
Atmos. Chem. Phys., 17, 6895–6905, 2017
https://doi.org/10.5194/acp-17-6895-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

The impact of fluctuations and correlations in droplet growth by
collision–coalescence revisited – Part 1: Numerical calculation of
post-gel droplet size distribution
Lester Alfonso1 and Graciela B. Raga2

1Universidad Autónoma de la Ciudad de México, Mexico City, 09790, México
2Centro de Ciencias de la Atmósfera, UNAM, Mexico City, 04510, México

Correspondence to: Lester Alfonso (lesterson@yahoo.com)

Received: 16 October 2016 – Discussion started: 29 November 2016
Revised: 6 April 2017 – Accepted: 19 April 2017 – Published: 13 June 2017

Abstract. The impact of stochastic fluctuations in cloud
droplet growth is a matter of broad interest, since stochas-
tic effects are one of the possible explanations of how cloud
droplets cross the size gap and form the raindrop embryos
that trigger warm rain development in cumulus clouds. Most
theoretical studies on this topic rely on the use of the ki-
netic collection equation, or the Gillespie stochastic simula-
tion algorithm. However, the kinetic collection equation is a
deterministic equation with no stochastic fluctuations. More-
over, the traditional calculations using the kinetic collection
equation are not valid when the system undergoes a transi-
tion from a continuous distribution to a distribution plus a
runaway raindrop embryo (known as the sol–gel transition).
On the other hand, the stochastic simulation algorithm, al-
though intrinsically stochastic, fails to adequately reproduce
the large end of the droplet size distribution due to the huge
number of realizations required. Therefore, the full stochas-
tic description of cloud droplet growth must be obtained from
the solution of the master equation for stochastic coales-
cence.

In this study the master equation is used to calculate the
evolution of the droplet size distribution after the sol–gel
transition. These calculations show that after the formation
of the raindrop embryo, the expected droplet mass distribu-
tion strongly differs from the results obtained with the ki-
netic collection equation. Furthermore, the low-mass bins
and bins from the gel fraction are strongly anticorrelated in
the vicinity of the critical time, this being one of the possi-
ble explanations for the differences between the kinetic and
stochastic approaches after the sol–gel transition. Calcula-

tions performed within the stochastic framework provide in-
sight into the inability of explicit microphysics cloud models
to explain the droplet spectral broadening observed in small,
warm clouds.

1 Introduction

Although rain has been observed to form in warm cumulus
clouds within about 20 min, calculations that represent con-
densation and coalescence accurately in such clouds have
had difficulty producing rainfall in such a short time ex-
cept via processes involving giant cloud condensation nuclei
(with diameters larger than 2 µm). One of the possible ori-
gins of this discrepancy is the stochastic nature of the colli-
sion coalescence process that is not well reflected in current
models that rely almost exclusively on the kinetic collection
(or Smoluchowski) equation, hereafter referred to as KCE
(Pruppacher and Klett, 1997):

∂N(i, t)

∂t
=

1
2

i−1∑
j=1

K(i− j,j)N(i− j)N(j)

−N(i)

∞∑
j=1

K(i,j)N(j), (1)

where N(i, t) is the concentration of droplets in bin iand
K(i,j) is the collection kernel for droplets in bins i and j .
Additionally, Eq. (1) fails to represent the droplet size dis-
tribution at the time at which raindrop embryos are formed
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(Alfonso et al., 2008), as there is a transition from a contin-
uous distribution to a continuous distribution plus a massive
raindrop embryo (i.e, the “runaway droplet”). At that point,
the infinite system exhibits a sol–gel transition (also called
gelation and in which the runaway droplet is labeled “gel”),
the KCE breaks down and the total mass of the system cal-
culated according to the KCE is no longer conserved.

One way to avoid this problem is to adopt the stochas-
tic finite volume description of the coalescence process by
using the stochastic simulation algorithm proposed by Gille-
spie (1975). The stochastic simulation algorithm (hereafter
referred as SSA), correctly accounts for fluctuations and cor-
relations, and has been used in cloud simulation studies with
realistic collection kernels (Valioulis and List, 1984). How-
ever, the SSA has difficulties in accurately reproducing the
large end of the droplet size distribution. This is due to the
huge number of realizations required to obtain smooth be-
havior at the large end of the droplet size distribution (Al-
fonso, 2015). The alternative approach (within the stochastic
framework) is to use the master equation:

∂P (n̄)

∂t
=

N∑
i=1

N∑
j=i+1

K(i,j)(ni + 1)(nj + 1)

×P(. . .,ni + 1, . . .,nj + 1, . . .,ni+j − 1, . . .; t)

+

N∑
i=1

1
2
K(i, i)(ni + 2)(ni + 1)

×P(. . .,ni + 2, . . .,n2i − 1, . . .; t)

−

N∑
i=1

N∑
j=i+1

K(i,j)ninjP(n̄; t)

−

N∑
i=1

1
2
K(i, i)ni(ni − 1)P (n̄; t). (2)

The master Eq. (2) is a gain–loss equation for the proba-
bility of each state P(n̄). The sum of the first two terms is
the gain due to transition from other states, and the sum of
the last two terms is the loss due to transitions into other
states. This formulation was introduced in the pioneer works
of Marcus (1968) and Bayewitz et al. (1974), and was stud-
ied in detailed by Lushnikov (1978, 2004) and Tanaka and
Nakazawa (1993). However, these studies only offer ana-
lytical results for a limited number of cases (with constant,
sum and product kernels), for monodisperse initial condi-
tions. Furthermore, most of these studies are limited to non-
gelling conditions and do not provide a coherent framework
for the general case.

The exception are the methods developed by Lush-
nikov (2004) from the analytical solution of the master equa-
tion, and more recently by Matsoukas (2015), the later based
on arguments from statistical physics. These methods, al-
though also limited to very special cases (product kernel
and monodisperse initial conditions), are capable of obtain-
ing solutions in the post-gel regime. For example, in Lush-

nikov (1978, 2004), the coalescence process takes place in
a system with a finite volume that includes a finite number
of particles. Within this approach any losses of mass are,
by definition, excluded. In the infinite system described by
the KCE (Eq. 1), the coagulation process instantly transfers
mass to the gel, while in the finite system the gel coalesces
with smaller particles, decreasing their concentration – not
instantly by rather in a finite time.

In order to study the droplet size distribution after the for-
mation of raindrop embryos (sol–gel transition), for systems
with kernels relevant to cloud physics and arbitrary initial
conditions, we must rely on numerical methods that are ca-
pable of solving the master equation (Eq. 2). We can address
this problem through a detailed comparison of the droplet
size distributions obtained from the stochastic description
for a finite system with the master equation (Eq. 2), and the
deterministic approach for an infinite system by using the
KCE (Eq. 1), using the numerical algorithm reported in Al-
fonso (2015). By the time the gel forms, certain differences
are to be expected between the two approaches at the large
end of the droplet size distribution.

This analysis of the sol–gel transition problem in the cloud
physics context could provide an alternative explanation of
the differences between modeled and observed droplet spec-
tra in clouds. Several mechanisms have been proposed in the
past (entrainment, presence of giant nuclei, supersaturation
fluctuations, effects of air turbulence in concentration fluctu-
ations and collision efficiencies, effects of film forming com-
pounds on droplet growth), and a large amount of literature
exists regarding the variety of mechanisms that may explain
this disparity, but a conclusive answer is still absent. This
study does not attempt to dispute any of the mechanisms al-
ready proposed, but to explore another mechanism that has
not yet been widely considered in the mainstream literature.

The paper is organized as follows. Sect. 2 presents an
overview of the numerical algorithm (following Alfonso,
2015). Numerical results (for the product and hydrodynamic
kernels, respectively) with a detailed analysis of the method
for calculating the sol–gel transition time and a compari-
son with averages calculated with the KCE are presented in
Sects. 3 and 4. Finally, Sect. 5 presents a discussion of the
limits of applicability of the KCE and an example of correla-
tions in the critical region and conclusions.

2 Overview of previous results: numerical solution of
the master equation

The objective of this section is to present a description of
the algorithm. A more detailed explanation of the method
can be found in Alfonso (2015), and only a brief summary
is presented here. The main idea of the algorithm consists of
the numerical calculation of all states for a given initial con-
figuration with probability P(n01, n02, . . ., n0N ;0)= 1, and
the subsequent calculation of the temporal evolution of each
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Figure 1. State space obtained from the initial condition

P(5,0,0,0,0;0)= 1 with the constraint
6∑
i=1

ini = 5.

state. The time evolution can be performed by considering
that the only allowed transitions are of the form n̄

(+)
1 → n̄1

if i 6= j and n̄(+)2 → n̄2 if i = j , where n̄(+)1 , n̄1 and n̄(+)2 , n̄2
are the state vectors:

n̄
(+)
1 = (n1, . . .,ni + 1, . . .,nj + 1, . . .,ni+j − 1, . . .,nN ) (3a)
n̄1 = (n1, . . .,ni, . . .,nj , . . .,ni+j , . . .,nN ) (3b)

n̄
(+)
2 = (n1, . . .,ni + 2, . . .,n2i − 1, . . .,nN ) (3c)
n̄2 = (n1, . . .,ni, . . .,n2i, . . .,nN ). (3d)

For a system consisting of N monomers at t = 0, the number
of possible configurations increases exponentially and can be
approximated from the equation (Hall, 1967):

R(N)≈
1

4N
√

3
exp

(
π(2N/3)1/2

)
. (4)

For example, R(50)= 217590 and R(100)= 190569232.
The procedure is illustrated for a system with

five monomers in the initial state, only for the purpose
of demonstrating the method. As the system in this case
has only six possible states, it is much easier to explain the
details of the calculations. The six possible configurations
generated from the initial state (5,0,0,0,0) are displayed in
Fig. 1.

In a second step, the probabilities of all generated config-
urations are updated according to the first order finite differ-

ence scheme (Alfonso, 2015):

P (n̄; t0+1t)= P (n̄; t0)

+1t
N∑
i=1

N∑
j=i+1

K(i,j)(ni + 1)(nj + 1)

×P(. . .,ni + 1, . . .,nj
+1, . . .,ni+j − 1, . . .; t0)

+1t
N∑
i=1

1
2
K(i, i)(ni + 2)(ni + 1)

×P(. . .,ni + 2, . . .,n2i − 1, . . .; t0)

−1t
N∑

i,j=1
K(i,j)ninjP(n̄; t0)

−1t
N∑
i=1

1
2
K(i, i)ni(ni − 1)P (n̄; t0).

(5)

From Eq. (5) it should be clear that the state probabilities
P (n̄; t0+1t) at t = t0+1t will increase if the states from
which transitions are allowed have a nonzero probability at
t = t0 (second and third terms in the right-hand side of Eq. 5),
and will decrease due to collisions of particles from the same
state at t = t0 (fourth term and fifth terms in the right-hand
side of Eq. 5) if P(n̄; t0) is positive.

The finite difference equation for P(1,0,0,1,0) is
presented to illustrate the method. From the genera-
tion scheme displayed in Fig. 1, note that the only
allowed transitions to (1,0,0,1,0) are from the states
(1,2,0,0,0) and (2,0,1,0,0). Consequently, at t = t0+1t ,
P(1,0,0,1,0; t0+1t) will increase if P(1,2,0,0,0; t0) and
P(2,0,1,0,0; t0) are positive at t = t0. On the other hand,
P(1,0,0,1,0; t0+1t) will decrease due to collisions from
particles within the same state at t = t0 if P(1,0,0,1,0; t0)
is positive. Then, P(1,0,0,1,0; t0+1t) is calculated from
the following equation:

P (1,0,0,1,0; t0+1t)= P (1,0,0,1,0; t0)
+1t(1/2)K(2,2)(n2+ 2)(n2+ 1)
×P(1,2,0,0,0; t0)
+1tK(1,3)(n1+ 1)(n3+ 1)P (2,0,1,0,0; t0)
−1tK(1,4)(n1)(n4)P (1,0,0,1,0; t0).

(6)

The time evolution of the probability of each state was cal-
culated for the product kernel K(i,j)= Cxixj , considering
C = 5.49× 1010 cm3 g−2 s−1 following Long (1974) and for
the initial condition P(5,0,0,0,0;0)= 1. Due to the small
number of droplets in the initial configuration (only 5), the
simulated volume was set equal to 10−2 cm3, with an initial
droplet radius of 17 µm. The time step was 1t = 0.1 s. For
this case, the time evolution of four of the seven configura-
tions is displayed in Fig. 2.

After the calculation for each state is completed, the ex-
pected values for each droplet mass can be found from the
following relation (Alfonso, 2015):

〈nm〉 =
∑
n

nP (n,m; t), (7)

www.atmos-chem-phys.net/17/6895/2017/ Atmos. Chem. Phys., 17, 6895–6905, 2017



6898 L. Alfonso and G. B. Raga: The impact of fluctuations and correlations

Figure 2. Time evolution of the probabilities of 4 of the 7 states
for the initial condition P(5,0,0,0,0;0)= 1. Simulations were
performed with the collection kernel K(i,j)= Cxixj (with C =
5.49× 1010 cm3 g−2 s−1).

where the discrete probability mass function is calculated
from the state probabilities following the expression:

P(n,m; t)=
∑

All states with nm=n

P (n1,n2, . . .,nm = n, . . .nN ; t) . (8)

The expected values 〈nm〉 calculated from Eq. (7) are the
magnitudes that must be compared with the averagesN(m,t)
obtained from the KCE (Eq. 1).

3 Results for the multiplicative kernel

3.1 Estimating the time of gel formation

Lushnikov (2004) demonstrated that right after the sol–gel
transition, the particle mass distribution splits into two parts:
the thermodynamically populated one with behavior de-
scribed by the kinetic collection equation, and a narrow peak
with a mass very close to the gel mass. For the infinite system
described by the KCE (Eq. 1) with kernel K(i,j)= Cxixj ,
the critical time is calculated when the second moment of the
distribution diverges,

M2(τ )=
M2(t0)

1−CM2(t0)τ
, (9)

leading to the critical time of the sol–gel transition:

Tgel = [CM2(t0)]−1. (10)

After τ = Tgel the second moment becomes undefined, and
the total mass of the system starts to decrease.

For a finite system, the standard deviation (σ) of the mass
of the largest droplet is important for calculating the critical
time of the gel formation (Botet, 2011). At the critical time of

Figure 3. For the finite system, the relative standard deviation
σ(Smax) of the largest droplet mass versus time. The initial num-
ber of droplets was set equal to N = 40 droplets of 17 µm in radius
in a volume of 1 cm3. Simulations were performed with the product
kernel K(i,j)= Cxixj (with C = 5.49× 1010 cm3 g−2 s−1), and
Nr = 2000 realizations of the stochastic algorithm were performed.
The maximum value of σ(Smax) is found to be 1065 s. (dashed ver-
tical line) and is very close to the sol gel transition time (continuous
vertical line) for the infinite system (1075 s.).

the infinite system, σ must diverge, since it is proportional to
the second moment of the distributionM2(τ ) which diverges
at the gelation point. However, for a finite system (with no
critical behavior), the relative standard deviation (standard
deviation of mass divided by mean mass) of the mass of the
largest droplet σ(Smax) is expected to reach maximum for a
time close to Tgel = [CM2(t0)]−1.

This was explored in previous studies (Inaba, 1999; Al-
fonso et al., 2008, 2010, 2013), where σ was calculated for
a finite system from Monte Carlo simulations in order to es-
timate the sol–gel transition times for the corresponding de-
terministic model of an infinite system. We can perform an
example calculation of σ by using the species formulation of
the SSA (Laurenzi and Diamond, 2002), in this case:

σ(Smax)=

√√√√ 1
Nr

Nr∑
i=1
(Simax−〈Smax〉)

2, (11)

where Simax is the value of Smax =Mmax/ 〈Mmax〉 for each
realization at a given time, and Nr is the number of iter-
ations of the SSA. Mmax is the size of the largest parti-
cle, and 〈Mmax〉 its ensemble mean over all the realizations.
The time evolution of σ(Smax) is shown in Fig. 3 for a fi-
nite system with N = 40 droplets of 17 µm in radius (droplet
mass= 2.058× 10−8 g) in a volume of 1 cm3. For the prod-
uct kernel with C = 5.49× 1010 cm3 g−2 s−1, the maximum
occurs at T = 1065 s, which is close to the sol–gel transition
time Tgel = 1075 s.
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Figure 4. The droplet mass spectrum at different times (t = 300, 1000, 1800 and 2200 s.). The gel is clearly observed at t = 1800, 2200 s.
Simulations were performed with the collection kernelK(i,j)= Cxixj (with C = 5.49×1010 cm3 g−2 s−1). The initial number of droplets
was set equal to N = 40 droplets of 17 µm in radius in a volume of 1 cm3.

3.2 Calculation of the post-gel droplet size distribution
from the master equation and comparison with the
deterministic (kinetic) approach

The evolution of a system with an initial monodisperse
droplet size distribution of N0 = 40 droplets of 17 µm in ra-
dius at t0, in a volume of 1 cm3 , and a corresponding liquid
water content (LWC) of 0.823 g m−3, was calculated using
the master equation (Eq. 2). The initial condition for this case
is P(40,0, . . .,0;0)= 1 and the time step was set equal to
1t = 0.1 s. The complete phase space of a population with
N = 40 monomers contains 37 338 states, and the master
equation must be solved for the 37 338 states. Then, for each
state there is a finite difference Eq. (5) or an equation similar
to Eq. (6), but with 40-D state vectors.

A discrete 40 bin grid was defined for our model. The mass
for bin 1 is taken to be the mass of a 17 µm in radius droplet,
and the mass of bin n is n times the mass of bin 1. Then, if all
40 droplets in the initial distribution were to coalesce into a
single droplet, the final droplet radius would be 58.14 µm in
diameter and would belong to the mass bin 40.

The results for the droplet mass distribution are displayed
in Fig. 4 at t = 300, 1000, 1800 and 2200 s. Note that the gel
is clearly seen in the distributions at 1800 and 2200 s but not
at 1000 s.

To proceed further, the previous results are compared to
the analytical size distributions from the KCE (Eq. 1) calcu-
lated for the product kernel with monodisperse initial condi-
tions before (t = 300 s) and after (t = 1200 s) gel formation

(Laurenzi and Diamond, 2002):

N(i, t)=N0
(iT )i−1

i0(i+ 1)
exp(−iT ) where T = CN0ν

2
0 t. (12)

In Eq. (12), N0 = 40 is the initial concentration and v0 is the
initial volume of droplets. The index i represents the bin size
and C = 5.49× 1010 cm3 g−2 s−1.

The comparison of the droplet mass concentration
(gKCE(m)=N(m,t)m) calculated from Eq. (12), with ex-
pected values (gSTOC(m)= 〈nm〉m) is calculated from the
master equation (Eq. 2) with the same initial conditions are
displayed in Fig. 5 at t = 300, 1200 s. Note that the KCE
fails to capture the gel formation after the critical time, and
the droplet mass concentration calculated using the kinetic
approach is much lower at the large end of the distribution.
This is due to the fact that the total mass calculated accord-
ing to Eq. (12) decreases after the sol–gel transition time.
This decrease can be clearly seen in the time evolution of the
LWC from the kinetic approach using the relation:

M1(t)=

∞∑
i=1

m(i)N(i, t), (13)

wherem(i) is the mass for bin size i. After t ∼ 1000 s (Fig. 6)
the total mass of the system calculated according to the KCE
starts to decrease, while the total mass calculated from the
stochastic approach is conserved at all times.

www.atmos-chem-phys.net/17/6895/2017/ Atmos. Chem. Phys., 17, 6895–6905, 2017
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Figure 5. Size distributions obtained from the stochastic master equation (dashed lines) and the KCE (solid lines) at (a) t = 300 s and
(b) t = 1200 s. Simulations were performed with the collection kernel K(i,j)= Cxixj (with C = 5.49× 1010 cm3 g−2 s−1). The initial
number of droplets was set equal to N = 40 droplets of 17 µm in radius in a volume of 1 cm3. For the large end, the stochastic approach
shows larger values of the drop mass concentration after the sol–gel transition.

3.3 Calculation of the gel mass

Within the master equation approach, the expected value of
the mass of the largest droplet M1 is approximately given by
(Tanaka and Nakazawa, 1994):

M1 =

N∑
i=i1

m(i) 〈ni〉 , (14)

where 〈ni〉 is the expected number for each droplet size value
calculated from Eq. (7), m(i) is the mass for bin size i, and
the bin number i1 is defined from the following relation:

N∑
i=i1

〈ni〉 = 1. (15)

The mass of the gel,M1, is evaluated for t = 1200, 1800 and
2200 s from Eqs. (14) and (15).

Within the Monte Carlo stochastic approach (SSA), the
expected mass of the gel is the ensemble mean (M1MC ) cal-
culated over all realizations (Nr) of the mass of the largest
droplet (Alfonso et al., 2008):

M1MC =
1
Nr

Nr∑
i=1

M i
1, (16)

where Nr = 1000 for this simulation and M i
1 is the largest

droplet for each realization. The results obtained from both
the master equation and the SSA are displayed in Table 1,
showing a very good correspondence between the two ap-
proaches.

Table 1. Expected gel mass calculated from the SSA, the master
equation and the kinetic approach. Simulations were performed for
the product kernel.

Time Gel mass Gel mass Gel mass
(s) (SSA) (master (KCE)

equation)

1200 2.84× 10−7 g 2.76× 10−7 g 1.75× 10−7 g
1800 5.14× 10−7 g 5.34× 10−7 g 5.59× 10−7 g
2200 6.63× 10−7 g 6.35× 10−7 g 6.66× 10−7 g

After the sol–gel transition, the mass of the gel can also
be estimated by using the infinite system approach from the
following relation (Wetherill, 1990):

Mgel =M0−MKCE, (17)

where M0is the initial mass of the system, and MKCE is the
mass calculated from Eq. (13). The results shown in the third
column of Table 1 indicate good agreement away from the
sol–gel transition time.

4 Results for the hydrodynamic collection kernel

Collisions between droplets under pure gravity conditions
are simulated with the hydrodynamic kernel, which has the
following expression:

Kg(xi,xj )= π(ri + rj )
2 ∣∣V (xi)−V (xj )∣∣E(ri, rj ). (18)

Atmos. Chem. Phys., 17, 6895–6905, 2017 www.atmos-chem-phys.net/17/6895/2017/
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Table 2. Expected gel mass calculated from the SSA and the master
equation. Simulations were performed for the hydrodynamic kernel.

Time Gel mass Gel mass Gel mass
(s) (SSA) (master (KCE)

equation)

1200 s 1.71× 10−7 g 1.79× 10−7 g 3.21× 10−8 g
1800 s 3.34× 10−7 g 3.37× 10−7 g 3.63× 10−7 g
2200 s 4.35× 10−7 g 4.68× 10−7 g 5.14× 10−7 g

The hydrodynamic kernel takes into account the fact that
droplets with different masses (xi and xj and correspond-
ing radii, ri and rj ) have different terminal velocities, which
are functions of their masses. In Eq. (18), E(ri , rj ) are the
collection efficiencies calculated according to Hall (1980).

4.1 Estimating the time of gel formation and the gel
mass

For an infinite system modeled by the KCE (Eq. 1) with the
hydrodynamic kernel, the second moment of the mass distri-
bution (M2) diverges when the raindrop embryo (gel) forms.
As there is no a simple analytical expression to calculate the
critical time (see Eq. 9 for the product kernel) in this case,
Monte Carlo simulations for the finite system could provide
insightful information.

The sol–gel transition time can be estimated approxi-
mately by calculating the time at which the time series of
σ(Smax) in the SSA exhibits a maximum (Alfonso et al.,
2010). As in the case of multiplicative kernel, the time evo-
lution of σ(Smax) is calculated for a cloud volume of 1 cm3

with an initial bidisperse distribution (20 droplets of 17 µm
in radius and 10 droplets of 21.4 µm), and the time evolution
of σ(Smax) is calculated from 1000 realizations (Nr = 1000)
of the SSA. Figure 7 shows that there is a maximum at
t = 1310 s, which is considered a good estimate for the sol–
gel transition time for the infinite system. Thus, the distribu-
tions obtained from the stochastic (master equation) and the
deterministic (kinetic collection equation) approaches must
be compared before and after 1310 s. After the critical time,
the gel mass was calculated using Eqs. (14) and (15). The
results are displayed in Table 2, again showing a good agree-
ment between the calculations performed with the SSA and
the master equation.

Although for the hydrodynamic kernel the critical time
was longer than 20 min, we must emphasize that, in gen-
eral, for concentrations larger than 30–40 cm−3, smaller crit-
ical times must be obtained. For example, for kernels pro-
portional to the product of the masses, Malyshkin and Gold-
man (2001) demonstrated that for monodisperse initial dis-
tributions the critical time decreases as a power of the loga-
rithm of the initial number of particles τcritical ∼ 1/ log(N0).
For kernels relevant to cloud physics, we have a similar situ-
ation (a decrease in the time of occurrence of the phase tran-

Figure 6. Time evolution of the total liquid water content calculated
from the analytical solution of the kinetic collection equation for the
product kernel.

Figure 7. Time evolution of the relative standard deviation σ(Smax)
of the mass of the largest droplet, for a finite system modeled with
the hydrodynamic collection kernel. The initial distribution was
bidisperse with 20 droplets of 17 µm in radius and 10 droplets of
21.4 µm in a volume of 1 cm3. The maximum of σ(Smax)was found
at 1310 s.

sition as the number of particles in the initial distribution in-
creases). A more detailed discussion of this problem for real-
istic collection kernels can be found in Alfonso et al. (2010,
2013).

4.2 Calculation of the post-gel droplet size distribution
from the master equation and comparison with the
deterministic (kinetic) approach

The evolution of a system with the initial bidisperse droplet
size distribution described in the previous section is calcu-
lated here using the master equation (Eq. 2) with the initial
condition P(20,10, . . .,0;0)= 1 and a time step 1t = 0.1 s.
The results for the expected droplet mass distribution as a
function of radius are displayed in Fig. 8 at four different
times (t = 500, 1500, 1800 and 2500 s).

www.atmos-chem-phys.net/17/6895/2017/ Atmos. Chem. Phys., 17, 6895–6905, 2017



6902 L. Alfonso and G. B. Raga: The impact of fluctuations and correlations

Figure 8. The droplet mass spectrum at different times (t = 500, 1500, 1800 and 2500 s) for a finite system modeled with the hydrodynamic
collection kernel. The initial distribution is bidisperse with 20 droplets of 17 µm in radius and 10 droplets of 21.4 µm in a volume of 1 cm3.

Figure 9. Comparison of the size distributions obtained from the stochastic master equation (dashed lines) with that to the KCE (solid lines)
at t = 500 s in (a) and t = 2200 s in (b) for the hydrodynamic kernel. The initial distribution was bidisperse with 20 droplets of 17 µm in
radius and 10 droplets of 21.4 µm in a volume of 1 cm3.

Before the sol–gel transition, the mass spectrum exponen-
tially decreases with increasing drop radius for both the KCE
and the master equation. After the sol–gel transition, there
are two types of behavior in the droplet mass distribution of
the master equation: (i) an exponential decay that resembles
the KCE description, and (ii) a peak in the gel fraction of
the distribution, in which the mass is calculated according to
Eqs. (14) and (15). As can be observed in Fig. 9, there are
substantial differences between the kinetic and the stochastic

approaches, especially in the large end of the distribution af-
ter the critical time, with much higher values of the droplet
mass concentration for the stochastic case.

5 Discussion and conclusions

In their pioneering studies using the stochastic framework,
Marcus (1968) and Bayewitz et al. (1974) solved the stochas-
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Figure 10. Time evolution of the correlation coefficients for dif-
ferent bin pairs ρ1,20, ρ1,25, ρ1,30, ρ1,35 and ρ1,40 for a 1 cm3 sys-
tem modeled with the hydrodynamic kernel, and containing initially
20 droplets of 17 µm and 10 droplets of 21.4 µm.

tic master equation (Eq. 2) for a constant collection kernel
and a monodisperse initial droplet distribution. The latter
study revealed significant deviations from the KCE when
there is a small number of droplets in the initial distribu-
tion (〈NTotal〉< 50). In our work, we extended the results ob-
tained by these authors by calculating the expected droplet
size distributions for small systems within the stochastic
framework, but by using collection kernels that are mass de-
pendent and relevant to cloud physics (e.g. multiplicative and
hydrodynamic). Our results confirm the findings of Bayewitz
et al. (1974) that in systems of small populations the results
of the kinetic deterministic equations approach may differ
substantially from the stochastic means at the large end of
the droplet size distribution.

The application of the KCE to coagulating systems also
requires that the particles are well mixed (Bayewitz et al.,
1974; Sampson and Ramkrishna, 1985), implying that every
pair of droplets is always available for coagulation (Sampson
and Ramkrishna, 1985).

Another important assumption is that the droplet popula-
tion is sufficiently large for the existence of a droplet with
particular properties to not be conditionally dependent on
the existence or nonexistence of any other droplet. In other
words, no correlations are assumed in the system, so that〈
ninj

〉
= 〈ni〉

〈
nj
〉
.

The assumption that the system is sufficiently large is
linked to the fact that the KCE is a deterministic equation
that simulates only the mean values and gives an incomplete
description of the coagulating system if fluctuations about
the mean are very large (Ramkrishna and Borwanker, 1973).
Since fluctuations are proportional to ∼ 1/

√
〈NTotal〉, a large

number of droplets is needed for the fluctuations to be small,
and in fact, the larger the number of particles in a system,
the smaller the fluctuations. This fact underscores the finite
system description adopted in this work, as the collision–

coalescence process is limited to pairs of droplets in close
proximity to each other. The KCE is not expected to be accu-
rate when the number of droplets or the volume of the system
are small.

Additionally, the KCE can fail even if the number of
droplets is large when a raindrop embryo forms. At that crit-
ical time, there is a transition from a continuous droplet dis-
tribution to a continuous distribution plus a raindrop embryo
(or runaway droplet). This sol–gel transition is well known
in other fields (e.g. astronomy), but has not been sufficiently
explored in the context of cloud physics, where the gel would
correspond to the raindrop embryo. This approach is devel-
oped in this paper through a detailed comparison of expected
values calculated from the stochastic framework with aver-
ages obtained from the KCE for realistic collection kernels,
before and after the sol–gel transition time.

The marked differences between these two approaches at
the sol–gel transition can be related to the increase of correla-
tions at the critical point, and that can happen even for a large
number of particles in the initial distribution (Malyshkin and
Goldman, 2001). When the sol–gel transition occurs, the oc-
cupation numbers niof all low-mass bins are strongly anti-
correlated with bins from the gel fraction (calculated from
Eq. 15). On the other hand, in the vicinity of critical time,
the fluctuations for the finite system are larger, since the stan-
dard deviation of the mass of the largest droplet, σ(Smax), has
a maximum. As a consequence, the differences between the
deterministic and stochastic descriptions become larger and
divergent. To further analyze this problem, the time evolution
of the correlation coefficients

ρi,j =
cov(ni,nj )√

Var(ni)Var(nj )
=

σninj

σniσnj
(19)

between the random variables n1 and ni from bins within the
gel fraction (see Eq. 15) were calculated. In the simulations,
the gel fraction at t = 1310 s covers the interval bins from 29
to 58 µm, and narrows as time increases. The time evolution
of the correlation coefficients for different bin pairs ρ1,20,
ρ1,25, ρ1,30, ρ1,35 and ρ1,40 are displayed in Fig. 10, showing,
in all cases, an increase in the magnitude of the correlation
coefficients in the vicinity of the sol–gel transition time. Also
in Fig. 10, correlations are quite large in magnitude and neg-
ative most of the time for ρ1,20, ρ1,25 and ρ1,30 as the mass
of the gel increases through coalescence with droplets from
low-mass bins. However, after 2500 s, pairs 1–20, 1–25 and
1–30 are positively correlated as the gel fraction narrows and
droplets from bins as large as 20, 25 and 30 are also depleted
by the gel. The correlation coefficients for all analyzed pairs
have maxima between 1000 and 1500 s, in the vicinity of the
critical time. The random variable n40 is always anticorre-
lated with n1, with values much higher than the other pairs
after 1500 s, and increasing in magnitude until the end of the
simulation, which reflects the fact that the gel actively grows
by collecting smaller droplets. Thus, for realistic collection
kernels, the mean values predicted by the KCE will be not
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accurate after the sol–gel transition. The stochastic approach
captures the gel formation and evolution properly, with larger
values of the expected droplet mass at the large end of the
distribution.

In principle, this analysis could be performed by using the
SSA, which is an alternative tool for the master equation
formalism (Eq. 2). However, the number of realizations re-
quired to obtain smooth behavior at the large end in order to
compare it with averages from the KCE, would be extremely
large.

It is necessary to emphasize that our method (although it
can be computationally expensive) works for any type of ker-
nels, whereas the analytical techniques developed by Lush-
nikov (2004) and Matsoukas (2015) work only for very spe-
cial cases.

The failure of the KCE to capture the gel formation could
provide an explanation of the inability of explicit micro-
physics cloud models to explain the droplet spectral broad-
ening observed in small, warm clouds. Therefore, even for
large simulation cells, the use of the KCE is justified only in
the absence of the sol–gel transition.

For the small-volume approach described in this paper,
a model that considers the interaction between small coa-
lescence volumes through sedimentation or other physical
mechanisms for realistic collection kernels is needed. For
a constant collection kernel, this theory was outlined by
Merkulovich and Stepanov (1990, 1991) based on a scheme
proposed by Nicolis and Prigogine (1977) for chemical reac-
tions. Within this theory, the whole system is subdivided into
spatially homogeneous subvolumes (coalescence cells) that
interact through the diffusion process, and the coalescence
events are permitted only between droplets from the same
subvolume. As a result, we obtain a set of master equations
for each subvolume. Although very complex, it could be a
starting point for considering the interactions between small
coalescence volumes through different physical mechanisms.
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