2 and implications for carbon cycle research, J.
Geophys. Res., 109, D02301, https://doi.org/10.1029/2003JD003968, 2004.
Orbe, C., Holzer, M., Polvani, L. M., and Waugh, D.: Air-mass origin as a
diagnostic of tropospheric transport, J. Geophys. Res.-Atmos., 118,
1459–1470, https://doi.org/10.1002/jgrd.50133, 2013.
Osterman, G., Eldering, A., Avis, C., O'Dell, C., Martinez, E., Crisp, D.,
Frankenberg, C., and Frankenberg, B.: ACOS Level 2 Standard Product Data
User's Guide, v3.4, Jet Propulsion Laboratory, Pasadena, California, 2013.
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A.,
Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P.,
Jackson, R. B., Pacala, S., McGuire, A. D., Piao, S., Rautiainen, A., Sitch,
S., and Hayes, D.: A Large and Persistent Carbon Sink in the World's
Forests, Science, 333, 988–993, https://doi.org/10.1126/science.1201609, 2011.
Parazoo, N. C., Denning, A. S., Kawa, S. R., Corbin, K. D., Lokupitiya, R.
S., and Baker, I. T.: Mechanisms for synoptic variations of atmospheric
CO2 in North America, South America and Europe, Atmos. Chem. Phys., 8,
7239–7254, https://doi.org/10.5194/acp-8-7239-2008, 2008.
Patra, P. K., Houweling, S., Krol, M., Bousquet, P., Belikov, D., Bergmann,
D., Bian, H., Cameron-Smith, P., Chipperfield, M. P., Corbin, K.,
Fortems-Cheiney, A., Fraser, A., Gloor, E., Hess, P., Ito, A., Kawa, S. R.,
Law, R. M., Loh, Z., Maksyutov, S., Meng, L., Palmer, P. I., Prinn, R. G.,
Rigby, M., Saito, R., and Wilson, C.: TransCom model simulations of CH4
and related species: linking transport, surface flux and chemical loss with
CH4 variability in the troposphere and lower stratosphere, Atmos. Chem.
Phys., 11, 12813–12837, https://doi.org/10.5194/acp-11-12813-2011, 2011.
Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J.,
Masarie, K., Miller, J. B., Bruhwiler, L. M. P., Pétron, G., Hirsch, A.
I., Worthy, D. E. J., van der Werf, G. R., Randerson, J. T., Wennberg, P. O.,
Krol, M. C., and Tans, P. P.: An atmospheric perspective on North American
carbon dioxide exchange: CarbonTracker, P. Natl. Acad. Sci. USA, 104,
18925–18930, 2007.
Pinzon, J. E. and Tucker, C. J.: A non-stationary 1981–2012 AVHRR
NDVI3g time series, Remote Sens., 6, 6929–6960; https://doi.org/10.3390/rs6086929,
2014.
Randerson, J. T., Thompson, M. V., and Malmstrom, C. M.: Substrate
limitations for heterotrophs: Implications for models that estimate the
seasonal cycle of atmospheric CO2, Global Biogeochem. Cy., 10,,
585–602, https://doi.org/10.1029/96GB01981, 1996.
Rayner, P. J., Enting, I. G., Francey, R. J., and Langenfelds, R.:
Reconstructing the recent carbon cycle from atmospheric CO2, δ13C and O2/N2 observations, Tellus B, 51, 213–232, 1999.
Reuter, M., Buchwitz, M., Hilker, M., Heymann, J., Schneising, O., Pillai,
D., Bovensmann, H., Burrows, J. P., Bösch, H., Parker, R., Butz, A.,
Hasekamp, O., O'Dell, C. W., Yoshida, Y., Gerbig, C., Nehrkorn, T.,
Deutscher, N. M., Warneke, T., Notholt, J., Hase, F., Kivi, R., Sussmann, R.,
Machida, T., Matsueda, H., and Sawa, Y.: Satellite-inferred European carbon
sink larger than expected, Atmos. Chem. Phys., 14, 13739–13753,
https://doi.org/10.5194/acp-14-13739-2014, 2014.
Reuter, M., Buchwitz, M., Hilker, M., Heymann, J., Bovensmann, H., Burrows,
J. P., Houweling, S., Liu, Y. Y., Nassar, R., Chevallier, F., Ciais, P.,
Marshall, J., and Reichstein, M.: How much CO2 is taken up by the
European terrestrial biosphere?, B. Am. Meteorol. Soc., 98, 665–671,
https://doi.org/10.1175/bams-d-15-00310.1, 2017.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J.,
Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom,
S., Chen, J., Collins, D., Conaty, A., Da Silva, A., Gu, W., Joiner, J.,
Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P.,
Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz,
M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for
Research and Applications, J. Climate, 24, 3624–3648, 2011.
Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: Theory and
Practice, World Scientific, Singapore, 2000.
Saeki, T., Maksyutov, S., Saito, M., Valsala, V., Oda, T., Andres, R. J.,
Belikov, D., Tans, P., Dlugokencky, E., Yoshida, Y., Morino, I., Uchino, O.,
and Yokota, T.: Inverse modeling of CO2 fluxes using GOSAT data and
multi-year ground-based observations, Sci. Online Lett. Atmos., 9, 45–50,
https://doi.org/10.2151/sola.2013-011, 2013a.
Saeki, T., Maksyutov, S., Sasakawa, M., Machida, T., Arshinov, M., Tans, P.,
Conway, T. J., Saito, M., Valsala, V., Oda, T., Andres, R. J., and Belikov,
D.: Carbon flux estimation for Siberia by inverse modeling constrained by
aircraft and tower CO2 measurements, J. Geophys. Res., 118,
1100–1122,
https://doi.org/10.1002/jgrd.50127, 2013b.
Saito, R., Patra, P. K., Sweeney, C., Machida, T., Krol, M., Houweling, S.,
Bousquet, P., Agusti-Panareda, A., Belikov, D., Bergmann, D., Bian, H. S.,
Cameron-Smith, P., Chipperfield, M. P., Fortems-Cheiney, A., Fraser, A.,
Gatti, L. V., Gloor, E., Hess, P., Kawa, S. R., Law, R. M., Locatelli, R.,
Loh, Z., Maksyutov, S., Meng, L., Miller, J. B., Palmer, P. I., Prinn, R.
G., Rigby, M., and Wilson, C.: TransCom model simulations of methane:
Comparison of vertical profiles with aircraft measurements, J. Geophys.
Res., 118, 3891–3904, https://doi.org/10.1002/jgrd.50380, 2013.
Saitoh, N., Kimoto, S., Sugimura, R., Imasu, R., Shiomi, K., Kuze, A., Niwa,
Y., Machida, T., Sawa, Y., and Matsueda, H.: Bias assessment of lower and
middle tropospheric CO2 concentrations of GOSAT/TANSO-FTS TIR version 1
product, Atmos. Meas. Tech., 10, 3877–3892, https://doi.org/10.5194/amt-10-3877-2017,
2017a.
Saitoh, N., Yamada, A., Itatsu, T., Imasu, R., Shiomi, K., and Niwa, Y.:
Algorithm development for the TIR bands of GOSAT-2/TANSO-FTS-2: lessons from
GOSAT/TANSO-FTS TIR CO2 and CH4 measurement, AGU Fall Meeting, New
Orleans, US, 11–15 December 2017, A33G-2472, 2017b.
Sasakawa, M., Shimoyama, K., Machida, T., Tsuda, N., Suto, H., Arshinov, M.,
Davydov, D., Fofonov, A., Krasnov, O., Saeki, T., Koyama, Y., and Maksyutov,
S.: Continuous measurements of methane from a tower network over Siberia,
Tellus B: Chem. Phys. Meteorol., 62, 403–416,
https://doi.org/10.1111/j.1600-0889.2010.00494.x, 2010.
Sasakawa, M., Machida, T., Tsuda, N., Arshinov, M., Davydov, D., Fofonov, A.,
and Krasnov, O.: Aircraft and tower measurements of CO2 concentration
in the planetary boundary layer and the lower free troposphere over southern
taiga in West Siberia: Long-term records from 2002 to 2011, J. Geophys. Res.,
118, 9489–9498, https://doi.org/10.1002/jgrd.50755, 2013.
Schimel, D., Stephens, B. B., and Fisher, J. B.: Effect of increasing
CO2 on the terrestrial carbon cycle, P. Natl. Acad. Sci. USA, 112,
436–441, doi/10.1073/pnas.1407302112, 2015.
Stephens, B. B., Gurney, K. R., Tans, P. P., Sweeney, C., Peters, W.,
Bruhwiler, L., Ciais, P., Ramonet, M., Bousquet, P., Nakazawa, T., Aoki, S.,
Machida, T., Inoue, G., Vinnichenko, N., Lloyd, J., Jordan, A., Heimann, M.,
Shibistova, O., Langenfelds, R. L., Steele, L. P., Francey, R. J., and
Denning, A. S.: Weak northern and strong tropical land carbon uptake from
vertical profiles of atmospheric CO2, Science, 316, 1732–1735, 2007.
Takagi, H., Saeki, T., Oda, T., Saito, M., Valsala, V., Belikov, D., Saito,
R., Yoshida, Y., Morino, I., Uchino, O., Andres, R. J., Yokota, T., and
Maksyutov, S.: On the benefit of GOSAT observations to the estimation of
regional CO2 fluxes, Sci. Online Lett. Atmos., 7, 161–164, 2011.
Takagi, H., Houweling, S., Andres, R. J., Belikov, D., Bril, A., Boesch, H.,
Butz, A., Guerlet, S., Hasekamp, O., Maksyutov, S., Morino, I., Oda, T.,
O'Dell, C. W., Oshchepkov, S., Parker, R., Saito, M., Uchino, O., Yokota, T.,
Yoshida, Y., and Valsala, V.: Influence of differences in current GOSAT
XCO2 retrievals on surface flux estimation, Geophys. Res. Lett., 41,
2598–2605, https://doi.org/10.1002/2013GL059174, 2014.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A.,
Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson,
A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii,
M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema,
M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A.,
Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.:
Climatological mean and decadal change in surface ocean pCO2, and
net sea-air CO2 flux over the global oceans, Deep Sea Res., Part II,
56, 554–577, 2009.
Tarantola, A.: Inverse problem theory: methods for data fitting and model
parameter estimation, Elsevier, Amsterdam, The Netherlands, 1987.
Tsutsumi, Y., Mori, K., Ikegami, M., Tashiro, T., and Tsuboi, K.: Long-term
trends of greenhouse gases in regional and background events observed during
1998–2004 at Yonagunijima located to the east of the Asian continent,
Atmos. Environ., 40, 5868–5879, 2006.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J.,
Kasibhatla, P. S., and Arellano Jr., A. F.: Interannual variability in
global biomass burning emissions from 1997 to 2004, Atmos. Chem. Phys., 6,
3423–3441, https://doi.org/10.5194/acp-6-3423-2006, 2006.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M.,
Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen,
T. T.: Global fire emissions and the contribution of deforestation, savanna,
forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10,
11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen,
Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G.
J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates
during 1997–2016, Earth Syst. Sci. Data, 9, 697–720,
https://doi.org/10.5194/essd-9-697-2017, 2017.
Wargan, K., Pawson, S., Olsen, M. A., Witte, J. C., Douglass, A. R., Ziemke,
J. R., Strahan, S. E., and Nielsen, J. E.: The global structure of upper
troposphere-lower stratosphere ozone in GEOS-5: A multiyear assimilation of
EOS Aura data, J. Geophys. Res.-Atmos., 120, 2013–2036,
https://doi.org/10.1002/2014JD022493, 2015.
Wofsy, S. C., the HIPPO Science Team and Cooperating Modellers and Satellite
Teams: HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale
measurements of climatically important atmospheric gases and aerosols,
Philos. T. Roy. Soc. A, 369, 2073–2086, https://doi.org/10.1098/rsta.2010.0313, 2011.
Wofsy, S. C., Daube, B. C., Jimenez, R., Kort, E., Pittman, J. V., Park, S.,
Commane, R., Xiang, B., Santoni, G., Jacob, D., Fisher, J., Pickett-Heaps,
C., Wang, H., Wecht, K., Wang, Q.-Q., Stephens, B. B., Shertz, S., Watt, A.
S., Romashkin, P., Campos, T., Haggerty, J., Cooper, W. A., Rogers, D.,
Beaton, S., Hendershot, R., Elkins, J. W., Fahey, D. W., Gao, R. S., Moore,
F., Montzka, S. A., Schwarz, J. P., Perring, A. E., Hurst, D., Miller, B. R.,
Sweeney, C., Oltmans, S., Nance, D., Hintsa, E., Dutton, G., Watts, L. A.,
Spackman, J. R., Rosenlof, K. H., Ray, E. A., Hall, B., Zondlo, M. A., Diao,
M., Keeling, R., Bent, J., Atlas, E. L., Lueb, R., and Mahoney, M. J.: HIPPO
Merged 10-second Meteorology, Atmospheric Chemistry, Aerosol Data
(R_20121129), Carbon Dioxide Information Analysis Center, Oak Ridge National
Laboratory, Oak Ridge, Tennessee, U.S.A., https://doi.org/10.3334/CDIAC/hippo_010
(Release 20121129), 2012.
Wunch, D., Wennberg, P. O., Toon, G. C., Connor, B. J., Fisher, B.,
Osterman, G. B., Frankenberg, C., Mandrake, L., O'Dell, C., Ahonen, P.,
Biraud, S. C., Castano, R., Cressie, N., Crisp, D., Deutscher, N. M.,
Eldering, A., Fisher, M. L., Griffith, D. W. T., Gunson, M., Heikkinen, P.,
Keppel-Aleks, G., Kyrö, E., Lindenmaier, R., Macatangay, R., Mendonca,
J., Messerschmidt, J., Miller, C. E., Morino, I., Notholt, J., Oyafuso, F.
A., Rettinger, M., Robinson, J., Roehl, C. M., Salawitch, R. J., Sherlock,
V., Strong, K., Sussmann, R., Tanaka, T., Thompson, D. R., Uchino, O.,
Warneke, T., and Wofsy, S. C.: A method for evaluating bias in global
measurements of CO2 total columns from space, Atmos. Chem. Phys., 11,
12317–12337, https://doi.org/10.5194/acp-11-12317-2011, 2011.
Xu, L., Samanta, A., Costa, M. H., Ganguly, S., Nemani, R. R., and Myneni,
R. B.: Widespread decline in greenness of Amazonian vegetation due to the
2010 drought, Geophys. Res. Lett., 38, L07402, https://doi.org/10.1029/2011GL046824,
2011.
Yokota, T., Yoshida, Y., Eguchi, N., Ota, Y., Tanaka, T., Watanabe, H., and
Maksyutov, S.: Global concentrations of CO2 and CH4 retrieved from
GOSAT: first preliminary results, SOLA, 5, 160–163,
https://doi.org/10.2151/sola.2009-041, 2009.
Short summary
We used measurements of CO2 in the atmosphere from the GOSAT satellite and from surface sites around the world, together with a transport model and a unique estimation technique, to quantify CO2 sources and removals over a recent period. We find that climate variations can strongly influence uptake by vegetation and release in decay and fires. However, regional gaps in observations and inaccuracies to which current satellite technology is susceptible result in important estimation biases.
We used measurements of CO2 in the atmosphere from the GOSAT satellite and from surface sites...
Altmetrics
Final-revised paper
Preprint