Articles | Volume 17, issue 3
Atmos. Chem. Phys., 17, 1689–1698, 2017

Special issue: Data collection, analysis and application of speciated atmospheric...

Atmos. Chem. Phys., 17, 1689–1698, 2017

Research article 03 Feb 2017

Research article | 03 Feb 2017

Deciphering potential chemical compounds of gaseous oxidized mercury in Florida, USA

Jiaoyan Huang et al.

Related authors

Measuring and modeling mercury in the atmosphere: a critical review
M. S. Gustin, H. M. Amos, J. Huang, M. B. Miller, and K. Heidecorn
Atmos. Chem. Phys., 15, 5697–5713,,, 2015
Short summary
Use of criteria pollutants, active and passive mercury sampling, and receptor modeling to understand the chemical forms of gaseous oxidized mercury in Florida
J. Huang, M. B. Miller, E. Edgerton, and M. S. Gustin
Atmos. Chem. Phys. Discuss.,,, 2015
Revised manuscript not accepted
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Investigations on the anthropogenic reversal of the natural ozone gradient between northern and southern midlatitudes
David D. Parrish, Richard G. Derwent, Steven T. Turnock, Fiona M. O'Connor, Johannes Staehelin, Susanne E. Bauer, Makoto Deushi, Naga Oshima, Kostas Tsigaridis, Tongwen Wu, and Jie Zhang
Atmos. Chem. Phys., 21, 9669–9679,,, 2021
Short summary
Measurement report: Molecular composition and volatility of gaseous organic compounds in a boreal forest – from volatile organic compounds to highly oxygenated organic molecules
Wei Huang, Haiyan Li, Nina Sarnela, Liine Heikkinen, Yee Jun Tham, Jyri Mikkilä, Steven J. Thomas, Neil M. Donahue, Markku Kulmala, and Federico Bianchi
Atmos. Chem. Phys., 21, 8961–8977,,, 2021
Short summary
Boreal forest fire CO and CH4 emission factors derived from tower observations in Alaska during the extreme fire season of 2015
Elizabeth B. Wiggins, Arlyn Andrews, Colm Sweeney, John B. Miller, Charles E. Miller, Sander Veraverbeke, Roisin Commane, Steven Wofsy, John M. Henderson, and James T. Randerson
Atmos. Chem. Phys., 21, 8557–8574,,, 2021
Short summary
Chemical characterization of oxygenated organic compounds in the gas phase and particle phase using iodide CIMS with FIGAERO in urban air
Chenshuo Ye, Bin Yuan, Yi Lin, Zelong Wang, Weiwei Hu, Tiange Li, Wei Chen, Caihong Wu, Chaomin Wang, Shan Huang, Jipeng Qi, Baolin Wang, Chen Wang, Wei Song, Xinming Wang, E Zheng, Jordan E. Krechmer, Penglin Ye, Zhanyi Zhang, Xuemei Wang, Douglas R. Worsnop, and Min Shao
Atmos. Chem. Phys., 21, 8455–8478,,, 2021
Short summary
New approach to evaluate satellite-derived XCO2 over oceans by integrating ship and aircraft observations
Astrid Müller, Hiroshi Tanimoto, Takafumi Sugita, Toshinobu Machida, Shin-ichiro Nakaoka, Prabir K. Patra, Joshua Laughner, and David Crisp
Atmos. Chem. Phys., 21, 8255–8271,,, 2021
Short summary

Cited articles

Ambrose, J. L., Lyman, S. N., Huang, J., Gustin, M. S., and Jaffe, D. A.: Fast Time Resolution Oxidized Mercury Measurements during the Reno Atmospheric Mercury Intercomparison Experiment (RAMIX), Environ. Sci. Technol., 47, 7285–7294, 2013.
Caffrey, J. M., Landing, W. M., Nolek, S. D., Gosnell, K. J., Bagui, S. S., and Bagui, S. C.: Atmospheric deposition of mercury and major ions to the Pensacola (Florida) watershed: spatial, seasonal, and inter-annual variability, Atmos. Chem. Phys., 10, 5425–5434,, 2010.
Castro, M. S., Moore, C., Sherwell, J., and Brooks, S. B.: Dry deposition of gaseous oxidized mercury in Western Maryland, Sci. Total Environ., 417–418, 232–240, 2012.
Deeds, D. A., Ghoshdastidar, A., Raofie, F., Guerette, E. A., Tessier, A., and Ariya, P. A.: Development of a Particle-Trap Preconcentration-Soft Ionization Mass Spectrometric Technique for the Quantification of Mercury Halides in Air, Anal. Chem., 87, 5109–5116, 2015.
Draxler, R.: What are the levels of uncertainty associated with back trajectory calculations in HYSPLIT, NOAA, 2013.
Short summary
The highest mercury (Hg) wet deposition in USA occurs along the Gulf of Mexico. Gaseous oxidized Hg (GOM) is a major contributor due to high water solubility and reactivity. Concentration and dry deposition of GOM were determined for OLF, Florida. Results indicated at least 5 GOM compounds in this area including HgBr2, HgO, and Hg–nitrogen and –sulfur forms. GOM chemistry indicates reactions with local mobile source pollutants and long-range transport from outside of the USA.
Final-revised paper