

1 **Supplemental Information for:**

2 **Secondary organic aerosol formation from in situ OH, O₃, and NO₃**
3 **oxidation of ambient forest air in an oxidation flow reactor**

4 Brett B. Palm^{1,2}, Pedro Campuzano-Jost^{1,2}, Amber M. Ortega^{1,3,†}, Douglas A. Day^{1,2}, Julianne L. Fry⁴, Steven
5 S. Brown^{2,5}, Kyle J. Zarzana^{1,2,*}, William Dube^{1,5}, Nicholas L. Wagner^{1,5}, Danielle C. Draper^{4,‡}, Lisa Kaser⁶,
6 Werner Jud^{7,§}, Thomas Karl⁸, Armin Hansel⁷, Cándido Gutiérrez-Montes⁹, and Jose L. Jimenez^{1,2}

7 ¹*Cooperative Institute for Research in Environmental Sciences, University of Colorado, USA;*

8 ²*Department of Chemistry and Biochemistry, University of Colorado, USA;*

9 ³*Department of Atmospheric and Oceanic Science, University of Colorado, USA;*

10 ⁴*Department of Chemistry, Reed College, USA;*

11 ⁵*NOAA Earth System Research Laboratory, Chemical Sciences Division, Boulder, CO, USA*

12 ⁶*National Center for Atmospheric Research, USA;*

13 ⁷*Institute of Ion Physics and Applied Physics, University of Innsbruck, Austria;*

14 ⁸*Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck, Austria;*

15 ⁹*Departamento de Ingeniería, Mecánica y Minera, Universidad de Jaén, Jaén, Spain*

16 [†]*Now at Air Pollution Control Division, Colorado Department of Public Health and Environment, Denver, CO, USA*

17 ^{*}*Now at NOAA Earth System Research Laboratory, Chemical Sciences Division, Boulder, CO, USA*

18 [‡]*Now at Department of Chemistry, University of California, Irvine, USA*

19 [§]*Now at Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology (BIOP), Helmholtz Zentrum
20 München GmbH, Germany*

21 **S1 NO₃ oxidant modeling**

22 To estimate NO₃ exposure in the OFR when injecting N₂O₅, the KinSim chemical-kinetic integrator
23 (version 3.10) was used. Table S1 contains the reactions and rate constant parameters implemented in
24 the model. The model was run with a residence time calculated from the total measured flow in the OFR
25 (between 150 and 240 s). The model was run using this research site's ambient pressure of 770 mbar,
26 and was initialized with measurements of ambient temperature, RH, O₃ concentrations, monoterpene
27 (MT) concentrations, a constant 0.15 ppb NO, and injected NO₂, NO₃, and N₂O₅ concentrations for each
28 data point. The N₂O₅ wall loss rate constant k_{wall} , shown in Fig. S4a, was empirically determined to have
29 a base value of 0.014 s⁻¹ (lifetime of 71 s) using the measured N₂O₅ difference between the injection flow
30 and OFR output concentrations while injecting N₂O₅ into dry zero air in the reactor. Using measurements
31 when injecting into ambient air, an empirical increase in this wall loss rate was required when RH was
32 greater than 80% in order to reproduce the concentrations of N₂O₅ injected and remaining in the OFR
33 output (see Fig. 2a). Figure S4b shows the modeled vs. measured N₂O₅ remaining, illustrating the need
34 for the increasing wall loss rate at high RH. The base wall loss rate of 0.014 s⁻¹ is several times faster than

35 the wall loss rate of 0.0025 s^{-1} estimated in Palm et al. (2016) for condensable organic gases (LVOCs)
36 produced by oxidation in the OFR. This empirical result may be a consequence of the N_2O_5 flow being
37 injected through a Teflon ring that was mounted close to the OFR wall, increasing the effective surface-
38 area-to-volume ratio experienced by the injected N_2O_5 . Injection near the wall may also have been the
39 cause for the relatively large increase in wall loss rate at high RH. The N_2O_5 wall loss rate also implicitly
40 includes any losses on the sampling line walls after the OFR, which also had higher surface-area-to-
41 volume ratios that would likely lead to larger apparent loss rates. The NO_3 wall loss rate was assumed to
42 be equal to the N_2O_5 wall loss rate (and has little effect on the key model outputs). The rate constant for
43 reactive uptake of N_2O_5 onto particulate water surfaces, k_{aer} , is shown as a function of RH in Fig. S5. It
44 was calculated using the measured ambient aerosol condensational sink using the same method
45 described for condensation of LVOCs onto aerosols in Palm et al (2016), except using an organic-mass-
46 fraction-corrected uptake efficiency $\gamma(\text{N}_2\text{O}_5)$ from Gaston et al. (2014). This heterogeneous uptake was
47 typically several orders of magnitude slower than the wall loss rate, and was therefore a minor loss
48 pathway for N_2O_5 .

49 Time constraints prevented the full characterization of the flow characteristics of the experimental
50 setup during the field measurements. Instead, PTR-TOF-MS measurements of the decay of ambient MT
51 in the OFR were used to parameterize the mixing process. With relatively robust constraints provided by
52 measurements of N_2O_5 , NO_2 , and NO_3 , the model results make it clear that a well-mixed OFR would
53 contain more than enough NO_3 to react virtually all ambient biogenic gases, if gases were immediately
54 well-mixed. However, the PTR-TOF-MS measurements verified that substantial amounts of MT often
55 remained in the OFR output. Incomplete mixing of the injected N_2O_5 was the most likely explanation for
56 this observation. A parameterization for the time constant needed for mixing of the injected N_2O_5 flow
57 with ambient air at the entrance of the OFR was added to the model to provide an effective empirical
58 mixing time scale of 100 s. This parameterization for mixing has the same effect as the high wall loss
59 rates of N_2O_5 , which is to decrease the concentrations of oxidant experienced by MT inside the reactor.
60 The true time scale of mixing and wall loss rate may be somewhat different, but the model results
61 presented herein suggest the values used in this work capture the net behavior satisfactorily. The time
62 series of measured and modeled MT decay are shown in Fig. S6–7, which are in addition to the example
63 given in Fig. 4.

64 **References**

65 Atkinson, R. and Arey, J.: Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a
66 review, *Atmos. Environ.*, 37, 197–219, doi:10.1016/S1352-2310(03)00391-1, 2003.

67 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M.
68 J. and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas
69 phase reactions of O_x, HO_x, NO_x and SO_x species, *Atmos. Chem. Phys.*, 4, 1461–1738, doi:10.5194/acp-4-
70 1461-2004, 2004.

71 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M.
72 J., Troe, J. and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric
73 chemistry: Volume II - gas phase reactions of organic species, *Atmos. Chem. Phys.*, 6, 3625–4055,
74 doi:10.5194/acp-6-3625-2006, 2006.

75 Gaston, C. J., Thornton, J. A. and Ng, N. L.: Reactive uptake of N₂O₅ to internally mixed inorganic and
76 organic particles: the role of organic carbon oxidation state and inferred organic phase separations,
77 *Atmos. Chem. Phys.*, 14, 5693–5707, doi:10.5194/acp-14-5693-2014, 2014.

78 Lambe, A. T., Ahern, A. T., Williams, L. R., Slowik, J. G., Wong, J. P. S., Abbatt, J. P. D., Brune, W. H., Ng, N.
79 L., Wright, J. P., Croasdale, D. R., Worsnop, D. R., Davidovits, P. and Onasch, T. B.: Characterization of
80 aerosol photooxidation flow reactors: heterogeneous oxidation, secondary organic aerosol formation
81 and cloud condensation nuclei activity measurements, *Atmos. Meas. Tech.*, 4, 445–461,
82 doi:10.5194/amt-4-445-2011, 2011.

83 Palm, B. B., Campuzano-Jost, P., Ortega, A. M., Day, D. A., Kaser, L., Jud, W., Karl, T., Hansel, A., Hunter, J.
84 F., Cross, E. S., Kroll, J. H., Peng, Z., Brune, W. H. and Jimenez, J. L.: In situ secondary organic aerosol
85 formation from ambient pine forest air using an oxidation flow reactor, *Atmos. Chem. Phys.*, 16, 2943–
86 2970, doi:10.5194/acp-16-2943-2016, 2016.

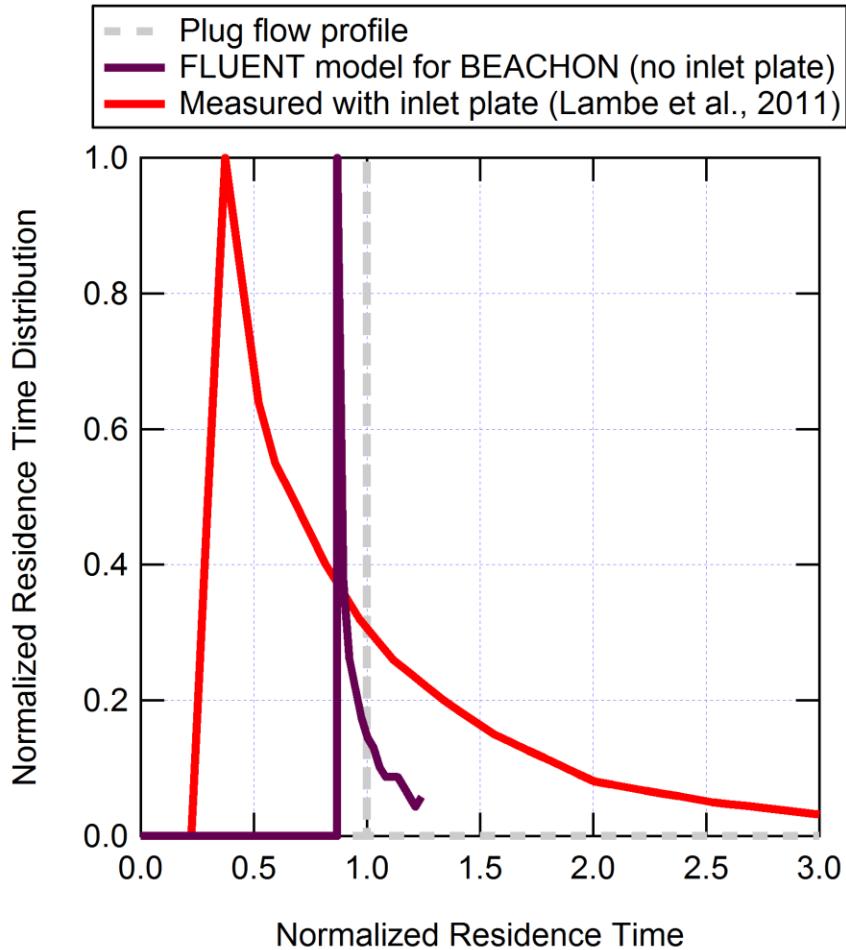
87 Sander, S. P., Abbatt, J. P. D., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb,
88 C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L. and Wine, P. H.: Chemical Kinetics and Photochemical
89 Data for Use in Atmospheric Studies Evaluation Number 17, JPL Publ. 10-6, Jet Propulsion Laboratory,
90 California Institute of Technology, Pasadena, CA, USA, 2011.

91

92 **Tables**

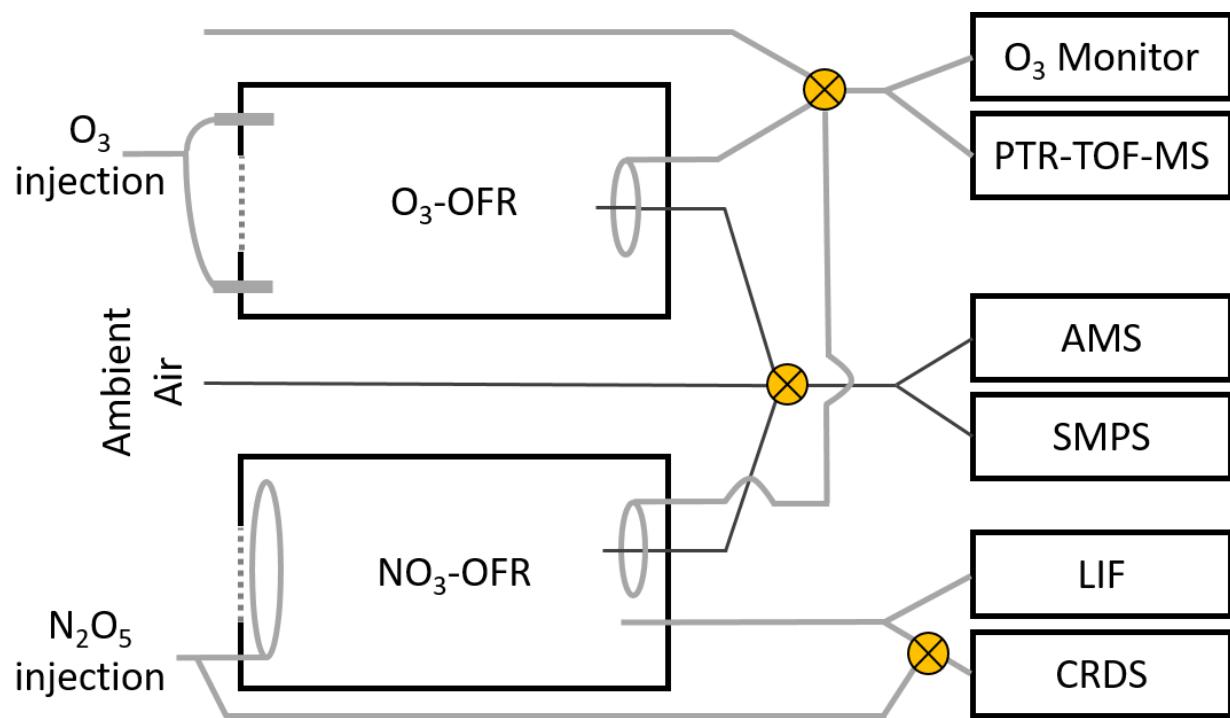
93 **Table S1.** List of reactions and parameters used in modeling of the oxidant chemistry in the OFR when performing NO_3 oxidation. The rate
 94 constants are calculated using the modified Arrhenius equation $k = A \cdot \left(\frac{T(K)}{300}\right)^{-n} \cdot e^{-\frac{E}{RT(K)}}$ with pressure dependence as described in Sect. 2 of
 95 JPL (Sander et al., 2011). Parameter values are from JPL, with exceptions noted.

Reactant 1	Reactant 2	Product 1	Product 2	Product 3	A_∞	E_∞/R	n_∞	A_0	E_0/R	n_0
NO	O_3	NO_2	O_2		3e-12	1500	0	0	0	0
NO_2	O_3	NO_3	O_2		1.2e-13	2450	0	0	0	0
N_2O_5		NO_2	NO_3		9.7e+14^1	11080	-0.1	0.0013	11000	3.5
N_2O_5		Wall loss			k_{wall}^2	0	0	0	0	0
NO_3		Wall loss			k_{wall}^2	0	0	0	0	0
NO_3	α -pinene	RO_2			1.2e-12 ¹	-490	0	0	0	0
NO_3	3-carene	RO_2			9.1e-12 ¹	0	0	0	0	0
NO_3	β -pinene	RO_2			2.5e-12 ¹	0	0	0	0	0
N_2O_5	$\text{H}_2\text{O}_{(g)}$	HNO_3	HNO_3		1e-22	0	0	0	0	0
N_2O_5	$\text{H}_2\text{O}_{(aerosol)}$	HNO_3	HNO_3		k_{aer}^2	0	0	0	0	0
NO	NO_3	NO_2	NO_2		1.8e-11	-110	0	0	0	0
NO_2	NO_3	NO	NO_2	O_2	4.5e-14	1260	0	0	0	0
NO_3	NO_3	NO_2	NO_2	O_2	8.5e-13	2450	0	0	0	0
NO_2	NO_3		N_2O_5		1.9e-12 ¹	0	-0.2	3.6e-30	0	4.1
NO_3	RO_2	RO			1.5e-12	0	0	0	0	0
MT mixing source		α -pinene	3-carene	β -pinene	0.01 ²	0	0	0	0	0

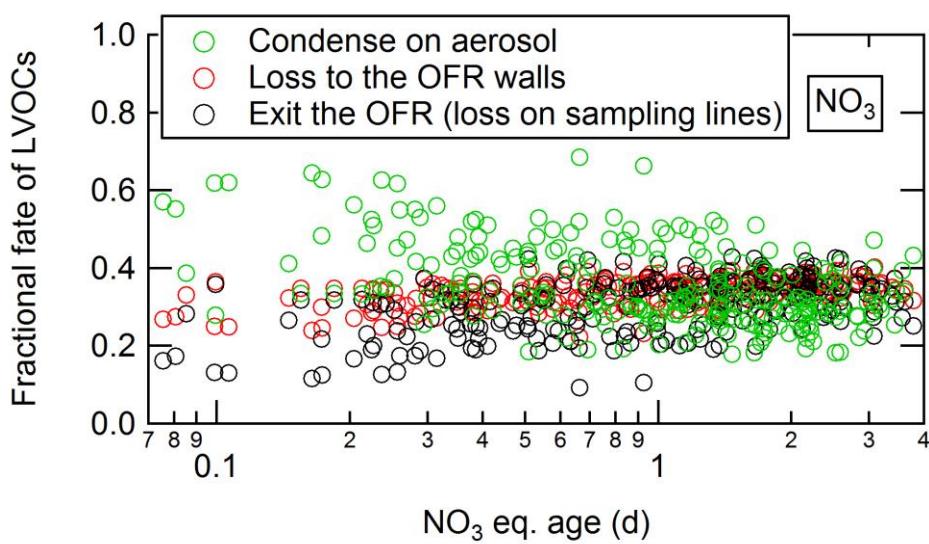
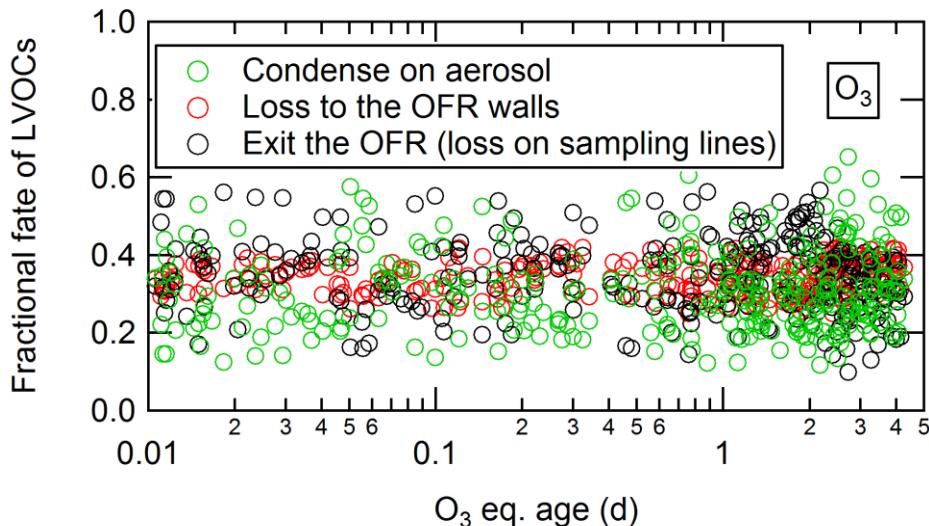

96 ¹Parameter values taken from IUPAC (Atkinson et al., 2004, 2006)

97 ²See Sect. S1 for parameter details

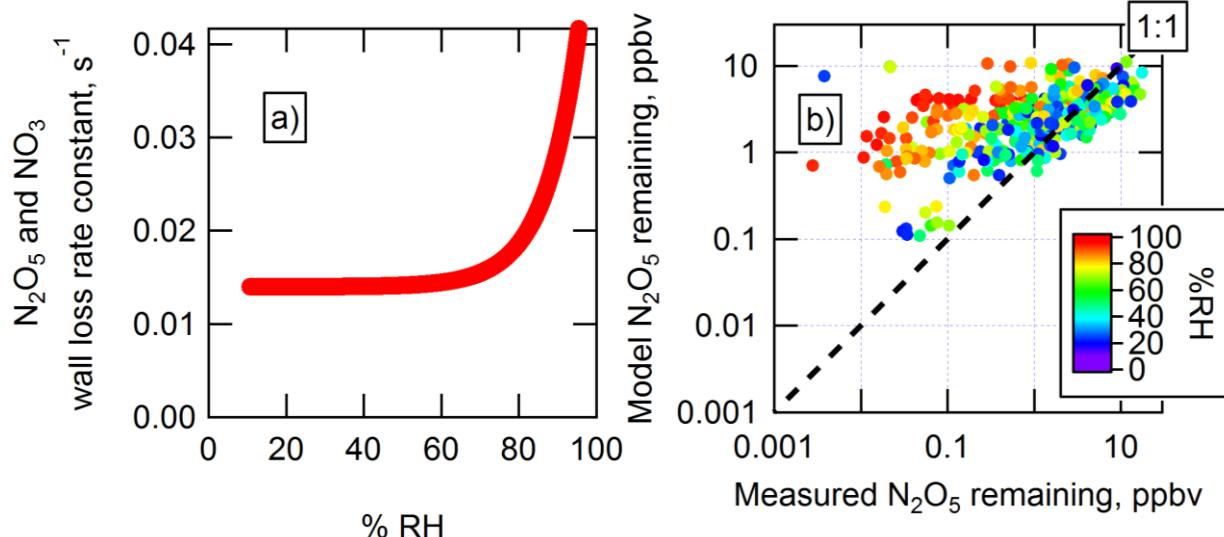
98 **Table S2.** List of reactions and parameters used in modeling of the oxidant chemistry in the OFR when
 99 performing O₃ oxidation. The rate constants are calculated using the modified Arrhenius equation $k =$
 100 $A \cdot \left(\frac{T(K)}{300}\right)^{-n} \cdot e^{-\frac{E}{T(K)}}$. Parameter values are from IUPAC (Atkinson et al., 2006).


Reactant 1	Reactant 2	Product 1	A	E	n01
O ₃	α -pinene	Products	8.05×10^{-16}	640	0
O ₃	β -pinene	Products	1.35×10^{-15}	1270	102
O ₃	3-carene	Products	4.8×10^{-17}	0	903

104



105

106 **Fig. S1.** Normalized residence time distributions in the OFR as a function of normalized residence time (1
 107 = avg. residence time of each distribution). The FLUENT model was used to calculate the residence time
 108 for the OFR configuration without the inlet plate used during BEACHON-RoMBAS. This distribution is
 109 compared to the bis(2-ethylhexyl) sebacate (BES) particle residence time distribution measured with the
 110 inlet plate on in Lambe et al. (2011) and to the ideal plug flow distribution (where all particles have
 111 equal residence time calculated as the OFR volume divided by the total flow rate through the OFR). The
 112 residence time distribution without the inlet plate is much narrower than with the plate and is close to
 113 plug flow, though local winds will create a broader distribution than the model shows.

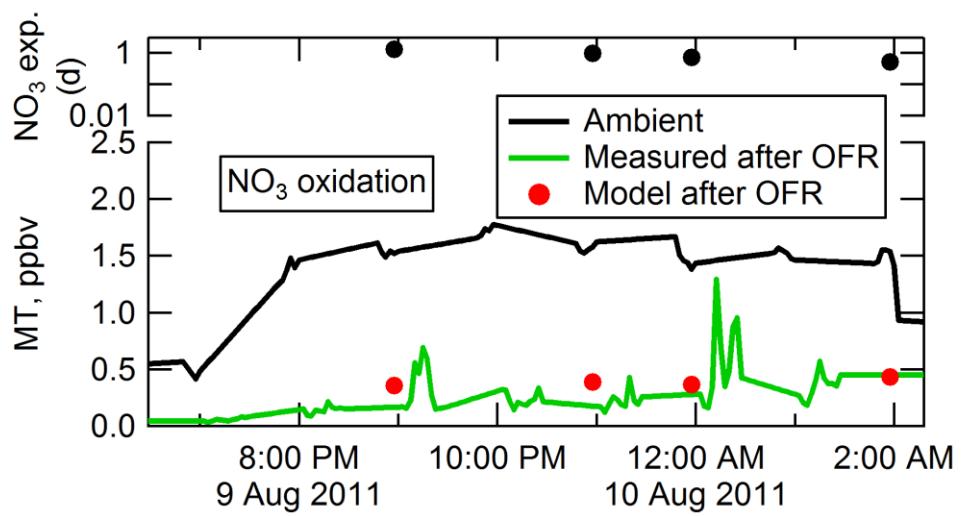
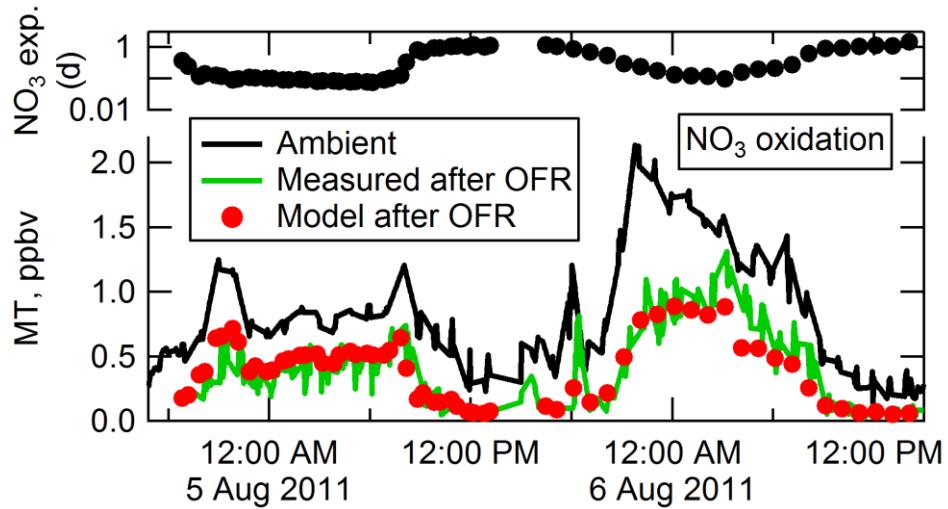

114

115 **Fig. S2.** Schematic of experimental setup of NO_3 -OFR and O_3 -OFR experiments.

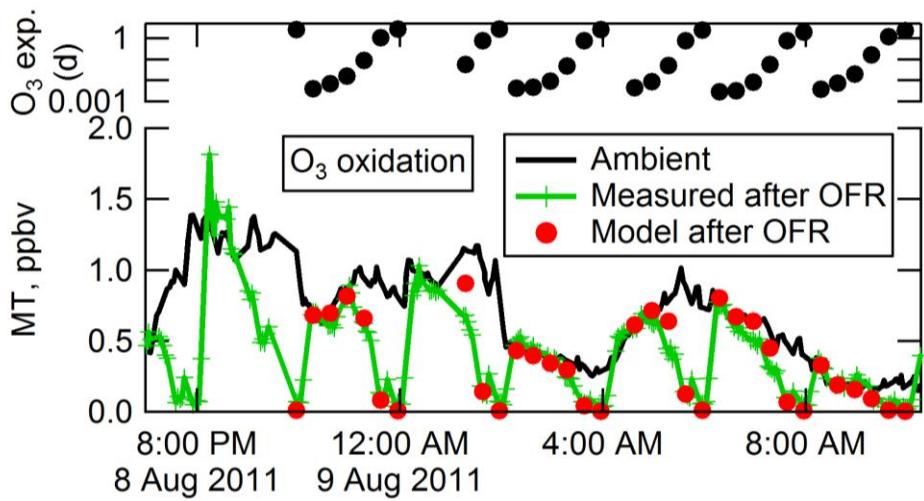
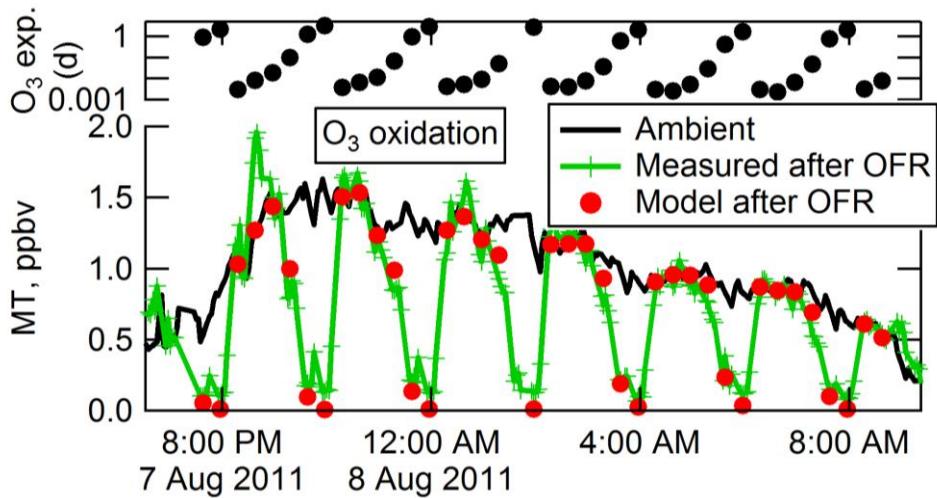
118 **Fig. S3.** Fractional fates of condensable low-volatility organic compounds (LVOCs) produced in the OFR,
119 as a function of eq. age for O_3 oxidation (top) and NO_3 oxidation (bottom). For O_3 oxidation, on average
120 31% of LVOCs condensed onto particles, 34% condensed on OFR walls, and 35% exited the OFR to
121 condense on sampling line walls. For NO_3 oxidation, on average 36% of LVOCs condensed onto particles,
122 34% condensed on OFR walls, and 30% exited the OFR to condense on sampling line walls.

123

124

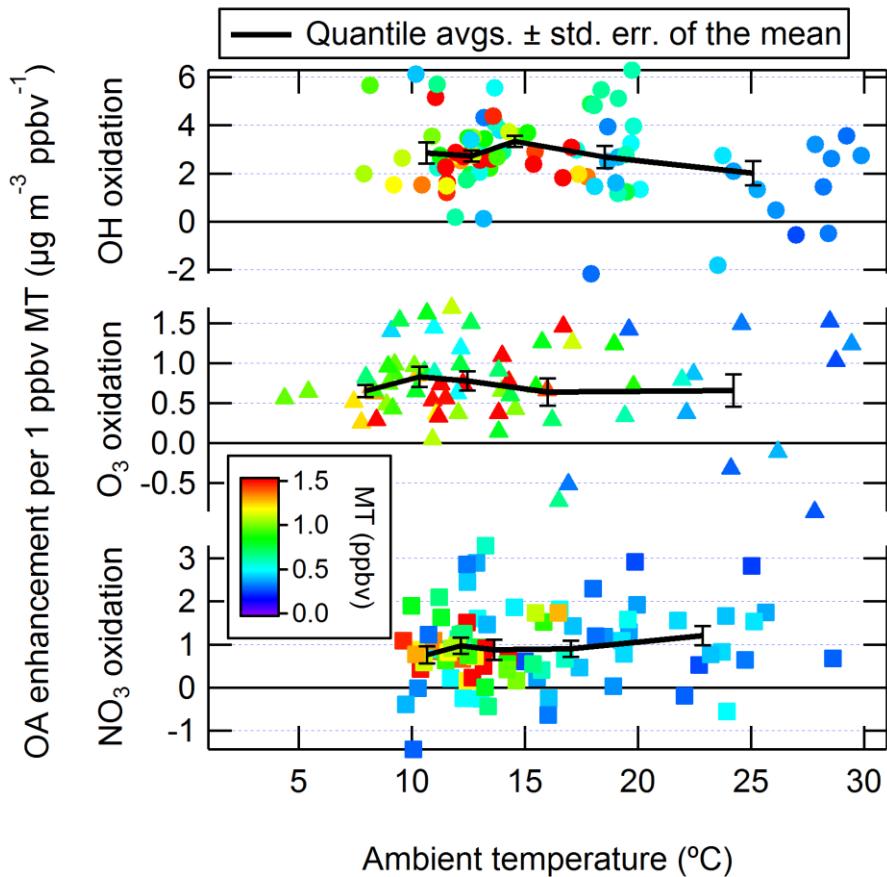


125 **Fig. S4.** a) The wall loss rate constant of N_2O_5 and NO_3 vs. %RH, determined empirically in order to
 126 achieve agreement between modeled and measured N_2O_5 concentrations (Fig. 2a). b) Modeled vs.
 127 measured N_2O_5 remaining (analogous to Fig. 2a), shown if the N_2O_5 and NO_3 wall loss rate was assumed
 128 to be a constant 0.014 s^{-1} at all %RH.

129

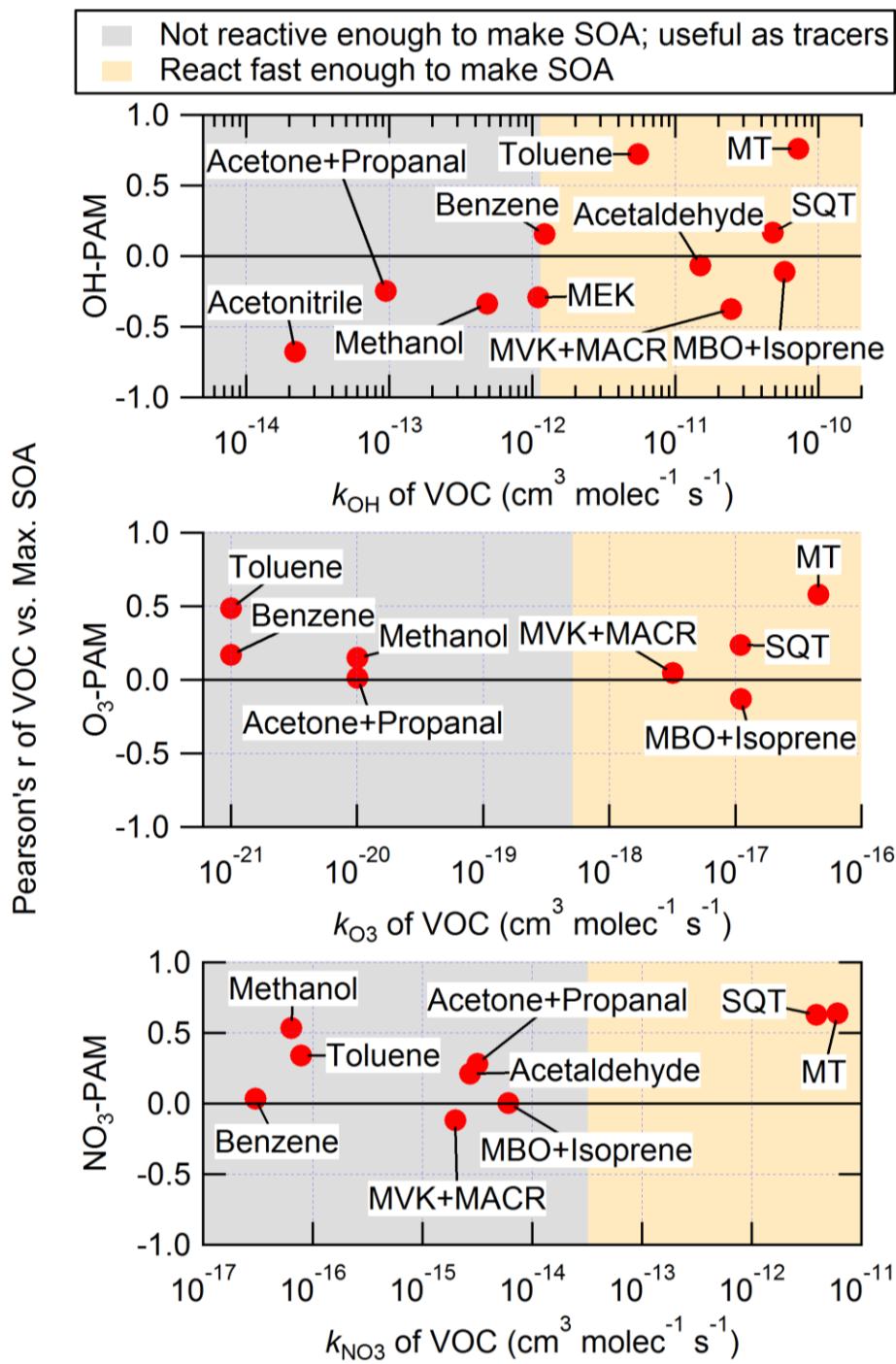
130

131 **Fig. S5.** Calculated rate constant for reactive uptake of N_2O_5 onto particles, as a function of RH. The rate
 132 constant was calculated using the same method for condensation of gases onto aerosols described in
 133 Palm et al (2016), using the measured ambient aerosol condensational sink and using an organic-mass-
 134 fraction-corrected uptake efficiency $\gamma(\text{N}_2\text{O}_5)$ from Gaston et al. (2014).

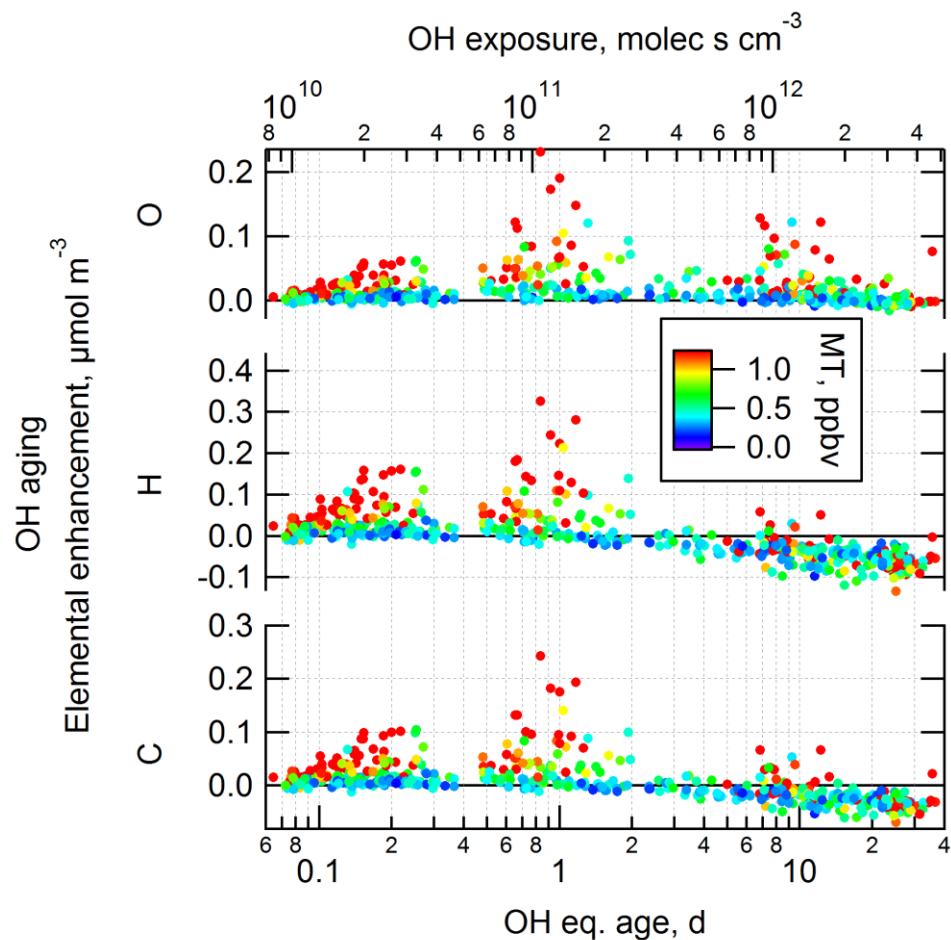


137 **Fig. S6.** Ambient, measured remaining, and modeled remaining MT from NO_3 oxidation in the OFR on
 138 Aug. 4–6 and Aug. 9–10, along with modeled NO_3 exposure (d). For these examples, the amount of
 139 injected N_2O_5 was held roughly constant.

142 **Fig. S7.** Ambient, measured remaining, and modeled remaining MT from O₃ oxidation in the OFR on Aug.
 143 7–8 and Aug. 8–9, along with modeled O₃ exposure (d). The amount of oxidation was cycled from no
 144 added oxidant (no MT reacted) to maximum oxidation (most or all MT reacted) in repeated 2–3 h cycles.

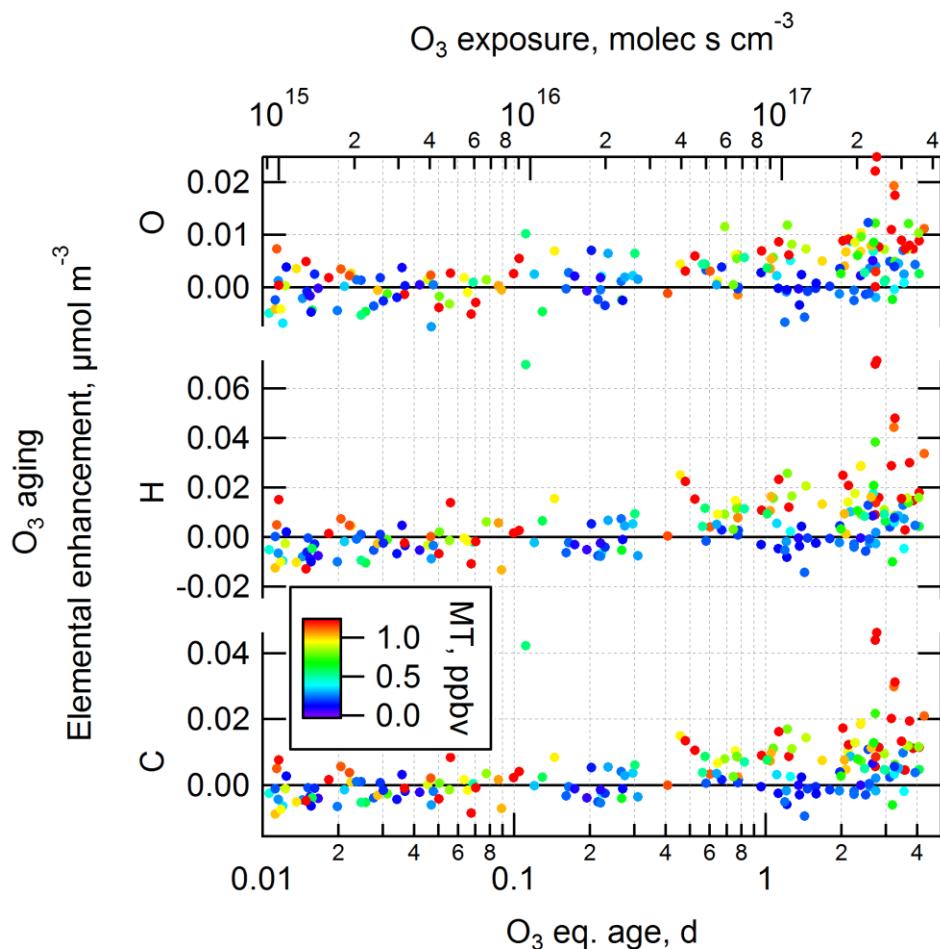

145

146


147 **Fig. S8.** OA enhancement per ppbv ambient MT for OH, O₃ and NO₃ oxidation in the OFR as a function of
 148 ambient temperature. Enhancement is defined as the difference between the concentrations measured
 149 after oxidation and in ambient air, where positive enhancements signify formation in the OFR. Data are
 150 colored by ambient in-canopy MT concentrations, and include the LVOC fate correction. Quantile
 151 averages are shown with error bars corresponding to the standard error of the mean of each quantile.

152

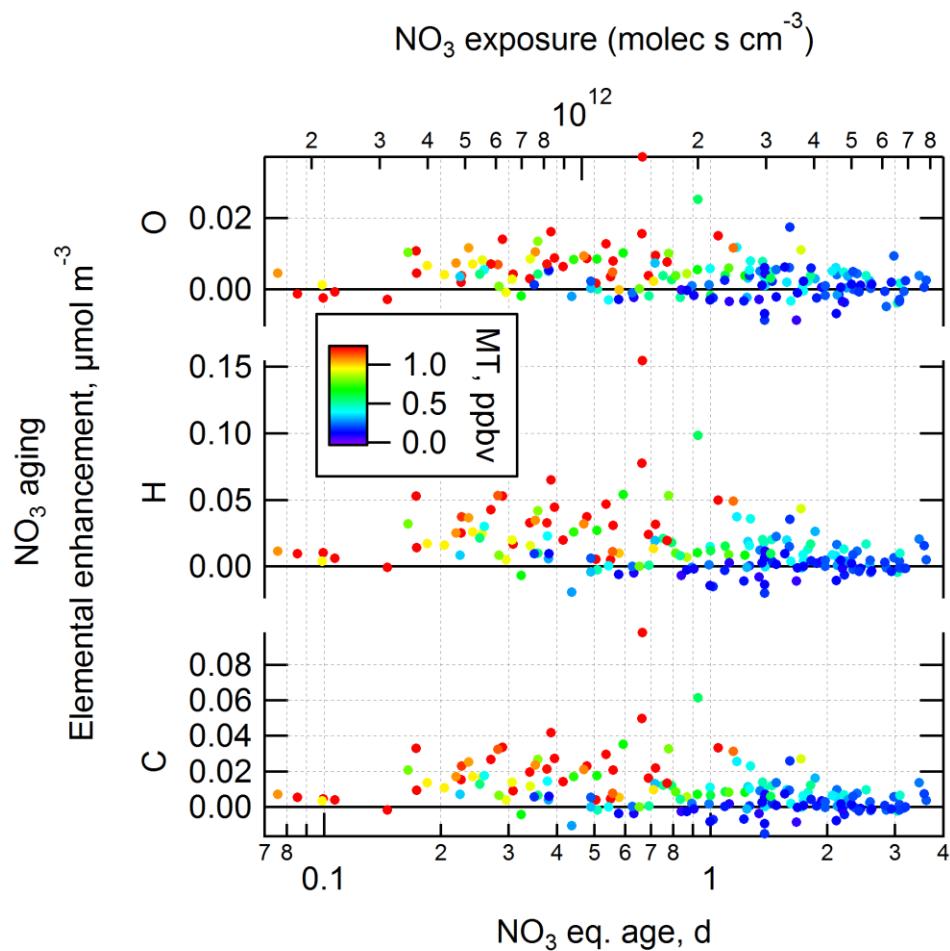
153


154 **Fig. S9.** Pearson's r for the correlation between maximum SOA formation for each oxidant and the
 155 available ambient VOC concentrations. Maximum SOA formation is defined as the ranges of 0.4–1.5 eq.
 156 d for OH-PAM, 0.7–5 eq. d for O₃-PAM, 0.3–4 eq. d for NO₃-PAM. Reaction rate constants are taken from
 157 Atkinson and Arey (2003) and the IUPAC database (Atkinson et al., 2006). The orange colored
 158 background denotes rate constants that are fast enough so that ≥20% of the VOC can react to form SOA
 159 under the conditions of maximum SOA formation in the OFR for each oxidant. In contrast, the grey
 160 background shows rate constants where the molecules do not react in the OFR and cannot contribute to
 161 SOA formation, but could be useful as tracers.

162

163 **Fig. S10.** Elemental C, H, and O enhancements due to OH aging in the OFR, as a function of eq. OH age
 164 and exposure. Enhancement is defined as the difference between the concentrations measured after
 165 oxidation and in ambient air, where positive enhancements signify formation in the OFR. Data are
 166 colored by ambient in-canopy MT concentrations, and do not include the LVOC fate correction.

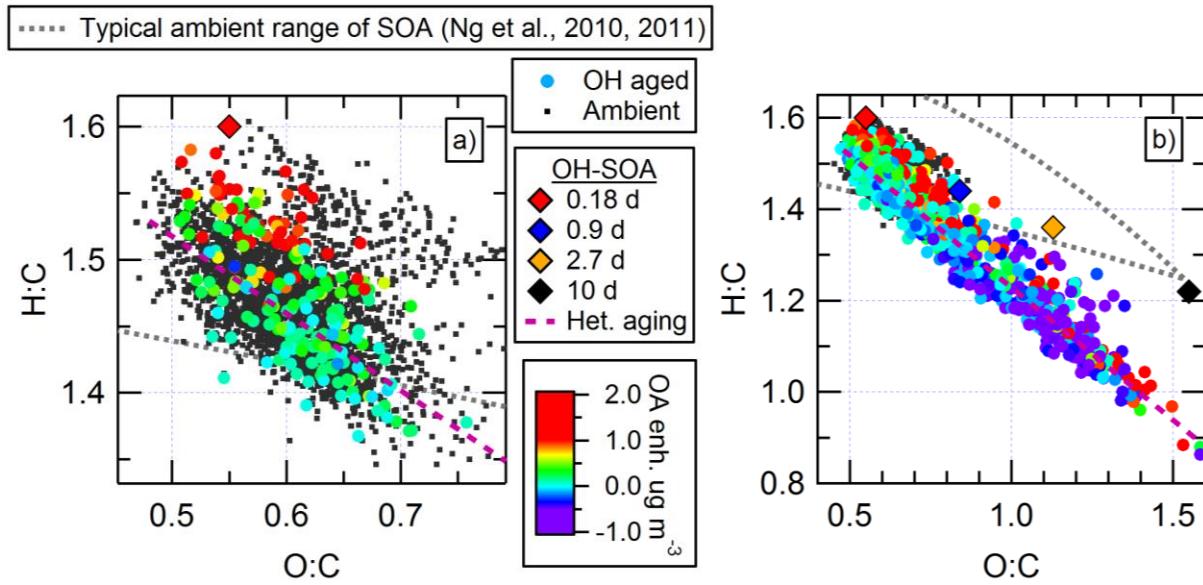
167



168

169 **Fig. S11.** Elemental C, H, and O enhancements due to O₃ aging in the OFR, as a function of eq. O₃ age and
 170 exposure. Enhancement is defined as the difference between the concentrations measured after
 171 oxidation and in ambient air, where positive enhancements signify formation in the OFR. Data are
 172 colored by ambient in-canopy MT concentrations, and do not include the LVOC fate correction.

173


174

175

176 **Fig. S12.** Elemental C, H, and O enhancements due to NO_3 aging in the OFR, as a function of eq. NO_3 age
 177 and exposure. Enhancement is defined as the difference between the concentrations measured after
 178 oxidation and in ambient air, where positive enhancements signify formation in the OFR. Data are
 179 colored by ambient in-canopy MT concentrations, and do not include the LVOC fate correction.

180

181

182 **Fig. S13.** Van Krevelen diagrams of H:C vs. O:C ratios of OA after OH oxidation of ambient air in an OFR,
 183 along with values for ambient OA. OH aged data are colored by the amount of OA enhancement
 184 observed after oxidation. The H:C and O:C ratios of the new SOA mass formed in the OFR (i.e., the slopes
 185 from Fig. 8) are shown (diamonds; see Fig. 11). For data where no net C addition was observed after OH
 186 oxidation, the slope along which heterogeneous OH oxidation transforms the ambient OA is shown
 187 (purple dashed line). Panel a) shows only data in the eq. range of 0.1–0.4 (avg.=0.18) d, while panel b)
 188 shows all data.

189