Research article
31 Jan 2017
Research article
| 31 Jan 2017
Atmospheric processes of organic pollutants over a remote lake on the central Tibetan Plateau: implications for regional cycling
Jiao Ren et al.
Related authors
Balram Pokhrel, Ping Gong, Xiaoping Wang, Sanjay Nath Khanal, Jiao Ren, Chuanfei Wang, Shaopeng Gao, and Tandong Yao
Atmos. Chem. Phys., 18, 1325–1336, https://doi.org/10.5194/acp-18-1325-2018, https://doi.org/10.5194/acp-18-1325-2018, 2018
Short summary
Short summary
As Nepal is a tropical country close to the Himalayas, it is essential to investigate concentration levels and long-range transport potential of persistent organic pollutants (POPs) in its cities to assess whether these pollutants can contaminate the high Himalaya. We found high concentration and long travel distance (> 1000 km) of dichlorodiphenyltrichloroethane and hexachlorocyclohexane in the atmosphere of Nepalese cities, suggesting Nepal can be an important regional source region for POPs.
Xiaoping Wang, Jiao Ren, Ping Gong, Chuanfei Wang, Yonggang Xue, Tandong Yao, and Rainer Lohmann
Atmos. Chem. Phys., 16, 6901–6911, https://doi.org/10.5194/acp-16-6901-2016, https://doi.org/10.5194/acp-16-6901-2016, 2016
Short summary
Short summary
Is there any linkage between climate interactions and spatial distribution of persistent organic pollutants (POPs)? To answer this question, we conducted long-term passive air monitoring across the Tibetan Plateau. We found that there are three graphical zones over the Tibetan Plateau that could be classified as a function of POP fingerprints. This study highlights validity of using POP fingerprints as chemical tracers to track the interactions of climate systems.
Wenfeng Chen, Tandong Yao, Guoqing Zhang, Fei Li, Guoxiong Zheng, Yushan Zhou, and Fenglin Xu
The Cryosphere, 16, 197–218, https://doi.org/10.5194/tc-16-197-2022, https://doi.org/10.5194/tc-16-197-2022, 2022
Short summary
Short summary
A digital elevation model (DEM) is a prerequisite for estimating regional glacier thickness. Our study first compared six widely used global DEMs over the glacierized Tibetan Plateau by using ICESat-2 (Ice, Cloud and land Elevation Satellite) laser altimetry data. Our results show that NASADEM had the best accuracy. We conclude that NASADEM would be the best choice for ice-thickness estimation over the Tibetan Plateau through an intercomparison of four ice-thickness inversion models.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Simon Allen, Ashim Sattar, Owen King, Guoqing Zhang, Atanu Bhattacharya, Tandong Yao, and Tobias Bolch
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-167, https://doi.org/10.5194/nhess-2021-167, 2021
Revised manuscript has not been submitted
Short summary
Short summary
This study examines how the formation of a new glacial lake, in response to future glacial melting, could enhance the flood threat to a transboundary basin flowing between Tibet and Nepal. A flood resulting from a catastrophic outburst from this future lake could lead to higher flood levels than currently anticipated, and the flood wave would travel faster. These results can help ensure that hazard mapping and early warning systems in the basin remain robust over future decades.
Yanbin Lei, Tandong Yao, Kun Yang, Lazhu, Yaoming Ma, and Broxton W. Bird
Hydrol. Earth Syst. Sci., 25, 3163–3177, https://doi.org/10.5194/hess-25-3163-2021, https://doi.org/10.5194/hess-25-3163-2021, 2021
Short summary
Short summary
Lake evaporation from Paiku Co on the TP is low in spring and summer and high in autumn and early winter. There is a ~ 5-month lag between net radiation and evaporation due to large lake heat storage. High evaporation and low inflow cause significant lake-level decrease in autumn and early winter, while low evaporation and high inflow cause considerable lake-level increase in summer. This study implies that evaporation can affect the different amplitudes of lake-level variations on the TP.
Yanbin Lei, Tandong Yao, Lide Tian, Yongwei Sheng, Lazhu, Jingjuan Liao, Huabiao Zhao, Wei Yang, Kun Yang, Etienne Berthier, Fanny Brun, Yang Gao, Meilin Zhu, and Guangjian Wu
The Cryosphere, 15, 199–214, https://doi.org/10.5194/tc-15-199-2021, https://doi.org/10.5194/tc-15-199-2021, 2021
Short summary
Short summary
Two glaciers in the Aru range, western Tibetan Plateau (TP), collapsed suddenly on 17 July and 21 September 2016, respectively, causing fatal damage to local people and their livestock. The impact of the glacier collapses on the two downstream lakes (i.e., Aru Co and Memar Co) is investigated in terms of lake morphology, water level and water temperature. Our results provide a baseline in understanding the future lake response to glacier melting on the TP under a warming climate.
Yanbin Lei, Tandong Yao, Kun Yang, Zhu La, Yaoming Ma, and Broxton W. Bird
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-421, https://doi.org/10.5194/hess-2019-421, 2019
Revised manuscript not accepted
Adrien Gilbert, Silvan Leinss, Jeffrey Kargel, Andreas Kääb, Simon Gascoin, Gregory Leonard, Etienne Berthier, Alina Karki, and Tandong Yao
The Cryosphere, 12, 2883–2900, https://doi.org/10.5194/tc-12-2883-2018, https://doi.org/10.5194/tc-12-2883-2018, 2018
Short summary
Short summary
In Tibet, two glaciers suddenly collapsed in summer 2016 and produced two gigantic ice avalanches, killing nine people. This kind of phenomenon is extremely rare. By combining a detailed modelling study and high-resolution satellite observations, we show that the event was triggered by an increasing meltwater supply in the fine-grained material underneath the two glaciers. Contrary to what is often thought, this event is not linked to a change in the thermal condition at the glacier base.
Xiaoping Wang, Jasmin Schuster, Kevin C. Jones, and Ping Gong
Atmos. Chem. Phys., 18, 8745–8755, https://doi.org/10.5194/acp-18-8745-2018, https://doi.org/10.5194/acp-18-8745-2018, 2018
Short summary
Short summary
The Tibetan Plateau (TP) is often referred to as the
third pole. There is still a gap in knowledge regarding the distribution of emerging perfluoroalkyl substances and cyclic volatile methylsiloxanes in the Tibetan environment. By using passive air samplers, higher levels of emerging compounds were generally observed at sites close to the transport channel of the Yarlung Tsangpo Grand Canyon and cities of the TP.
Balram Pokhrel, Ping Gong, Xiaoping Wang, Sanjay Nath Khanal, Jiao Ren, Chuanfei Wang, Shaopeng Gao, and Tandong Yao
Atmos. Chem. Phys., 18, 1325–1336, https://doi.org/10.5194/acp-18-1325-2018, https://doi.org/10.5194/acp-18-1325-2018, 2018
Short summary
Short summary
As Nepal is a tropical country close to the Himalayas, it is essential to investigate concentration levels and long-range transport potential of persistent organic pollutants (POPs) in its cities to assess whether these pollutants can contaminate the high Himalaya. We found high concentration and long travel distance (> 1000 km) of dichlorodiphenyltrichloroethane and hexachlorocyclohexane in the atmosphere of Nepalese cities, suggesting Nepal can be an important regional source region for POPs.
Xiaoxin Yang, Sunil Acharya, and Tandong Yao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-876, https://doi.org/10.5194/acp-2016-876, 2016
Revised manuscript has not been submitted
Xiaoping Wang, Jiao Ren, Ping Gong, Chuanfei Wang, Yonggang Xue, Tandong Yao, and Rainer Lohmann
Atmos. Chem. Phys., 16, 6901–6911, https://doi.org/10.5194/acp-16-6901-2016, https://doi.org/10.5194/acp-16-6901-2016, 2016
Short summary
Short summary
Is there any linkage between climate interactions and spatial distribution of persistent organic pollutants (POPs)? To answer this question, we conducted long-term passive air monitoring across the Tibetan Plateau. We found that there are three graphical zones over the Tibetan Plateau that could be classified as a function of POP fingerprints. This study highlights validity of using POP fingerprints as chemical tracers to track the interactions of climate systems.
Related subject area
Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Interannual variability of terpenoid emissions in an alpine city
Observations and modelling of glyoxal in the tropical Atlantic marine boundary layer
Top-down and bottom-up estimates of anthropogenic methyl bromide emissions from eastern China
Direct measurements of ozone response to emissions perturbations in California
Ground-based investigation of HOx and ozone chemistry in biomass burning plumes in rural Idaho
Insights into the significant increase in ozone during COVID-19 in a typical urban city of China
Quantification and assessment of methane emissions from offshore oil and gas facilities on the Norwegian continental shelf
Full latitudinal marine atmospheric measurements of iodine monoxide
Direct observations indicate photodegradable oxygenated volatile organic compounds (OVOCs) as larger contributors to radicals and ozone production in the atmosphere
Assessing vehicle fuel efficiency using a dense network of CO2 observations
Odds and ends of atmospheric mercury in Europe and over the North Atlantic Ocean: temporal trends of 25 years of measurements
Interpretation of NO3–N2O5 observation via steady state in high-aerosol air mass: the impact of equilibrium coefficient in ambient conditions
Global emissions of perfluorocyclobutane (PFC-318, c-C4F8) resulting from the use of hydrochlorofluorocarbon-22 (HCFC-22) feedstock to produce polytetrafluoroethylene (PTFE) and related fluorochemicals
Atmospheric measurements at Mt. Tai – Part I: HONO formation and its role in the oxidizing capacity of the upper boundary layer
Urban inland wintertime N2O5 and ClNO2 influenced by snow-covered ground, air turbulence, and precipitation
First observation of mercury species on an important water vapor channel in the southeastern Tibetan Plateau
Swiss halocarbon emissions for 2019 to 2020 assessed from regional atmospheric observations
Measurement report: Long-term measurements of aerosol precursor concentrations in the Finnish subarctic boreal forest
The Fires, Asian, and Stratospheric Transport–Las Vegas Ozone Study (FAST-LVOS)
Measurement report: Long-term variations in surface NOx and SO2 mixing ratios from 2006 to 2016 at a background site in the Yangtze River Delta region, China
Atmospheric measurements at Mt. Tai – Part II: HONO budget and radical (ROx + NO3) chemistry in the lower boundary layer
Exploration of the atmospheric chemistry of nitrous acid in a coastal city of southeastern China: results from measurements across four seasons
Joint Occurrence of Heatwaves and Ozone Pollution and Increased Health Risks in Beijing, China: Roles of Synoptic Weather Pattern and Urbanization
OH and HO2 radicals chemistry at a suburban site during the EXPLORE-YRD campaign in 2018
Measurement report: Ambient volatile organic compounds (VOCs) pollution at urban Beijing: characteristics, sources, and implications for pollution control
Tropospheric ozone production and chemical regime analysis during the COVID-19 lockdown over Europe
Formaldehyde evolution in US wildfire plumes during the Fire Influence on Regional to Global Environments and Air Quality experiment (FIREX-AQ)
Measurement report: Photochemical production and loss rates of formaldehyde and ozone across Europe
Is the ocean surface a source of nitrous acid (HONO) in the marine boundary layer?
Measurement report: High contributions of halocarbon and aromatic compounds to atmospheric volatile organic compounds in an industrial area
Measurement report: Fast photochemical production of peroxyacetyl nitrate (PAN) over the rural North China Plain during haze events in autumn
Long-term atmospheric emissions for the Coal Oil Point natural marine hydrocarbon seep field, offshore California
Measurement report: Observation-based formaldehyde production rates and their relation to OH reactivity around the Arabian Peninsula
Comment on “Isotopic evidence for dominant secondary production of HONO in near-ground wildfire plumes” by Chai et al. (2021)
An investigation into the chemistry of HONO in the marine boundary layer at Tudor Hill Marine Atmospheric Observatory in Bermuda
Measurement report: Regional characteristics of seasonal and long-term variations in greenhouse gases at Nainital, India, and Comilla, Bangladesh
Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data
The effects of the COVID-19 lockdowns on the composition of the troposphere as seen by In-service Aircraft for a Global Observing System (IAGOS) at Frankfurt
Oceanic emissions of dimethyl sulfide and methanethiol and their contribution to sulfur dioxide production in the marine atmosphere
Winter ClNO2 formation in the region of fresh anthropogenic emissions: seasonal variability and insights into daytime peaks in northern China
Speciated atmospheric mercury at the Waliguan Global Atmosphere Watch station in the northeastern Tibetan Plateau: implication of dust-related sources for particulate bound mercury
Measurement report: Variability in the composition of biogenic volatile organic compounds in a Southeastern US forest and their role in atmospheric reactivity
Spatially and temporally resolved measurements of NOx fluxes by airborne eddy covariance over Greater London
Temporary pause in the growth of atmospheric ethane and propane in 2015–2018
Spatiotemporal variations of the δ(O2/N2), CO2 and δ(APO) in the troposphere over the Western North Pacific
Formation of condensable organic vapors from anthropogenic and biogenic volatile organic compounds (VOCs) is strongly perturbed by NOx in eastern China
Seasonal and diurnal variations in biogenic volatile organic compounds in highland and lowland ecosystems in southern Kenya
An evaluation of new particle formation events in Helsinki during a Baltic Sea cyanobacterial summer bloom
Origins and characterization of CO and O3 in the African upper troposphere
In situ ozone production is highly sensitive to volatile organic compounds in Delhi, India
Lisa Kaser, Arianna Peron, Martin Graus, Marcus Striednig, Georg Wohlfahrt, Stanislav Juráň, and Thomas Karl
Atmos. Chem. Phys., 22, 5603–5618, https://doi.org/10.5194/acp-22-5603-2022, https://doi.org/10.5194/acp-22-5603-2022, 2022
Short summary
Short summary
Biogenic volatile organic compounds (e.g., terpenoids) play an essential role in atmospheric chemistry. Urban greening activities need to consider the ozone- and aerosol-forming potential of these compounds released from vegetation. NMVOC emissions in urban environments are complex, and the biogenic component remains poorly quantified. For summer conditions biogenic emissions dominate terpene emissions and heat waves can significantly modulate urban biogenic terpenoid emissions.
Hannah Walker, Daniel Stone, Trevor Ingham, Sina Hackenberg, Danny Cryer, Shalini Punjabi, Katie Read, James Lee, Lisa Whalley, Dominick V. Spracklen, Lucy J. Carpenter, Steve R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 22, 5535–5557, https://doi.org/10.5194/acp-22-5535-2022, https://doi.org/10.5194/acp-22-5535-2022, 2022
Short summary
Short summary
Glyoxal is a ubiquitous reactive organic compound in the atmosphere, which may form organic aerosol and impact the atmosphere's oxidising capacity. There are limited measurements of glyoxal's abundance in the remote marine atmosphere. We made new measurements of glyoxal using a highly sensitive technique over two 4-week periods in the tropical Atlantic atmosphere. We show that daytime measurements are mostly consistent with our chemical understanding but a potential missing source at night.
Haklim Choi, Mi-Kyung Park, Paul J. Fraser, Hyeri Park, Sohyeon Geum, Jens Mühle, Jooil Kim, Ian Porter, Peter K. Salameh, Christina M. Harth, Bronwyn L. Dunse, Paul B. Krummel, Ray F. Weiss, Simon O'Doherty, Dickon Young, and Sunyoung Park
Atmos. Chem. Phys., 22, 5157–5173, https://doi.org/10.5194/acp-22-5157-2022, https://doi.org/10.5194/acp-22-5157-2022, 2022
Short summary
Short summary
We observed 12-year continuous CH3Br pollution signals at Gosan and estimated anthropogenic CH3Br emissions in eastern China. The analysis revealed a significant discrepancy between top-down estimates and the bottom-up emissions from the fumigation usage reported to the United Nations Environment Programme, likely due to unreported or inaccurately reported fumigation usage. This result provides information to monitor international compliance with the Montreal Protocol.
Shenglun Wu, Hyung Joo Lee, Andrea Anderson, Shang Liu, Toshihiro Kuwayama, John H. Seinfeld, and Michael J. Kleeman
Atmos. Chem. Phys., 22, 4929–4949, https://doi.org/10.5194/acp-22-4929-2022, https://doi.org/10.5194/acp-22-4929-2022, 2022
Short summary
Short summary
An ozone control experiment usually conducted in the laboratory was installed in a trailer and moved to the outdoor environment to directly confirm that we are controlling the right sources in order to lower ambient ozone concentrations. Adding small amounts of precursor oxides of nitrogen and volatile organic compounds to ambient air showed that the highest ozone concentrations are best controlled by reducing concentrations of oxides of nitrogen. The results confirm satellite measurements.
Andrew J. Lindsay, Daniel C. Anderson, Rebecca A. Wernis, Yutong Liang, Allen H. Goldstein, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Ed C. Fortner, Philip L. Croteau, Francesca Majluf, Jordan E. Krechmer, Tara I. Yacovitch, Walter B. Knighton, and Ezra C. Wood
Atmos. Chem. Phys., 22, 4909–4928, https://doi.org/10.5194/acp-22-4909-2022, https://doi.org/10.5194/acp-22-4909-2022, 2022
Short summary
Short summary
Wildfire smoke dramatically impacts air quality and often has elevated concentrations of ozone. We present measurements of ozone and its precursors at a rural site periodically impacted by wildfire smoke. Measurements of total peroxy radicals, key ozone precursors that have been studied little within wildfires, compare well with chemical box model predictions. Our results indicate no serious issues with using current chemistry mechanisms to model chemistry in aged wildfire plumes.
Kun Zhang, Zhiqiang Liu, Xiaojuan Zhang, Qing Li, Andrew Jensen, Wen Tan, Ling Huang, Yangjun Wang, Joost de Gouw, and Li Li
Atmos. Chem. Phys., 22, 4853–4866, https://doi.org/10.5194/acp-22-4853-2022, https://doi.org/10.5194/acp-22-4853-2022, 2022
Short summary
Short summary
A significant increase in O3 concentrations was found during the lockdown period of COVID-19 in most areas of China. By field measurements coupled with machine learning, an observation-based model (OBM) and sensitivity analysis, we found the changes in the NOx / VOC ratio were a key reason for the significant rise in O3. To restrain O3 pollution, more efforts should be devoted to the control of anthropogenic OVOCs, alkenes and aromatics.
Amy Foulds, Grant Allen, Jacob T. Shaw, Prudence Bateson, Patrick A. Barker, Langwen Huang, Joseph R. Pitt, James D. Lee, Shona E. Wilde, Pamela Dominutti, Ruth M. Purvis, David Lowry, James L. France, Rebecca E. Fisher, Alina Fiehn, Magdalena Pühl, Stéphane J. B. Bauguitte, Stephen A. Conley, Mackenzie L. Smith, Tom Lachlan-Cope, Ignacio Pisso, and Stefan Schwietzke
Atmos. Chem. Phys., 22, 4303–4322, https://doi.org/10.5194/acp-22-4303-2022, https://doi.org/10.5194/acp-22-4303-2022, 2022
Short summary
Short summary
We measured CH4 emissions from 21 offshore oil and gas facilities in the Norwegian Sea in 2019. Measurements compared well with operator-reported emissions but were greatly underestimated when compared with a 2016 global fossil fuel inventory. This study demonstrates the need for up-to-date and accurate inventories for use in research and policy and the important benefits of best-practice reporting methods by operators. Airborne measurements are an effective tool to validate such inventories.
Hisahiro Takashima, Yugo Kanaya, Saki Kato, Martina M. Friedrich, Michel Van Roozendael, Fumikazu Taketani, Takuma Miyakawa, Yuichi Komazaki, Carlos A. Cuevas, Alfonso Saiz-Lopez, and Takashi Sekiya
Atmos. Chem. Phys., 22, 4005–4018, https://doi.org/10.5194/acp-22-4005-2022, https://doi.org/10.5194/acp-22-4005-2022, 2022
Short summary
Short summary
We have undertaken atmospheric iodine monoxide (IO) observations in the global marine boundary layer with a wide latitudinal coverage and sea surface temperature (SST) range. We conclude that atmospheric iodine is abundant over the Western Pacific warm pool, appearing as an iodine fountain, where ozone (O3) minima occur. Our study also found negative correlations between IO and O3 concentrations over IO maxima, which requires reconsideration of the initiation process of halogen activation.
Wenjie Wang, Bin Yuan, Yuwen Peng, Hang Su, Yafang Cheng, Suxia Yang, Caihong Wu, Jipeng Qi, Fengxia Bao, Yibo Huangfu, Chaomin Wang, Chenshuo Ye, Zelong Wang, Baolin Wang, Xinming Wang, Wei Song, Weiwei Hu, Peng Cheng, Manni Zhu, Junyu Zheng, and Min Shao
Atmos. Chem. Phys., 22, 4117–4128, https://doi.org/10.5194/acp-22-4117-2022, https://doi.org/10.5194/acp-22-4117-2022, 2022
Short summary
Short summary
From thorough measurements of numerous oxygenated volatile organic compounds, we show that their photodissociation can be important for radical production and ozone formation in the atmosphere. This effect was underestimated in previous studies, as measurements of them were lacking.
Helen L. Fitzmaurice, Alexander J. Turner, Jinsol Kim, Katherine Chan, Erin R. Delaria, Catherine Newman, Paul Wooldridge, and Ronald C. Cohen
Atmos. Chem. Phys., 22, 3891–3900, https://doi.org/10.5194/acp-22-3891-2022, https://doi.org/10.5194/acp-22-3891-2022, 2022
Short summary
Short summary
On-road emissions are thought to vary widely from existing predictions, as the effects of the age of the vehicle fleet, the performance of emission control systems, and variations in speed are difficult to assess under ambient driving conditions. We present an observational approach to characterize on-road emissions and show that the method is consistent with other approaches to within ~ 3 %.
Danilo Custódio, Katrine Aspmo Pfaffhuber, T. Gerard Spain, Fidel F. Pankratov, Iana Strigunova, Koketso Molepo, Henrik Skov, Johannes Bieser, and Ralf Ebinghaus
Atmos. Chem. Phys., 22, 3827–3840, https://doi.org/10.5194/acp-22-3827-2022, https://doi.org/10.5194/acp-22-3827-2022, 2022
Short summary
Short summary
As a poison in the air that we breathe and the food that we eat, mercury is a human health concern for society as a whole. In that regard, this work deals with monitoring and modelling mercury in the environment, improving wherewithal, identifying the strength of the different components at play, and interpreting information to support the efforts that seek to safeguard public health.
Xiaorui Chen, Haichao Wang, and Keding Lu
Atmos. Chem. Phys., 22, 3525–3533, https://doi.org/10.5194/acp-22-3525-2022, https://doi.org/10.5194/acp-22-3525-2022, 2022
Short summary
Short summary
We use a complete set of simulations to evaluate whether equilibrium and steady state are appropriate for a chemical system involving several reactive nitrogen-containing species (NO2, NO3, and N2O5) under various conditions. A previously neglected bias for the coefficient applied for interpreting their effects is disclosed, and the relevant ambient factors are examined. We therefore provide a good solution to an accurate representation of nighttime chemistry in high-aerosol areas.
Jens Mühle, Lambert J. M. Kuijpers, Kieran M. Stanley, Matthew Rigby, Luke M. Western, Jooil Kim, Sunyoung Park, Christina M. Harth, Paul B. Krummel, Paul J. Fraser, Simon O'Doherty, Peter K. Salameh, Roland Schmidt, Dickon Young, Ronald G. Prinn, Ray H. J. Wang, and Ray F. Weiss
Atmos. Chem. Phys., 22, 3371–3378, https://doi.org/10.5194/acp-22-3371-2022, https://doi.org/10.5194/acp-22-3371-2022, 2022
Short summary
Short summary
Emissions of the strong greenhouse gas perfluorocyclobutane (c-C4F8) into the atmosphere have been increasing sharply since the early 2000s. These c-C4F8 emissions are highly correlated with the amount of hydrochlorofluorocarbon-22 produced to synthesize polytetrafluoroethylene (known for its non-stick properties) and related chemicals. From this process, c-C4F8 by-product is vented to the atmosphere. Avoiding these unnecessary c-C4F8 emissions could reduce the climate impact of this industry.
Chaoyang Xue, Can Ye, Jörg Kleffmann, Chenglong Zhang, Valéry Catoire, Fengxia Bao, Abdelwahid Mellouki, Likun Xue, Jianmin Chen, Keding Lu, Yong Zhao, Hengde Liu, Zhaoxin Guo, and Yujing Mu
Atmos. Chem. Phys., 22, 3149–3167, https://doi.org/10.5194/acp-22-3149-2022, https://doi.org/10.5194/acp-22-3149-2022, 2022
Short summary
Short summary
Summertime measurements of nitrous acid (HONO) and related parameters were conducted at the foot and the summit of Mt. Tai (1534 m above sea level). We proposed a rapid vertical air mass exchange between the foot and the summit level, which enhances the role of HONO in the oxidizing capacity of the upper boundary layer. Kinetics for aerosol-derived HONO sources were constrained. HONO formation from different paths was quantified and discussed.
Kathryn D. Kulju, Stephen M. McNamara, Qianjie Chen, Hannah S. Kenagy, Jacinta Edebeli, Jose D. Fuentes, Steven B. Bertman, and Kerri A. Pratt
Atmos. Chem. Phys., 22, 2553–2568, https://doi.org/10.5194/acp-22-2553-2022, https://doi.org/10.5194/acp-22-2553-2022, 2022
Short summary
Short summary
N2O5 uptake by chloride-containing surfaces produces ClNO2, which photolyzes, producing NO2 and highly reactive Cl radicals that impact air quality. In the inland urban atmosphere, ClNO2 was elevated during lower air turbulence and over snow-covered ground, from snowpack ClNO2 production. N2O5 and ClNO2 levels were lowest, on average, during rainfall and fog because of scavenging, with N2O5 scavenging by fog droplets likely contributing to observed increased particulate nitrate concentrations.
Huiming Lin, Yindong Tong, Chenghao Yu, Long Chen, Xiufeng Yin, Qianggong Zhang, Shichang Kang, Lun Luo, James Schauer, Benjamin de Foy, and Xuejun Wang
Atmos. Chem. Phys., 22, 2651–2668, https://doi.org/10.5194/acp-22-2651-2022, https://doi.org/10.5194/acp-22-2651-2022, 2022
Short summary
Short summary
The Tibetan Plateau is known as
The Third Poleand is generally considered to be a clean area owing to its high altitude. However, it may receive be impacted by air pollutants transported from the Indian subcontinent. Pollutants generally enter the Tibetan Plateau in several ways. Among them is the Yarlung Zangbu–Brahmaputra Grand Canyon. In this study, we identified the influence of the Indian summer monsoon on the origin, transport, and behavior of mercury in this area.
Dominique Rust, Ioannis Katharopoulos, Martin K. Vollmer, Stephan Henne, Simon O'Doherty, Daniel Say, Lukas Emmenegger, Renato Zenobi, and Stefan Reimann
Atmos. Chem. Phys., 22, 2447–2466, https://doi.org/10.5194/acp-22-2447-2022, https://doi.org/10.5194/acp-22-2447-2022, 2022
Short summary
Short summary
Artificial halocarbons contribute to ozone layer depletion and to global warming. We measured the atmospheric concentrations of halocarbons at the Beromünster tower, modelled the Swiss emissions, and compared the results to the internationally reported Swiss emissions inventory. For most of the halocarbons, we found good agreement, whereas one refrigerant might be overestimated in the inventory. In addition, we present first emission estimates of the newest types of halocarbons.
Tuija Jokinen, Katrianne Lehtipalo, Roseline Cutting Thakur, Ilona Ylivinkka, Kimmo Neitola, Nina Sarnela, Totti Laitinen, Markku Kulmala, Tuukka Petäjä, and Mikko Sipilä
Atmos. Chem. Phys., 22, 2237–2254, https://doi.org/10.5194/acp-22-2237-2022, https://doi.org/10.5194/acp-22-2237-2022, 2022
Short summary
Short summary
New particle formation is an important source of cloud condensation nuclei; however, long-term measurements of aerosol-forming vapors are close to nonexistent in the Arctic. Here, we report 7 months of CI-APi-TOF measurements of sulfuric acid, iodic acid, methane sulfonic acid and the sum of highly oxygenated organic molecules from the SMEAR I station in the Finnish subarctic. The results help us to understand atmospheric chemical processes and aerosol formation in this rapidly changing area.
Andrew O. Langford, Christoph J. Senff, Raul J. Alvarez II, Ken C. Aikin, Sunil Baidar, Timothy A. Bonin, W. Alan Brewer, Jerome Brioude, Steven S. Brown, Joel D. Burley, Dani J. Caputi, Stephen A. Conley, Patrick D. Cullis, Zachary C. J. Decker, Stéphanie Evan, Guillaume Kirgis, Meiyun Lin, Mariusz Pagowski, Jeff Peischl, Irina Petropavlovskikh, R. Bradley Pierce, Thomas B. Ryerson, Scott P. Sandberg, Chance W. Sterling, Ann M. Weickmann, and Li Zhang
Atmos. Chem. Phys., 22, 1707–1737, https://doi.org/10.5194/acp-22-1707-2022, https://doi.org/10.5194/acp-22-1707-2022, 2022
Short summary
Short summary
The Fires, Asian, and Stratospheric Transport–Las Vegas Ozone Study (FAST-LVOS) combined lidar, aircraft, and in situ measurements with global models to investigate the contributions of stratospheric intrusions, regional and Asian pollution, and wildfires to background ozone in the southwestern US during May and June 2017 and demonstrated that these processes contributed to background ozone levels that exceeded 70 % of the US National Ambient Air Quality Standard during the 6-week campaign.
Qingqing Yin, Qianli Ma, Weili Lin, Xiaobin Xu, and Jie Yao
Atmos. Chem. Phys., 22, 1015–1033, https://doi.org/10.5194/acp-22-1015-2022, https://doi.org/10.5194/acp-22-1015-2022, 2022
Short summary
Short summary
China has been experiencing rapid changes in emissions of air pollutants in recent decades. NOx and SO2 measurements from 2006 to 2016 at the Lin’an World Meteorological Organization Global Atmospheric Watch station were used to characterize the seasonal and diurnal variations and study the long-term trends. This study reaffirms China’s success in controlling both NOx and SO2 in the Yangtze River Delta but indicates at the same time a necessity to strengthen the NOx emission control.
Chaoyang Xue, Can Ye, Jörg Kleffmann, Wenjin Zhang, Xiaowei He, Pengfei Liu, Chenglong Zhang, Xiaoxi Zhao, Chengtang Liu, Zhuobiao Ma, Junfeng Liu, Jinhe Wang, Keding Lu, Valéry Catoire, Abdelwahid Mellouki, and Yujing Mu
Atmos. Chem. Phys., 22, 1035–1057, https://doi.org/10.5194/acp-22-1035-2022, https://doi.org/10.5194/acp-22-1035-2022, 2022
Short summary
Short summary
Nitrous acid (HONO) and related parameters were measured at the foot and the summit of Mt. Tai in the summer of 2018. Based on measurements at the foot station, we utilized a box model to explore the roles of different sources in the HONO budget. We also studied radical chemistry in this high-ozone region.
Baoye Hu, Jun Duan, Youwei Hong, Lingling Xu, Mengren Li, Yahui Bian, Min Qin, Wu Fang, Pinhua Xie, and Jinsheng Chen
Atmos. Chem. Phys., 22, 371–393, https://doi.org/10.5194/acp-22-371-2022, https://doi.org/10.5194/acp-22-371-2022, 2022
Short summary
Short summary
There has been a lack of research into HONO in coastal cities with low concentrations of PM2.5, but strong sunlight and high humidity. Insufficient research on coastal cities with good air quality has resulted in certain obstacles to assessing the photochemical processes in these areas. Furthermore, HONO contributes to the atmospheric photochemistry depending on the season. Therefore, observations of HONO across four seasons in the southeastern coastal area of China are urgently needed.
Lian Zong, Yuanjian Yang, Haiyun Xia, Meng Gao, Zhaobin Sun, Zuofang Zheng, Xianxiang Li, Guicai Ning, Yubin Li, and Simone Lolli
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1095, https://doi.org/10.5194/acp-2021-1095, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Heatwaves (HWs) paired with higher ozone (O3) concentration at surface level pose a serious threat to human health. Taking Beijing as an example, tree unfavourable synoptic weather patterns were identified to dominate the compound HWs and O3 pollution events. Under the synergistic stress of HWs and O3 pollution, the public mortality risk increased, and synoptic patterns and urbanization can enhance the compound risk of events in Beijing by 45.46 % and 8.08 %, respectively.
Xuefei Ma, Zhaofeng Tan, Keding Lu, Xinping Yang, Xiaorui Chen, Haichao Wang, Shiyi Chen, Xin Fang, Shule Li, Xin Li, Jingwei Liu, Ying Liu, Shengrong Lou, Wanyi Qiu, Hongli Wang, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1021, https://doi.org/10.5194/acp-2021-1021, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
This paper presents the first OH and HO2 radicals observation made in Yangtze River Delta in China and strong oxidation capacity is discovered based on direct measurements. The impacts of new OH regeneration mechanism, monoterpene oxidation and HO2 uptake process are examined and discussed. The sources and the factors to sustain such strong oxidation is the key to understand the ozone pollutions formed in this area.
Lulu Cui, Di Wu, Shuxiao Wang, Qingcheng Xu, Ruolan Hu, and Jiming Hao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-959, https://doi.org/10.5194/acp-2021-959, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
A one-year campaign was conducted to characterize VOCs at an urban site in Beijing during different episodes. VOCs from fuel evaporation and diesel exhaust particularly toluene, xylenes, trans-2-butene, acrolein, methyl methacrylate, vinyl acetate, 1-butene and 1-hexene were the main contributors. VOCs from diesel exhaust and coal/biomass combustion were found to be the dominant contributors for SOAFP, particularly the VOC species of toluene, 1-hexene, xylenes, ethylbenzene and styrene.
Clara M. Nussbaumer, Andrea Pozzer, Ivan Tadic, Lenard Röder, Florian Obersteiner, Hartwig Harder, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1028, https://doi.org/10.5194/acp-2021-1028, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
The European COVID-19 lockdowns have significantly reduced the emission of primary pollutants such as NOx which impacts the tropospheric photochemical processes and the abundance of O3. In this study, we present how the lockdowns have affected tropospheric trace gases and ozone production based on in situ observations and modeling simulations. We additionally show that the chemical regime shifted from a transition point to a NOx limitation in the upper troposphere.
Jin Liao, Glenn M. Wolfe, Reem A. Hannun, Jason M. St. Clair, Thomas F. Hanisco, Jessica B. Gilman, Aaron Lamplugh, Vanessa Selimovic, Glenn S. Diskin, John B. Nowak, Hannah S. Halliday, Joshua P. DiGangi, Samuel R. Hall, Kirk Ullmann, Christopher D. Holmes, Charles H. Fite, Anxhelo Agastra, Thomas B. Ryerson, Jeff Peischl, Ilann Bourgeois, Carsten Warneke, Matthew M. Coggon, Georgios I. Gkatzelis, Kanako Sekimoto, Alan Fried, Dirk Richter, Petter Weibring, Eric C. Apel, Rebecca S. Hornbrook, Steven S. Brown, Caroline C. Womack, Michael A. Robinson, Rebecca A. Washenfelder, Patrick R. Veres, and J. Andrew Neuman
Atmos. Chem. Phys., 21, 18319–18331, https://doi.org/10.5194/acp-21-18319-2021, https://doi.org/10.5194/acp-21-18319-2021, 2021
Short summary
Short summary
Formaldehyde (HCHO) is an important oxidant precursor and affects the formation of O3 and other secondary pollutants in wildfire plumes. We disentangle the processes controlling HCHO evolution from wildfire plumes sampled by NASA DC-8 during FIREX-AQ. We find that OH abundance rather than normalized OH reactivity is the main driver of fire-to-fire variability in HCHO secondary production and estimate an effective HCHO yield per volatile organic compound molecule oxidized in wildfire plumes.
Clara M. Nussbaumer, John N. Crowley, Jan Schuladen, Jonathan Williams, Sascha Hafermann, Andreas Reiffs, Raoul Axinte, Hartwig Harder, Cheryl Ernest, Anna Novelli, Katrin Sala, Monica Martinez, Chinmay Mallik, Laura Tomsche, Christian Plass-Dülmer, Birger Bohn, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 21, 18413–18432, https://doi.org/10.5194/acp-21-18413-2021, https://doi.org/10.5194/acp-21-18413-2021, 2021
Short summary
Short summary
HCHO is an important atmospheric trace gas influencing the photochemical processes in the Earth’s atmosphere, including the budget of HOx and the abundance of tropospheric O3. This research presents the photochemical calculations of HCHO and O3 based on three field campaigns across Europe. We show that HCHO production via the oxidation of only four volatile organic compound precursors, i.e., CH4, CH3CHO, C5H8 and CH3OH, can balance the observed loss at all sites well.
Leigh R. Crilley, Louisa J. Kramer, Francis D. Pope, Chris Reed, James D. Lee, Lucy J. Carpenter, Lloyd D. J. Hollis, Stephen M. Ball, and William J. Bloss
Atmos. Chem. Phys., 21, 18213–18225, https://doi.org/10.5194/acp-21-18213-2021, https://doi.org/10.5194/acp-21-18213-2021, 2021
Short summary
Short summary
Nitrous acid (HONO) is a key source of atmospheric oxidants. We evaluate if the ocean surface is a source of HONO for the marine boundary layer, using measurements from two contrasting coastal locations. We observed no evidence for a night-time ocean surface source, in contrast to previous work. This points to significant geographical variation in the predominant HONO formation mechanisms in marine environments, reflecting possible variability in the sea-surface microlayer composition.
Ahsan Mozaffar, Yan-Lin Zhang, Yu-Chi Lin, Feng Xie, Mei-Yi Fan, and Fang Cao
Atmos. Chem. Phys., 21, 18087–18099, https://doi.org/10.5194/acp-21-18087-2021, https://doi.org/10.5194/acp-21-18087-2021, 2021
Short summary
Short summary
We performed a long-term investigation of ambient volatile organic compounds (VOCs) in an industrial area in Nanjing, China. Followed by alkanes, halocarbons and aromatics were the most abundant VOC groups. Vehicle-related emissions were the major VOC sources in the study area. Aromatic and alkene VOCs were responsible for most of the atmospheric reactions.
Yulu Qiu, Zhiqiang Ma, Ke Li, Mengyu Huang, Jiujiang Sheng, Ping Tian, Jia Zhu, Weiwei Pu, Yingxiao Tang, Tingting Han, Huaigang Zhou, and Hong Liao
Atmos. Chem. Phys., 21, 17995–18010, https://doi.org/10.5194/acp-21-17995-2021, https://doi.org/10.5194/acp-21-17995-2021, 2021
Short summary
Short summary
Photochemical pollution over the North China Plain (NCP) is attracting much concern. Our observations at a rural site in the NCP identified high peroxyacetyl nitrate (PAN) concentrations, even on cold days. Increased acetaldehyde concentration and hydroxyl radical production rates drive fast PAN formation. Moreover, our study emphasizes the importance of formaldehyde photolysis in PAN formation and calls for implementing strict volatile organic compound controls after summer over the NCP.
Ira Leifer, Christopher Melton, and Donald R. Blake
Atmos. Chem. Phys., 21, 17607–17629, https://doi.org/10.5194/acp-21-17607-2021, https://doi.org/10.5194/acp-21-17607-2021, 2021
Short summary
Short summary
We demonstrate a novel application using air quality station data to derive 3-decade-averaged emissions from the Coal Oil Point (COP) seep field, a highly spatially and temporally variable geological migration system. Emissions were 19 Gg per year, suggesting that the COP seep field contributes 0.27 % of the global marine seep budget based on a recent estimate. This provides an advance over snapshot survey values by accounting for seasonal and interannual variations.
Dirk Dienhart, John N. Crowley, Efstratios Bourtsoukidis, Achim Edtbauer, Philipp G. Eger, Lisa Ernle, Hartwig Harder, Bettina Hottmann, Monica Martinez, Uwe Parchatka, Jean-Daniel Paris, Eva Y. Pfannerstill, Roland Rohloff, Jan Schuladen, Christof Stönner, Ivan Tadic, Sebastian Tauer, Nijing Wang, Jonathan Williams, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 21, 17373–17388, https://doi.org/10.5194/acp-21-17373-2021, https://doi.org/10.5194/acp-21-17373-2021, 2021
Short summary
Short summary
We present the first ship-based in situ measurements of formaldehyde (HCHO), hydroxyl radicals (OH) and the OH reactivity around the Arabian Peninsula. Regression analysis of the HCHO production rate and the related OH chemistry revealed the regional HCHO yield αeff, which represents the different chemical regimes encountered. Highest values were found for the Arabian Gulf (also known as the Persian Gulf), which highlights this region as a hotspot of photochemical air pollution.
James M. Roberts
Atmos. Chem. Phys., 21, 16793–16795, https://doi.org/10.5194/acp-21-16793-2021, https://doi.org/10.5194/acp-21-16793-2021, 2021
Short summary
Short summary
This comment provides evidence that recently reported measurements of the isotope composition of wildfire-derived oxides of nitrogen have a significant interference from other nitrogen compounds. In addition, the conceptual model used to interpret the results was missing several key reactions.
Yuting Zhu, Youfeng Wang, Xianliang Zhou, Yasin Elshorbany, Chunxiang Ye, Matthew Hayden, and Andrew J. Peters
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-893, https://doi.org/10.5194/acp-2021-893, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
The daytime chemistry of nitrous acid (HONO), which plays an important role in the oxidation capacity of the troposphere, is not well understood. In this work, we report new field measurement results of HONO and the relevant parameters in the marine boundary layer at Tudor Hill Marine Atmospheric Observatory in Bermuda. We evaluate the daytime HONO budgets in airmasses under different types of interaction with the island and examine the strengths of different HONO formation mechanisms.
Shohei Nomura, Manish Naja, M. Kawser Ahmed, Hitoshi Mukai, Yukio Terao, Toshinobu Machida, Motoki Sasakawa, and Prabir K. Patra
Atmos. Chem. Phys., 21, 16427–16452, https://doi.org/10.5194/acp-21-16427-2021, https://doi.org/10.5194/acp-21-16427-2021, 2021
Short summary
Short summary
Long-term measurements of greenhouse gases (GHGs) in India and Bangladesh unveiled specific characteristics in their variations in these regions. Plants including rice cultivated in winter and summer strongly affected seasonal variations and levels in CO2 and CH4. Long-term variability of GHGs showed quite different features in their growth rates from those in Mauna Loa. GHG trends in this region seemed to be hardly affected by El Niño–Southern Oscillation (ENSO).
Zachary C. J. Decker, Michael A. Robinson, Kelley C. Barsanti, Ilann Bourgeois, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Frank M. Flocke, Alessandro Franchin, Carley D. Fredrickson, Georgios I. Gkatzelis, Samuel R. Hall, Hannah Halliday, Christopher D. Holmes, L. Gregory Huey, Young Ro Lee, Jakob Lindaas, Ann M. Middlebrook, Denise D. Montzka, Richard Moore, J. Andrew Neuman, John B. Nowak, Brett B. Palm, Jeff Peischl, Felix Piel, Pamela S. Rickly, Andrew W. Rollins, Thomas B. Ryerson, Rebecca H. Schwantes, Kanako Sekimoto, Lee Thornhill, Joel A. Thornton, Geoffrey S. Tyndall, Kirk Ullmann, Paul Van Rooy, Patrick R. Veres, Carsten Warneke, Rebecca A. Washenfelder, Andrew J. Weinheimer, Elizabeth Wiggins, Edward Winstead, Armin Wisthaler, Caroline Womack, and Steven S. Brown
Atmos. Chem. Phys., 21, 16293–16317, https://doi.org/10.5194/acp-21-16293-2021, https://doi.org/10.5194/acp-21-16293-2021, 2021
Short summary
Short summary
To understand air quality impacts from wildfires, we need an accurate picture of how wildfire smoke changes chemically both day and night as sunlight changes the chemistry of smoke. We present a chemical analysis of wildfire smoke as it changes from midday through the night. We use aircraft observations from the FIREX-AQ field campaign with a chemical box model. We find that even under sunlight typical
nighttimechemistry thrives and controls the fate of key smoke plume chemical processes.
Hannah Clark, Yasmine Bennouna, Maria Tsivlidou, Pawel Wolff, Bastien Sauvage, Brice Barret, Eric Le Flochmoën, Romain Blot, Damien Boulanger, Jean-Marc Cousin, Philippe Nédélec, Andreas Petzold, and Valérie Thouret
Atmos. Chem. Phys., 21, 16237–16256, https://doi.org/10.5194/acp-21-16237-2021, https://doi.org/10.5194/acp-21-16237-2021, 2021
Short summary
Short summary
We examined 27 years of IAGOS (In-service Aircraft for a Global Observing System) profiles at Frankfurt to see if there were unusual features during the spring of 2020 related to COVID-19 lockdowns in Europe. Increased ozone near the surface was partly linked to the reduction in emissions. Carbon monoxide decreased near the surface, but the impact of the lockdowns was offset by polluted air masses from elsewhere. There were small reductions in ozone and carbon monoxide in the free troposphere.
Gordon A. Novak, Delaney B. Kilgour, Christopher M. Jernigan, Michael P. Vermeuel, and Timothy H. Bertram
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-891, https://doi.org/10.5194/acp-2021-891, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
We describe field measurements of the concentration and vertical flux of dimethyl sulfide (DMS) and methanethiol (MeSH) from a coastal ocean site. DMS is known to impact aerosol formation and growth in the marine atmosphere, with subsequent impacts on cloud formation and climate. Measurements of MeSH, which is produced by the same oceanic source as DMS are rare. We show that MeSH emissions are large and must be measured alongside DMS to understand marine sulfur chemistry and aerosol formation.
Men Xia, Xiang Peng, Weihao Wang, Chuan Yu, Zhe Wang, Yee Jun Tham, Jianmin Chen, Hui Chen, Yujing Mu, Chenglong Zhang, Pengfei Liu, Likun Xue, Xinfeng Wang, Jian Gao, Hong Li, and Tao Wang
Atmos. Chem. Phys., 21, 15985–16000, https://doi.org/10.5194/acp-21-15985-2021, https://doi.org/10.5194/acp-21-15985-2021, 2021
Short summary
Short summary
ClNO2 is an important precursor of chlorine radical that affects photochemistry. However, its production and impact are not well understood. Our study presents field observations of ClNO2 at three sites in northern China. These observations provide new insights into nighttime processes that produce ClNO2 and the significant impact of ClNO2 on secondary pollutions during daytime. The results improve the understanding of photochemical pollution in the lower part of the atmosphere.
Hui Zhang, Xuewu Fu, Ben Yu, Baoxin Li, Peng Liu, Guoqing Zhang, Leiming Zhang, and Xinbin Feng
Atmos. Chem. Phys., 21, 15847–15859, https://doi.org/10.5194/acp-21-15847-2021, https://doi.org/10.5194/acp-21-15847-2021, 2021
Short summary
Short summary
Our observations of speciated atmospheric mercury at the Waliguan GAW Baseline Observatory show that concentrations of gaseous elemental mercury (GEM) and particulate bound mercury (PBM) were elevated compared to the Northern Hemisphere background. We propose that the major sources of GEM and PBM were mainly related to anthropogenic emissions and desert dust sources. This study highlights that dust-related sources played an important role in the variations of PBM in the Tibetan Plateau.
Deborah F. McGlynn, Laura E. R. Barry, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
Atmos. Chem. Phys., 21, 15755–15770, https://doi.org/10.5194/acp-21-15755-2021, https://doi.org/10.5194/acp-21-15755-2021, 2021
Short summary
Short summary
We present 1 year of hourly measurements of chemically resolved Biogenic volatile organic compound (BVOCs) between 15 September 2019 and 15 September 2020, collected at a research tower in central Virginia. Concentrations of a range of BVOCs are described and examined for their impact on atmospheric reactivity. The majority of reactivity comes from α-pinene and limonene, highlighting the importance of both concentration and structure in assessing atmospheric impacts of emissions.
Adam R. Vaughan, James D. Lee, Stefan Metzger, David Durden, Alastair C. Lewis, Marvin D. Shaw, Will S. Drysdale, Ruth M. Purvis, Brian Davison, and C. Nicholas Hewitt
Atmos. Chem. Phys., 21, 15283–15298, https://doi.org/10.5194/acp-21-15283-2021, https://doi.org/10.5194/acp-21-15283-2021, 2021
Short summary
Short summary
Validating emissions estimates of atmospheric pollutants is a vital pathway towards reducing urban concentrations of air pollution and ensuring effective legislative controls are implemented. The work presented here highlights a strategy capable of quantifying and spatially disaggregating NOx emissions over challenging urban terrain. This work shows great scope as a tool for emission inventory validation and independent generation of high-resolution surface emissions on a city-wide scale.
Hélène Angot, Connor Davel, Christine Wiedinmyer, Gabrielle Pétron, Jashan Chopra, Jacques Hueber, Brendan Blanchard, Ilann Bourgeois, Isaac Vimont, Stephen A. Montzka, Ben R. Miller, James W. Elkins, and Detlev Helmig
Atmos. Chem. Phys., 21, 15153–15170, https://doi.org/10.5194/acp-21-15153-2021, https://doi.org/10.5194/acp-21-15153-2021, 2021
Short summary
Short summary
After a multidecadal global decline in atmospheric abundance of ethane and propane (precursors of tropospheric ozone and aerosols), previous work showed a reversal of this trend in 2009–2015 in the Northern Hemisphere due to the growth in oil and natural gas production in North America. Here we show a temporary pause in the growth of atmospheric ethane and propane in 2015–2018 and highlight the critical need for additional top-down studies to further constrain ethane and propane emissions.
Shigeyuki Ishidoya, Kazuhiro Tsuboi, Yosuke Niwa, Hidekazu Matsueda, Shohei Murayama, Kentaro Ishijima, and Kazuyuki Saito
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-787, https://doi.org/10.5194/acp-2021-787, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
Atmospheric O2/N2 ratio and CO2 concentration over the western North Pacific are presented. We found significant modification of the seasonal APO cycle in the middle troposphere due to the inter-hemispheric mixing of air. APO driven by the net marine biological activities indicated annual sea-to-air O2 flux during El Niño. Terrestrial biospheric and oceanic CO2 uptakes during 2012–2019 were estimated to be 1.8 and 2.8 PgC/yr, respectively.
Yuliang Liu, Wei Nie, Yuanyuan Li, Dafeng Ge, Chong Liu, Zhengning Xu, Liangduo Chen, Tianyi Wang, Lei Wang, Peng Sun, Ximeng Qi, Jiaping Wang, Zheng Xu, Jian Yuan, Chao Yan, Yanjun Zhang, Dandan Huang, Zhe Wang, Neil M. Donahue, Douglas Worsnop, Xuguang Chi, Mikael Ehn, and Aijun Ding
Atmos. Chem. Phys., 21, 14789–14814, https://doi.org/10.5194/acp-21-14789-2021, https://doi.org/10.5194/acp-21-14789-2021, 2021
Short summary
Short summary
Oxygenated organic molecules (OOMs) are crucial intermediates linking volatile organic compounds to secondary organic aerosols. Using nitrate time-of-flight chemical ionization mass spectrometry in eastern China, we performed positive matrix factorization (PMF) on binned OOM mass spectra. We reconstructed over 1000 molecules from 14 derived PMF factors and identified about 72 % of the observed OOMs as organic nitrates, highlighting the decisive role of NOx in OOM formation in populated areas.
Yang Liu, Simon Schallhart, Ditte Taipale, Toni Tykkä, Matti Räsänen, Lutz Merbold, Heidi Hellén, and Petri Pellikka
Atmos. Chem. Phys., 21, 14761–14787, https://doi.org/10.5194/acp-21-14761-2021, https://doi.org/10.5194/acp-21-14761-2021, 2021
Short summary
Short summary
We studied the mixing ratio of biogenic volatile organic compounds (BVOCs) in a humid highland and dry lowland African ecosystem in Kenya. The mixing ratio of monoterpenoids was similar to that measured in the relevant ecosystems in western and southern Africa, while that of isoprene was lower. Modeling the emission factors (EFs) for BVOCs from the lowlands, the EFs for isoprene and β-pinene agreed well with what is assumed in the MEGAN, while those of α-pinene and limonene were higher.
Roseline Cutting Thakur, Lubna Dada, Lisa J. Beck, Lauriane L. J. Quéléver, Tommy Chan, Marjan Marbouti, Xu-Cheng He, Carlton Xavier, Juha Sulo, Janne Lampilahti, Markus Lampimäki, Yee Jun Tham, Nina Sarnela, Katrianne Lehtipalo, Alf Norkko, Markku Kulmala, Mikko Sipilä, and Tuija Jokinen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-729, https://doi.org/10.5194/acp-2021-729, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
Every year intense cyanobacterial and macroalgal blooms occur in the Baltic Sea and in the coastal areas surrounding Helsinki, yet no studies address the impact of biogenic emissions from these blooms on the gas-vapor concentrations, which in turn could influence new particle formations. This is the first of its kind study, which addresses the chemistry driving the new particle formations (NPF) during a bloom period in this region, highlighting the role of biogenic sulphuric acid and iodic acid.
Victor Lannuque, Bastien Sauvage, Brice Barret, Hannah Clark, Gilles Athier, Damien Boulanger, Jean-Pierre Cammas, Jean-Marc Cousin, Alain Fontaine, Eric Le Flochmoën, Philippe Nédélec, Hervé Petetin, Isabelle Pfaffenzeller, Susanne Rohs, Herman G. J. Smit, Pawel Wolff, and Valérie Thouret
Atmos. Chem. Phys., 21, 14535–14555, https://doi.org/10.5194/acp-21-14535-2021, https://doi.org/10.5194/acp-21-14535-2021, 2021
Short summary
Short summary
The African intertropical troposphere is one of the world areas where the increase in ozone mixing ratio has been most pronounced since 1980 and where high carbon monoxide mixing ratios are found in altitude. In this article, IAGOS aircraft measurements, IASI satellite instrument observations, and SOFT-IO model products are used to explore the seasonal distribution variations and the origin of ozone and carbon monoxide over the African upper troposphere.
Beth S. Nelson, Gareth J. Stewart, Will S. Drysdale, Mike J. Newland, Adam R. Vaughan, Rachel E. Dunmore, Pete M. Edwards, Alastair C. Lewis, Jacqueline F. Hamilton, W. Joe Acton, C. Nicholas Hewitt, Leigh R. Crilley, Mohammed S. Alam, Ülkü A. Şahin, David C. S. Beddows, William J. Bloss, Eloise Slater, Lisa K. Whalley, Dwayne E. Heard, James M. Cash, Ben Langford, Eiko Nemitz, Roberto Sommariva, Sam Cox, Shivani, Ranu Gadi, Bhola R. Gurjar, James R. Hopkins, Andrew R. Rickard, and James D. Lee
Atmos. Chem. Phys., 21, 13609–13630, https://doi.org/10.5194/acp-21-13609-2021, https://doi.org/10.5194/acp-21-13609-2021, 2021
Short summary
Short summary
Ozone production at an urban site in Delhi is sensitive to volatile organic compound (VOC) concentrations, particularly those of the aromatic, monoterpene, and alkene VOC classes. The change in ozone production by varying atmospheric pollutants according to their sources, as defined in an emissions inventory, is investigated. The study suggests that reducing road transport emissions alone does not reduce reactive VOCs in the atmosphere enough to perturb an increase in ozone production.
Cited articles
Baek, S. Y., Choi, S. D., and Chang, Y. S.: Three-Year Atmospheric Monitoring of Organochlorine Pesticides and Polychlorinated Biphenyls in Polar Regions and the South Pacific, Environ. Sci. Technol., 45, 4475–4482, https://doi.org/10.1021/Es1042996, 2011.
Bailey, R. E.: Global hexachlorobenzene emissions, Chemosphere, 43, 167–182, https://doi.org/10.1016/S0045-6535(00)00186-7, 2001.
Bidleman, T. F., Jantunen, L. M., Kurt-Karakus, P. B., and Wong, F.: Chiral persistent organic pollutants as tracers of atmospheric sources and fate: review and prospects for investigating climate change influences, Atmos. Pollut. Res., 3, 371–382, https://doi.org/10.5094/Apr.2012.043, 2012.
Brubaker, W. W. and Hites, R. A.: OH Reaction Kinetics of Gas-Phase α- and γ-Hexachlorocyclohexane and Hexachlorobenzene, Environ. Sci. Technol., 32, 766–769, 1998.
Carrera, G., Fernández, P., Grimalt, J. O., Ventura, M., Camarero, L., Catalan, J., Nickus, U., Thies, H., and Psenner, R.: Atmospherc deposition of organochlorine compounds to remote high mountain lakes of Europe, Environ. Sci. Technol., 36, 2581–2588, 2002.
Cetin, B., Ozer, S., Sofuoglu, A., and Odabasi, M.: Determination of Henry's law constants of organochlorine pesticides in deionized and saline water as a function of temperature, Atmos. Environ., 40, 4538–4546, https://doi.org/10.1016/j.atmosenv.2006.04.009, 2006.
Chakraborty, P., Zhang, G., Li, J., Sivakumar, A., and Jones, K. C.: Occurrence and sources of selected organochlorine pesticides in the soil of seven major Indian cities: Assessment of air–soil exchange, Environ. Pollut., 204, 74–80, 2015.
Dalla Valle, M., Jurado, E., Dachs, J., Sweetman, A. J., and Jones, K. C.: The maximum reservoir capacity of soils for persistent organic pollutants: implications for global cycling, Environ. Pollut., 134, 153–164, https://doi.org/10.1016/j.envpol.2004.07.011, 2005.
Daly, G. L., Lei, Y. D., Teixeira, C., Muir, D. C. G., and Wania, F.: Pesticides in western Canadian mountain air and soil, Environ. Sci. Technol., 41, 6020–6025, https://doi.org/10.1021/Es070848o, 2007.
Ding, X., Wang, X. M., Xie, Z. Q., Xiang, C. H., Mai, B. X., Sun, L. G., Zheng, M., Sheng, G. Y., Fu, J. M., and Poschl, U.: Atmospheric polycyclic aromatic hydrocarbons observed over the North Pacific Ocean and the Arctic area: Spatial distribution and source identification, Atmos. Environ., 41, 2061–2072, https://doi.org/10.1016/j.atmonsenv.2006.11.002, 2007.
Fernandez, P., Grimalt, J. O., and Vilanova, R. M.: Atmospheric gas-particle partitioning of polycyclic aromatic hydrocarbons in high mountain regions of Europe, Environ. Sci. Technol., 36, 1162–1168, https://doi.org/10.1021/Es010190t, 2002.
Franz, T. P. and Eisenreich, S. J.: Snow scavenging of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in Minnesota, Environ. Sci. Technol., 32, 1771–1778, https://doi.org/10.1021/Es970601z, 1998.
Froescheis, O., Looser, R., Cailliet, G. M., Jarman, W. M., and Ballschmiter, K.: The deep-sea as a final global sink of semivolatile persistent organic pollutants? Part I: PCBs in surface and deep-sea dwelling fish of the North and South Atlantic and the Monterey Bay Canyon (California), Chemosphere, 40, 651–660, https://doi.org/10.1016/S0045-6535(99)00461-0, 2000.
Geisz, H. N., Dickhut, R. M., Cochran, M. A., Fraser, W. R., and Ducklow, H. W.: Melting glaciers: A probable source of DDT to the Antarctic marine ecosystem, Environ. Sci. Technol., 42, 3958–3962, https://doi.org/10.1021/es702919n, 2008.
Gioia, R., Lohmann, R., Dachs, J., Temme, C., Lakaschus, S., Schulz-Bull, D., Hand, I., and Jones, K. C.: Polychlorinated biphenyls in air and water of the North Atlantic and Arctic Ocean, J. Geophys. Res., 113, D19302, https://doi.org/10.1029/2007jd009750, 2008.
Gioia, R., Li, J., Schuster, J., Zhang, Y. L., Zhang, G., Li, X. D., Spiro, B., Bhatia, R. S., Dachs, J., and Jones, K. C.: Factors Affecting the Occurrence and Transport of Atmospheric Organochlorines in the China Sea and the Northern Indian and South East Atlantic Oceans, Environ. Sci. Technol., 46, 10012–10021, https://doi.org/10.1021/Es302037t, 2012.
Gong, P., Wang, X. P., and Yao, T. D.: Ambient distribution of particulate- and gas-phase n-alkanes and polycyclic aromatic hydrocarbons in the Tibetan Plateau, Environ. Earth Sci., 64, 1703–1711, https://doi.org/10.1007/s12665-011-0974-3, 2011.
Gonzalez-Gaya, B., Zuniga-Rival, J., Ojeda, M. J., Jimenez, B., and Dachs, J.: Field Measurements of the Atmospheric Dry Deposition Fluxes and Velocities of Polycyclic Aromatic Hydrocarbons to the Global Oceans, Environ. Sci. Technol., 48, 5583–5592, https://doi.org/10.1021/es500846p, 2014.
Gonzalez-Gaya, B., Fernandez-Pinos, M. C., Morales, L., Mejanelle, L., Abad, E., Pina, B., Duarte, C. M., Jimenez, B., and Dachs, J.: High atmosphere-ocean exchange of semivolatile aromatic hydrocarbons, Nat. Geosci., 9, 438–442, https://doi.org/10.1038/NGEO2714, 2016.
Guglielmo, F., Stemmler, I., and Lammel, G.: The impact of organochlorines cycling in the cryosphere on their global distribution and fate-1, Sea ice, Environ. Pollut., 162, 475–481, https://doi.org/10.1016/j.envpol.2011.09.039, 2012.
Guzzella, L., Poma, G., De Paolis, A., Roscioli, C., and Viviano, G.: Organic persistent toxic substances in soils, waters and sediments along an altitudinal gradient at Mt. Sagarmatha, Himalayas, Nepal, Environ. Pollut., 159, 2552–2564, https://doi.org/10.1016/j.envpol.2011.06.015, 2011.
Harner, T., Wiberg, K., and Norstrom, R.: Enantiomer fractions are preferred to enantiomer ratios for describing chiral signatures in environmental analysis, Environ. Sci. Technol., 34, 218–220, 2000.
Hu, T., Cao, J., Lee, S., Ho, K., Li, X., Liu, S., and Chen, J.: Physiochemical characteristics of indoor PM2.5 with combustion of dried yak dung as biofuel in Tibetan Plateau, China, Indoor Built Environ, 191, 172–181, 2015.
Huang, Y. M., Xu, Y., Li, J., Xu, W. H., Zhang, G., Cheng, Z. N., Liu, J. W., Wang, Y., and Tian, C. G.: Organochlorine Pesticides in the Atmosphere and Surface Water from the Equatorial Indian Ocean: Enantiomeric Signatures, Sources, and Fate, Environ. Sci. Technol., 47, 13395–13403, https://doi.org/10.1021/Es403138p, 2013.
Hung, H., Kallenborn, R., Breivik, K., Su, Y. S., Brorstrom-Lunden, E., Olafsdottir, K., Thorlacius, J. M., Leppanen, S., Bossi, R., Skov, H., Mano, S., Patton, G. W., Stern, G., Sverko, E., and Fellin, P.: Atmospheric monitoring of organic pollutants in the Arctic under the Arctic Monitoring and Assessment Programme (AMAP): 1993–2006, Sci. Total Environ., 408, 2854–2873, https://doi.org/10.1016/j.scitotenv.2009.10.044, 2010.
Iwata, H., Tanabe, S., Sakal, N., and Tatsukawa, R.: Distribution of Persistent Organochlorines in the Oceanic Air and Surface Seawater and the Role of Ocean on Their Global Transport and Fate, Environ. Sci. Technol., 27, 1080–1098, 1993.
Jantunen, L. M., Helm, P. A., Kylin, H., and Bidlemant, T. F.: Hexachlorocyclohexanes (HCHs) in the Canadian archipelago, 2. Air-water gas exchange of alpha- and gamma-HCH, Environ. Sci. Technol., 42, 465–470, https://doi.org/10.1021/Es071646v, 2008.
Jantunen, L. M., Wong, F., Gawor, A., Kylin, H., Helm, P. A., Stern, G. A., Strachan, W. M. J., Burniston, D. A., and Bidleman, T. F.: 20 Years of Air-Water Gas Exchange Observations for Pesticides in the Western Arctic Ocean, Environ. Sci. Technol., 49, 13844–13852, https://doi.org/10.1021/acs.est.5b01303, 2015.
Jurado, E., Jaward, F., Lohmann, R., Jones, K. C., Simo, R., and Dachs, J.: Wet deposition of persistent organic pollutants to the global oceans, Environ. Sci. Technol., 39, 2426–2435, https://doi.org/10.1021/Es048599g, 2005.
Kang, J. H., Choi, S. D., Park, H., Baek, S. Y., Hong, S., and Chang, Y. S.: Atmospheric deposition of persistent organic pollutants to the East Rongbuk Glacier in the Himalayas, Sci. Total Environ., 408, 57–63, https://doi.org/10.1016/j.scitotenv.2009.09.015, 2009.
Keyte, I. J., Harrison, R. M., and Lammel, G.: Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons – a review, Chem. Soc. Rev., 42, 9333–9391, https://doi.org/10.1039/c3cs60147a, 2013.
Khairy, M., Muir, D., Teixeira, C., and Lohmann, R.: Spatial Trends, Sources, and Air-Water Exchange of Organochlorine Pesticides in the Great Lakes Basin Using Low Density Polyethylene Passive Samplers, Environ. Sci. Technol., 48, 9315–9324, https://doi.org/10.1021/es501686a, 2014.
Komprda, J., Komprdova, K., Sanka, M., Mozny, M., and Nizzetto, L.: Influence of Climate and Land Use Change on Spatially Resolved Volatilization of Persistent Organic Pollutants (POPs) from Background Soils, Environ. Sci. Technol., 47, 7052–7059, https://doi.org/10.1021/es30437134, 2013.
Kurt-Karakus, P. B., Bidleman, T. F., Staebler, R. M., and Jones, K. C.: Measurement of DDT fluxes from a historically treated agricultural soil in Canada, Environ. Sci. Technol., 40, 4578–4585, https://doi.org/10.1021/Es060216m, 2006.
Law, S. A., Diamond, M. L., Helm, P. A., Jantunen, L. M., and Alaee, M.: Factors affecting the occurrence and enantiomeric degradation of hexachlorocyclohexane isomers in northern and temperate aquatic systems, Environ. Toxicol. Chem., 20, 2690–2698, 2001.
Leys, N. M., Ryngaert, A., Bastiaens, L., Top, E. M., Verstraete, W., and Springael, D.: Culture Independent Detection of Sphingomonas sp. EPA 505 Related Strains in Soils Contaminated with Polycyclic Aromatic Hydrocarbons (PAHs), Microb. Ecol., 49, 443–450, 2005.
Li, C. L., Kang, S. C., Chen, P. F., Zhang, Q. G., and Fang, G. C.: Characterizations of particle-bound trace metals and polycyclic aromatic hydrocarbons (PAHs) within Tibetan tents of south Tibetan Plateau, China, Environ. Sci. Pollut. Res., 19, 1620–1628, https://doi.org/10.1007/s11356-011-0678-y, 2012.
Li, C. L., Bosch, C., Kang, S. C., Andersson, A., Chen, P. F., Zhang, Q. G., Cong, Z. Y., Chen, B., Qin, D. H., and Gustafsson, O.: Sources of black carbon to the Himalayan-Tibetan Plateau glaciers, Nat. Commun., 7, 12574, https://doi.org/10.1038/Ncomms12574, 2016.
Li, J., Zhu, T., Wang, F., Qiu, X. H., and Lin, W. L.: Observation of organochlorine pesticides in the air of the Mt. Everest region, Ecotoxicol. Environ. Saf., 63, 33–41, https://doi.org/10.1016/j.ecoenv.2005.04.001, 2006.
Liu, X. and Chen, B.: Climatic warming in the Tibetan Plateau during recent decades, Int. J. Climatol., 20, 1729–1742, 2000.
Liu, X. B., Yao, T. D., Kang, S. C., Jiao, N. A. Z., Zeng, Y. H., and Liu, Y. Q.: Bacterial Community of the Largest Oligosaline Lake, Namco on the Tibetan Plateau, Geomicrobiol. J., 27, 669–682, https://doi.org/10.1080/01490450903528000, 2010.
Liu, Y. Q., Yao, T. D., Jiao, N. Z., Kang, S. C., Xu, B. Q., Zeng, Y. H., Huang, S. J., and Liu, X. B.: Bacterial diversity in the snow over Tibetan Plateau Glaciers, Extremophiles, 13, 411–423, https://doi.org/10.1007/s00792-009-0227-5, 2009.
Liu, Y. Q., Yao, T. D., Jiao, N. Z., Liu, X. B., Kang, S. C., and Luo, T. W.: Seasonal Dynamics of the Bacterial Community in Lake Namco, the Largest Tibetan Lake, Geomicrobiol. J., 30, 17–28, https://doi.org/10.1080/01490451.2011.638700, 2013.
Lohmann, R., Gioia, R., Jones, K. C., Nizzetto, L., Temme, C., Xie, Z., Schulz-Bull, D., Hand, I., Morgan, E., and Jantunen, L.: Organochlorine Pesticides and PAHs in the Surface Water and Atmosphere of the North Atlantic and Arctic Ocean, Environ. Sci. Technol., 43, 5633–5639, https://doi.org/10.1021/Es901229k, 2009.
Ma, J. M., Hung, H. L., Tian, C., and Kallenborn, R.: Revolatilization of persistent organic pollutants in the Arctic induced by climate change, Nature Climate Change, 1, 255–260, https://doi.org/10.1038/Nclimate1167, 2011.
Ma, Y. G., Lei, Y. D., Xiao, H., Wania, F., and Wang, W. H.: Critical Review and Recommended Values for the Physical-Chemical Property Data of 15 Polycyclic Aromatic Hydrocarbons at 25 °C, J. Chem. Eng. Data., 55, 819–825, https://doi.org/10.1021/Je900477x, 2010.
Ma, Y. X., Xie, Z. Y., Yang, H. Z., Moller, A., Halsall, C., Cai, M. H., Sturm, R., and Ebinghaus, R.: Deposition of polycyclic aromatic hydrocarbons in the North Pacific and the Arctic, J. Geophys. Res., 118, 5822–5829, https://doi.org/10.1002/jgrd.50473, 2013.
Mulder, M. D., Heil, A., Kukucka, P., Klanova, J., Kuta, J., Prokes, R., Sprovieri, F., and Lammel, G.: Air-sea exchange and gas-particle partitioning of polycyclic aromatic hydrocarbons in the Mediterranean, Atmos. Chem. Phys., 14, 8905–8915, https://doi.org/10.5194/acp-14-8905-2014, 2014.
Nizzetto, L., Lohmann, R., Gioia, R., Jahnke, A., Temme, C., Dachs, J., Herckes, P., Di, G. A., and Jones, K. C.: PAHs in air and seawater along a North-South Atlantic transect: trends, processes and possible sources, Environ. Sci. Technol., 42, 1580–1585, 2008.
Noyes, P. D., McElwee, M. K., Miller, H. D., Clark, B. W., Van Tiem, L. A., Walcott, K. C., Erwin, K. N., and Levin, E. D.: The toxicology of climate change: Environmental contaminants in a warming world, Environ. Int., 35, 971–986, https://doi.org/10.1016/j.envint.2009.02.006, 2009.
Ridal, J. J., Bidleman, T. F., Kerman, B. R., Fox, M. E., and Strachan, W. M. J.: Enantiomers of alpha-hexachlorocyclohexane as tracers of air-water gas exchange in Lake Ontario, Environ. Sci. Technol., 31, 1940–1945, https://doi.org/10.1021/Es9607244, 1997.
Ruzickova, P., Klanova, J., Cupr, P., Lammel, G., and Holoubek, I.: An assessment of air-soil exchange of polychlorinated biphenyls and organochlorine pesticides across Central and Southern Europe, Environ. Sci. Technol., 42, 179–185, https://doi.org/10.1021/Es071406f, 2008.
Sheng, J. J., Wang, X. P., Gong, P., Joswiak, D. R., Tian, L. D., Yao, T. D., and Jones, K. C.: Monsoon-driven transport of organochlorine pesticides and polychlorinated biphenyls to the tibetan plateau: three year atmospheric monitoring study, Environ. Sci. Technol., 47, 3199–3208, https://doi.org/10.1021/es305201s, 2013.
Spivakovsky, C. M., Logan, J. A., Montzka, S. A., Balkanski, Y. J., Foreman-Fowler, M., Jones, D. B. A., Horowitz, L. W., Fusco, A. C., Brenninkmeijer, C. A. M., and Prather, M. J.: Three-dimensional climatological distribution of tropospheric OH: Update and evaluation, J. Geophys. Res., 105, 8931–8980, 2000.
Stemmler, I. and Lammel, G.: Cycling of DDT in the global environment 1950–2002: World ocean returns the pollutant, Geophys. Res. Lett., 36, L24602, https://doi.org/10.1029/2009GL041340, 2009.
Su, Y. S., Hung, H., Blanchard, P., Patton, G. W., Kallenborn, R., Konoplev, A., Fellin, P., Li, H., Geen, C., Stern, G., Rosenberg, B., and Barrie, L. A.: Spatial and seasonal variations of hexachlorocyclohexanes (HCHs) and hexachlorobenzene (HCB) in the Arctic atmosphere, Environ. Sci. Technol., 40, 6601–6607, https://doi.org/10.1021/Es061065q, 2006.
Su, Y. S., Hung, H., Blanchard, P., Patton, G. W., Kallenborn, R., Konoplev, A., Fellin, P., Li, H., Geen, C., Stern, G., Rosenberg, B., and Barrie, L. A.: A circumpolar perspective of atmospheric organochlorine pesticides (OCPs): Results from six Arctic monitoring stations in 2000–2003, Atmos. Environ., 42, 4682–4698, https://doi.org/10.1016/j.atmosenv.2008.01.054, 2008.
Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., Dillon, P., Finlay, K., Fortino, K., Knoll, L. B., Kortelainen, P. L., Kutser, T., Larsen, S., Laurion, I., Leech, D. M., McCallister, S. L., McKnight, D. M., Melack, J. M., Overholt, E., Porter, J. A., Prairie, Y., Renwick, W. H., Roland, F., Sherman, B. S., Schindler, D. W., Sobek, S., Tremblay, A., Vanni, M. J., Verschoor, A. M., von Wachenfeldt, E., and Weyhenmeyer, G. A.: Lakes and reservoirs as regulators of carbon cycling and climate, Limnol. Oceanogr., 54, 2298–2314, https://doi.org/10.4319/lo.2009.54.6_part_2.2298, 2009.
Tremolada, P., Villa, S., Bazzarin, P., Bizzotto, E., Comolli, R., and Vighi, M.: POPs in Mountain Soils from the Alps and Andes: Suggestions for a “Precipitation Effect” on Altitudinal Gradients, Water Air Soil Pollut., 188, 93–109, 2008.
Venier, M., Dove, A., Romanak, K., Backus, S., and Hites, R.: Flame Retardants and Legacy Chemicals in Great Lakes' Water, Environ. Sci. Technol., 48, 9563–9572, https://doi.org/10.1021/es501509r, 2014.
Vilanova, R. M., Fernandez, P., Martinez, C., and Grimalt, J. O.: Polycyclic aromatic hydrocarbons in remote mountain lake waters, Water Res., 35, 3916–3926, https://doi.org/10.1016/S0043-1354(01)00113-0, 2001.
Wang, C. F., Wang, X. P., Gong, P., and Yao, T. D.: Polycyclic aromatic hydrocarbons in surface soil across the Tibetan Plateau: Spatial distribution, source and air-soil exchange, Environ. Pollut., 184, 138–144, https://doi.org/10.1016/j.envpol.2013.08.029, 2014.
Wang, J. B., Zhu, L. P., Daut, G., Ju, J. T., Lin, X., Wang, Y., and Zhen, X. L.: Investigation of bathymetry and water quality of Lake Nam Co, the largest lake on the central Tibetan Plateau, China, Limnology, 10, 149–158, https://doi.org/10.1007/s10201-009-0266-8, 2009.
Wang, X. P., Sheng, J. J., Gong, P., Xue, Y. G., Yao, T. D., and Jones, K. C.: Persistent organic pollutants in the Tibetan surface soil: Spatial distribution, air-soil exchange and implications for global cycling, Environ. Pollut., 170, 145–151, https://doi.org/10.1016/j.envpol.2012.06.012, 2012.
Wang, X. P., Gong, P., Sheng, J. J., Joswiak, D. R., and Yao, T. D.: Long-range atmospheric transport of particulate Polycyclic Aromatic Hydrocarbons and the incursion of aerosols to the southeast Tibetan Plateau, Atmos. Environ., 115, 124–131, https://doi.org/10.1016/j.atmosenv.2015.04.050, 2015.
Wang, X. P., Gong, P., Wang, C. F., Ren, J., and Yao, T. D.: A review of current knowledge and future prospects regarding persistent organic pollutants over the Tibetan Plateau, Sci. Total Environ., 573, 139–154, https://doi.org/10.1016/j.scitotenv.2016.08.107, 2016.
Wania, F., Axelman, J., and Broman, D.: A review of processes involved in the exchange of persistent organic pollutants across the air-sea interface, Environ. Pollut., 102, 3–23, https://doi.org/10.1016/S0269-7491(98)00072-4, 1998a.
Wania, F., Haugen, J. E., Lei, Y. D., and Mackay, D.: Temperature dependence of atmospheric concentrations of semivolatile organic compounds, Environ. Sci. Technol., 32, 1013–1021, https://doi.org/10.1021/Es970856c, 1998b.
Wania, F., Hoff, J. T., Jia, C. Q., and Mackay, D.: The effects of snow and ice on the environmental behaviour of hydrophobic organic chemicals, Environ. Pollut., 102, 25–41, https://doi.org/10.1016/S0269-7491(98)00073-6, 1998c.
Wilkinson, A. C., Kimpe, L. E., and Blais, J. M.: Air-water gas exchange of chlorinated pesticides in four lakes spanning a 1,205 meter elevation range in the Canadian Rocky Mountains, Environ. Toxicol. Chem., 24, 61–69, https://doi.org/10.1897/04-071r.1, 2005.
Wong, F., Jantunen, L. M., Pucko, M., Papakyriakou, T., Staebler, R. M., Stern, G. A., and Bidleman, T. F.: Air-Water Exchange of Anthropogenic and Natural Organohalogens on International Polar Year (IPY) Expeditions in the Canadian Arctic, Environ. Sci. Technol., 45, 876–881, https://doi.org/10.1021/Es1018509, 2011.
Wu, Y. H., Zheng, H. X., Zhang, B., Chen, D. M., and Lei, L. P.: Long-Term Changes of Lake Level and Water Budget in the Nam Co Lake Basin, Central Tibetan Plateau, J. Hydrometeorol., 15, 1312–1322, https://doi.org/10.1175/Jhm-D-13-093.1, 2014.
Xiao, H., Kang, S. C., Zhang, Q. G., Han, W. W., Loewen, M., Wong, F., Hung, H., Lei, Y. D., and Wania, F.: Transport of semivolatile organic compounds to the Tibetan Plateau: Monthly resolved air concentrations at Nam Co, J. Geophys. Res., 115, D16310, https://doi.org/10.1029/2010jd013972, 2010.
Xiao, Q. Y., Saikawa, E., Yokelson, R. J., Chen, P. F., Li, C. L., and Kang, S. C.: Indoor air pollution from burning yak dung as a household fuel in Tibet, Atmos. Environ., 102, 406–412, https://doi.org/10.1016/j.atmosenv.2014.11.060, 2015.
Yang, R. Q., Xie, T., An, L., Yang, H., Turner, S., Wu, G., and Jing, C.: Sedimentary records of polycyclic aromatic hydrocarbons (PAHs) in remote lakes across the Tibetan Plateau, Environ. Pollut., 214, 1–7, 2016.
Yao, T. D., Thompson, L. G., Mosbrugger, V., Zhang, F., Ma, Y., Luo, T., Xu, B. Q., Yang, X., Joswiak, D. R., Wang, W., Joswiak, M. E., Devkota, L. P., Tayal, S., Jilani, R., and Fayziev, R.: Third Pole Environment (TPE), Environ. Dev., 3, 52–64, https://doi.org/10.1016/j.envdev.2012.04.002, 2012.
Zhang, G., Chakraborty, P., Li, J., Sampathkumar, P., Balasubramanian, T., Kathiresan, K., Takahashi, S., Subramanian, A., Tanabe, S., and Jones, K. C.: Passive Atmospheric Sampling of Organochlorine Pesticides, Polychlorinated Biphenyls, and Polybrominated Diphenyl Ethers in Urban, Rural, and Wetland Sites along the Coastal Length of India, Environ. Sci. Technol., 42, 8218–8223, https://doi.org/10.1021/Es8016667, 2008.
Zhang, G. Q., Yao, T. D., Xie, H. J., Zhang, K. X., and Zhu, F. J.: Lakes' state and abundance across the Tibetan Plateau, Chin. Sci. Bull., 59, 3010–3021, https://doi.org/10.1007/s11434-014-0258-x, 2014.
Zhang, W. L., Zhang, G., Qi, S. H., and Peng, P. A.: A preliminary study of organochlorinepesticides in water and sediments from two Tibetan Lakes, Geochimica, 32, 363–367, 2003 (in Chinese with English abstract).
Short summary
Do the water bodies in the Tibetan Plateau (TP) act as a sink or secondary source of organic pollutants (OPs)? To answer this question, atmospheric processes of OPs over a large lake on the TP were quantified. We found that the lake was a net sink of hexachlorocyclohexanes (HCHs) and most polycyclic aromatic hydrocarbons (PAHs), but it turned into a secondary source of phenanthrene, coinciding with the melting of lake ice.
Do the water bodies in the Tibetan Plateau (TP) act as a sink or secondary source of organic...
Altmetrics
Final-revised paper
Preprint