Articles | Volume 17, issue 8
Atmos. Chem. Phys., 17, 5331–5354, 2017
https://doi.org/10.5194/acp-17-5331-2017

Special issue: BEACHON Rocky Mountain Organic Carbon Study (ROCS) and Rocky...

Atmos. Chem. Phys., 17, 5331–5354, 2017
https://doi.org/10.5194/acp-17-5331-2017

Research article 25 Apr 2017

Research article | 25 Apr 2017

Secondary organic aerosol formation from in situ OH, O3, and NO3 oxidation of ambient forest air in an oxidation flow reactor

Brett B. Palm et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Brett B. Palm on behalf of the Authors (01 Apr 2017)  Author's response    Manuscript
ED: Publish as is (05 Apr 2017) by Rupert Holzinger
Download
Short summary
Ambient forest air was oxidized by OH, O3, or NO3 inside an oxidation flow reactor, leading to formation of particulate matter from any gaseous precursors found in the air. Closure was achieved between the amount of particulate mass formed from O3 and NO3 oxidation and the amount predicted from speciated gaseous precursors, which was in contrast to previous results for OH oxidation (Palm et al., 2016). Elemental analysis of the particulate mass formed in the reactor is presented.
Altmetrics
Final-revised paper
Preprint