Articles | Volume 16, issue 11
https://doi.org/10.5194/acp-16-6863-2016
https://doi.org/10.5194/acp-16-6863-2016
Research article
 | 
06 Jun 2016
Research article |  | 06 Jun 2016

Cluster analysis of European surface ozone observations for evaluation of MACC reanalysis data

Olga Lyapina, Martin G. Schultz, and Andreas Hense

Related authors

Applications of Machine Learning and Artificial Intelligence in Tropospheric Ozone Research
Sebastian H. M. Hickman, Makoto Kelp, Paul T. Griffiths, Kelsey Doerksen, Kazuyuki Miyazaki, Elyse A. Pennington, Gerbrand Koren, Fernando Iglesias-Suarez, Martin G. Schultz, Kai-Lan Chang, Owen R. Cooper, Alexander T. Archibald, Roberto Sommariva, David Carlson, Hantao Wang, J. Jason West, and Zhenze Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3739,https://doi.org/10.5194/egusphere-2024-3739, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Intercomparison of global ground-level ozone datasets for health-relevant metrics
Hantao Wang, Kazuyuki Miyazaki, Haitong Zhe Sun, Zhen Qu, Xiang Liu, Antje Inness, Martin Schultz, Sabine Schröder, Marc Serre, and J. Jason West
EGUsphere, https://doi.org/10.5194/egusphere-2024-3723,https://doi.org/10.5194/egusphere-2024-3723, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
New probabilistic methods for quantitative climate reconstructions applied to palynological data from Lake Kinneret
Timon Netzel, Andrea Miebach, Thomas Litt, and Andreas Hense
EGUsphere, https://doi.org/10.5194/egusphere-2023-1790,https://doi.org/10.5194/egusphere-2023-1790, 2023
Short summary
Refining data–data and data–model vegetation comparisons using the Earth mover's distance (EMD)
Manuel Chevalier, Anne Dallmeyer, Nils Weitzel, Chenzhi Li, Jean-Philippe Baudouin, Ulrike Herzschuh, Xianyong Cao, and Andreas Hense
Clim. Past, 19, 1043–1060, https://doi.org/10.5194/cp-19-1043-2023,https://doi.org/10.5194/cp-19-1043-2023, 2023
Short summary
Temperature forecasting by deep learning methods
Bing Gong, Michael Langguth, Yan Ji, Amirpasha Mozaffari, Scarlet Stadtler, Karim Mache, and Martin G. Schultz
Geosci. Model Dev., 15, 8931–8956, https://doi.org/10.5194/gmd-15-8931-2022,https://doi.org/10.5194/gmd-15-8931-2022, 2022
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
A CO2–Δ14CO2 inversion setup for estimating European fossil CO2 emissions
Carlos Gómez-Ortiz, Guillaume Monteil, Sourish Basu, and Marko Scholze
Atmos. Chem. Phys., 25, 397–424, https://doi.org/10.5194/acp-25-397-2025,https://doi.org/10.5194/acp-25-397-2025, 2025
Short summary
Maximum ozone concentrations in the southwestern US and Texas: implications of the growing predominance of the background contribution
David D. Parrish, Ian C. Faloona, and Richard G. Derwent
Atmos. Chem. Phys., 25, 263–289, https://doi.org/10.5194/acp-25-263-2025,https://doi.org/10.5194/acp-25-263-2025, 2025
Short summary
Derivation of atmospheric reaction mechanisms for volatile organic compounds by the SAPRC mechanism generation system (MechGen)
William P. L. Carter, Jia Jiang, John J. Orlando, and Kelley C. Barsanti
Atmos. Chem. Phys., 25, 199–242, https://doi.org/10.5194/acp-25-199-2025,https://doi.org/10.5194/acp-25-199-2025, 2025
Short summary
Seasonal, regional, and vertical characteristics of high-carbon-monoxide plumes along with their associated ozone anomalies, as seen by IAGOS between 2002 and 2019
Thibaut Lebourgeois, Bastien Sauvage, Pawel Wolff, Béatrice Josse, Virginie Marécal, Yasmine Bennouna, Romain Blot, Damien Boulanger, Hannah Clark, Jean-Marc Cousin, Philippe Nedelec, and Valérie Thouret
Atmos. Chem. Phys., 24, 13975–14004, https://doi.org/10.5194/acp-24-13975-2024,https://doi.org/10.5194/acp-24-13975-2024, 2024
Short summary
The potential of drone observations to improve air quality predictions by 4D-Var
Hassnae Erraji, Philipp Franke, Astrid Lampert, Tobias Schuldt, Ralf Tillmann, Andreas Wahner, and Anne Caroline Lange
Atmos. Chem. Phys., 24, 13913–13934, https://doi.org/10.5194/acp-24-13913-2024,https://doi.org/10.5194/acp-24-13913-2024, 2024
Short summary

Cited articles

Ashmore, M. R.: Assessing the future global impacts of ozone on vegetation, Plant Cell Environ., 28, 949–964, 2005.
Beaver, S. and Palazoglu, A.: Cluster Analysis of Hourly Wind Measurements to Reveal Synoptic Regimes Affecting Air Quality, J. Appl. Meteorol. Clim., 45, 1710–1726, https://doi.org/10.1175/JAM2437.1, 2006.
Beirle, S., Platt, U., Wenig, M., and Wagner, T.: Weekly cycle of NO2 by GOME measurements: a signature of anthropogenic sources, Atmos. Chem. Phys., 3, 2225–2232, https://doi.org/10.5194/acp-3-2225-2003, 2003.
Bell, M. L., Peng, R. D., and Dominici, F.: The exposure-response curve for ozone and risk of mortality and the adequacy of current ozone regulations, Environ. Health Persp., 114, 532–536, 2006.
Download
Short summary
This study applies numerical clustering for the classification of about 1500 ozone data sets in Europe. We show the usefulness of cluster analysis (CA) for the quantitative evaluation of a global model: pre-selection of stations and validation of a global model in a phase-space produce clearer and more interpretable results. CA can be easily updated for new stations, different length of data, and other type of input properties, as well as other type of data (for example, meteorological).
Altmetrics
Final-revised paper
Preprint