Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Download
Short summary
Ambient forest air was oxidized by OH, O3, or NO3 inside an oxidation flow reactor, leading to formation of particulate matter from any gaseous precursors found in the air. Closure was achieved between the amount of particulate mass formed from O3 and NO3 oxidation and the amount predicted from speciated gaseous precursors, which was in contrast to previous results for OH oxidation (Palm et al., 2016). Elemental analysis of the particulate mass formed in the reactor is presented.
Altmetrics
Final-revised paper
Preprint
Articles | Volume 17, issue 8
Atmos. Chem. Phys., 17, 5331–5354, 2017
https://doi.org/10.5194/acp-17-5331-2017

Special issue: BEACHON Rocky Mountain Organic Carbon Study (ROCS) and Rocky...

Atmos. Chem. Phys., 17, 5331–5354, 2017
https://doi.org/10.5194/acp-17-5331-2017

Research article 25 Apr 2017

Research article | 25 Apr 2017

Secondary organic aerosol formation from in situ OH, O3, and NO3 oxidation of ambient forest air in an oxidation flow reactor

Brett B. Palm et al.

Viewed

Total article views: 3,213 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,799 1,344 70 3,213 506 51 117
  • HTML: 1,799
  • PDF: 1,344
  • XML: 70
  • Total: 3,213
  • Supplement: 506
  • BibTeX: 51
  • EndNote: 117
Views and downloads (calculated since 02 Jan 2017)
Cumulative views and downloads (calculated since 02 Jan 2017)

Viewed (geographical distribution)

Total article views: 3,236 (including HTML, PDF, and XML) Thereof 3,214 with geography defined and 22 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 17 Jan 2021
Publications Copernicus
Download
Short summary
Ambient forest air was oxidized by OH, O3, or NO3 inside an oxidation flow reactor, leading to formation of particulate matter from any gaseous precursors found in the air. Closure was achieved between the amount of particulate mass formed from O3 and NO3 oxidation and the amount predicted from speciated gaseous precursors, which was in contrast to previous results for OH oxidation (Palm et al., 2016). Elemental analysis of the particulate mass formed in the reactor is presented.
Citation
Altmetrics
Final-revised paper
Preprint