Articles | Volume 16, issue 13
https://doi.org/10.5194/acp-16-8461-2016
https://doi.org/10.5194/acp-16-8461-2016
Research article
 | 
12 Jul 2016
Research article |  | 12 Jul 2016

Investigation of processes controlling summertime gaseous elemental mercury oxidation at midlatitudinal marine, coastal, and inland sites

Zhuyun Ye, Huiting Mao, Che-Jen Lin, and Su Youn Kim

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Zhuyun Ye on behalf of the Authors (31 May 2016)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (02 Jun 2016) by Leiming Zhang
RR by Anonymous Referee #3 (08 Jun 2016)
RR by Anonymous Referee #2 (17 Jun 2016)
ED: Publish as is (17 Jun 2016) by Leiming Zhang
AR by Zhuyun Ye on behalf of the Authors (20 Jun 2016)  Manuscript 
Download
Short summary
In this study, a state-of-the-art chemical mechanism was incorporated into a box model to investigate the atmospheric Hg cycling in different environments. As a result, for each of the three environments, GOM diurnal cycles of over half the selected cases were reasonably represented by the box model. A realistic model can be a powerful tool, providing important information on atmospheric Hg cycling and implications for policy makers.
Altmetrics
Final-revised paper
Preprint