Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 17, issue 11
Atmos. Chem. Phys., 17, 7229–7243, 2017
https://doi.org/10.5194/acp-17-7229-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 17, 7229–7243, 2017
https://doi.org/10.5194/acp-17-7229-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 Jun 2017

Research article | 16 Jun 2017

HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: an intercomparison study

Patricia Sawamura et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Patricia Sawamura on behalf of the Authors (08 May 2017)  Author's response    Manuscript
ED: Publish subject to technical corrections (09 May 2017) by Matthias Tesche
Publications Copernicus
Download
Short summary
We present a detailed evaluation of physical properties of aerosols, like aerosol number concentration and aerosol size, obtained from an advanced, airborne, multi-wavelength high-spectral-resolution lidar (HSRL-2) system. These lidar-retrieved physical properties were compared to airborne in situ measurements. Our findings highlight the advantages of advanced HSRL measurements and retrievals to help constrain the vertical distribution of aerosol volume or mass loading relevant for air quality.
We present a detailed evaluation of physical properties of aerosols, like aerosol number...
Citation
Final-revised paper
Preprint