Articles | Volume 17, issue 11
https://doi.org/10.5194/acp-17-6895-2017
https://doi.org/10.5194/acp-17-6895-2017
Research article
 | 
13 Jun 2017
Research article |  | 13 Jun 2017

The impact of fluctuations and correlations in droplet growth by collision–coalescence revisited – Part 1: Numerical calculation of post-gel droplet size distribution

Lester Alfonso and Graciela B. Raga

Related authors

Parameterization of the collision–coalescence process using series of basis functions: COLNETv1.0.0 model development using a machine learning approach
Camilo Fernando Rodríguez Genó and Léster Alfonso
Geosci. Model Dev., 15, 493–507, https://doi.org/10.5194/gmd-15-493-2022,https://doi.org/10.5194/gmd-15-493-2022, 2022
Short summary
The impact of fluctuations and correlations in droplet growth by collision–coalescence revisited – Part 2: Observational evidence of gel formation in warm clouds
Lester Alfonso, Graciela B. Raga, and Darrel Baumgardner
Atmos. Chem. Phys., 19, 14917–14932, https://doi.org/10.5194/acp-19-14917-2019,https://doi.org/10.5194/acp-19-14917-2019, 2019
Short summary
An algorithm for the numerical solution of the multivariate master equation for stochastic coalescence
L. Alfonso
Atmos. Chem. Phys., 15, 12315–12326, https://doi.org/10.5194/acp-15-12315-2015,https://doi.org/10.5194/acp-15-12315-2015, 2015
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Correction of ERA5 temperature and relative humidity biases by bivariate quantile mapping for contrail formation analysis
Kevin Wolf, Nicolas Bellouin, Olivier Boucher, Susanne Rohs, and Yun Li
Atmos. Chem. Phys., 25, 157–181, https://doi.org/10.5194/acp-25-157-2025,https://doi.org/10.5194/acp-25-157-2025, 2025
Short summary
Can pollen affect precipitation?
Marje Prank, Juha Tonttila, Xiaoxia Shang, Sami Romakkaniemi, and Tomi Raatikainen
Atmos. Chem. Phys., 25, 183–197, https://doi.org/10.5194/acp-25-183-2025,https://doi.org/10.5194/acp-25-183-2025, 2025
Short summary
Potential impacts of marine fuel regulations on an Arctic stratocumulus case and its radiative response
Luís Filipe Escusa dos Santos, Hannah C. Frostenberg, Alejandro Baró Pérez, Annica M. L. Ekman, Luisa Ickes, and Erik S. Thomson
Atmos. Chem. Phys., 25, 119–142, https://doi.org/10.5194/acp-25-119-2025,https://doi.org/10.5194/acp-25-119-2025, 2025
Short summary
The impact of the mesh size and microphysics scheme on the representation of mid-level clouds in the ICON model in hilly and complex terrain
Nadja Omanovic, Brigitta Goger, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 14145–14175, https://doi.org/10.5194/acp-24-14145-2024,https://doi.org/10.5194/acp-24-14145-2024, 2024
Short summary
The role of ascent timescales for warm conveyor belt (WCB) moisture transport into the upper troposphere and lower stratosphere (UTLS)
Cornelis Schwenk and Annette Miltenberger
Atmos. Chem. Phys., 24, 14073–14099, https://doi.org/10.5194/acp-24-14073-2024,https://doi.org/10.5194/acp-24-14073-2024, 2024
Short summary

Cited articles

Alfonso, L.: An algorithm for the numerical nsolution of the multivariate master equation for stochastic coalescence, Atmos. Chem. Phys., 15, 12315–12326, https://doi.org/10.5194/acp-15-12315-2015, 2015.
Alfonso, L., Raga, G. B., and Baumgardner, D.: The validity of the kinetic collection equation revisited, Atmos. Chem. Phys., 8, 969–982, https://doi.org/10.5194/acp-8-969-2008, 2008.
Alfonso, L., Raga, G. B., and Baumgardner, D.: The validity of the kinetic collection equation revisited – Part 2: Simulations for the hydrodynamic kernel, Atmos. Chem. Phys., 10, 7189–7195, https://doi.org/10.5194/acp-10-7189-2010, 2010.
Alfonso, L., Raga, G. B., and Baumgardner, D.: The validity of the kinetic collection equation revisited – Part 3: Sol-gel transition under turbulent conditions, Atmos. Chem. Phys., 13, 521–529, https://doi.org/10.5194/acp-13-521-2013, 2013.
Bayewitz, M. H., Yerushalmi, J., Katz, S., and Shinnar, R.: The extent of correlations in a stochastic coalescence process, J. Atmos. Sci., 31, 1604–1614, 1974.
Short summary
The main hypothesis of this work is that the discrepancy between the observations and the theoretical models of precipitation formation in warm clouds could be explained by the formation of embryo droplets in the context of a sol–gel transition. By using novel numerical techniques, our calculations show that after the formation of the raindrop embryo, the droplet mass distribution strongly differs from the results obtained by using the traditional approaches.
Altmetrics
Final-revised paper
Preprint