Articles | Volume 17, issue 13
https://doi.org/10.5194/acp-17-8357-2017
https://doi.org/10.5194/acp-17-8357-2017
Research article
 | 
10 Jul 2017
Research article |  | 10 Jul 2017

Comprehensive atmospheric modeling of reactive cyclic siloxanes and their oxidation products

Nathan J. Janechek, Kaj M. Hansen, and Charles O. Stanier

Related authors

Physical properties of secondary photochemical aerosol from OH oxidation of a cyclic siloxane
Nathan J. Janechek, Rachel F. Marek, Nathan Bryngelson, Ashish Singh, Robert L. Bullard, William H. Brune, and Charles O. Stanier
Atmos. Chem. Phys., 19, 1649–1664, https://doi.org/10.5194/acp-19-1649-2019,https://doi.org/10.5194/acp-19-1649-2019, 2019
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
A three-dimensional simulation and process analysis of tropospheric ozone depletion events (ODEs) during the springtime in the Arctic using CMAQ (Community Multiscale Air Quality Modeling System)
Le Cao, Simeng Li, Yicheng Gu, and Yuhan Luo
Atmos. Chem. Phys., 23, 3363–3382, https://doi.org/10.5194/acp-23-3363-2023,https://doi.org/10.5194/acp-23-3363-2023, 2023
Short summary
A high-resolution satellite-based map of global methane emissions reveals missing wetland, fossil fuel, and monsoon sources
Xueying Yu, Dylan B. Millet, Daven K. Henze, Alexander J. Turner, Alba Lorente Delgado, A. Anthony Bloom, and Jianxiong Sheng
Atmos. Chem. Phys., 23, 3325–3346, https://doi.org/10.5194/acp-23-3325-2023,https://doi.org/10.5194/acp-23-3325-2023, 2023
Short summary
Global impact of the COVID-19 lockdown on surface concentration and health risk of atmospheric benzene
Chaohao Ling, Lulu Cui, and Rui Li
Atmos. Chem. Phys., 23, 3311–3324, https://doi.org/10.5194/acp-23-3311-2023,https://doi.org/10.5194/acp-23-3311-2023, 2023
Short summary
Variable effects of spatial resolution on modeling of nitrogen oxides
Chi Li, Randall V. Martin, Ronald C. Cohen, Liam Bindle, Dandan Zhang, Deepangsu Chatterjee, Hongjian Weng, and Jintai Lin
Atmos. Chem. Phys., 23, 3031–3049, https://doi.org/10.5194/acp-23-3031-2023,https://doi.org/10.5194/acp-23-3031-2023, 2023
Short summary
Tropospheric NO2 vertical profiles over South Korea and their relation to oxidant chemistry: implications for geostationary satellite retrievals and the observation of NO2 diurnal variation from space
Laura Hyesung Yang, Daniel J. Jacob, Nadia K. Colombi, Shixian Zhai, Kelvin H. Bates, Viral Shah, Ellie Beaudry, Robert M. Yantosca, Haipeng Lin, Jared F. Brewer, Heesung Chong, Katherine R. Travis, James H. Crawford, Lok N. Lamsal, Ja-Ho Koo, and Jhoon Kim
Atmos. Chem. Phys., 23, 2465–2481, https://doi.org/10.5194/acp-23-2465-2023,https://doi.org/10.5194/acp-23-2465-2023, 2023
Short summary

Cited articles

Ahrens, L., Harner, T., and Shoeib, M.: Temporal variations of cyclic and linear volatile methylsiloxanes in the atmosphere using passive samplers and high-volume air samplers, Environ. Sci. Technol., 48, 9374–9381, https://doi.org/10.1021/es502081j, 2014.
Atkinson, R.: Kinetics of the Gas-Phase Reactions of a Series of Organosilicon Compounds with OH and NO3 Radicals and O3 at 297 +/−2 K, Environ. Sci. Technol., 25, 863–866, https://doi.org/10.1021/es00017a005, 1991.
Brooke, D., Crookes, M., Gray, D., and Robertson, S.: Environmental Risk Assessment Report: Dodecamethylcyclohexasiloxane, Environment Agency of England and Wales, Bristol, UK, 2009a.
Brooke, D., Crookes, M., Gray, D., and Robertson, S.: Environmental Risk Assessment Report: Decamethylcyclopentasiloxane, Environment Agency of England and Wales, Bristol, UK, 2009b.
Brooke, D., Crookes, M., Gray, D., and Robertson, S.: Environmental Risk Assessment Report: Octamethylcyclotetrasiloxane, Environment Agency of England and Wales, Bristol, UK, 2009c.
Download
Short summary
Gas-phase cyclic volatile methyl siloxanes and their oxidation products, which are likely precursors to secondary organic aerosol, were modeled using an atmospheric transport model over North America. Typical concentrations, spatial patterns, seasonal variability, and vertical profiles were quantified. Urban parent compound concentrations were sensitive to transport factors, while rural parent and oxidized product concentrations were sensitive to large-scale seasonal variability in OH.
Altmetrics
Final-revised paper
Preprint