Articles | Volume 16, issue 11
Atmos. Chem. Phys., 16, 6863–6881, 2016
https://doi.org/10.5194/acp-16-6863-2016
Atmos. Chem. Phys., 16, 6863–6881, 2016
https://doi.org/10.5194/acp-16-6863-2016

Research article 06 Jun 2016

Research article | 06 Jun 2016

Cluster analysis of European surface ozone observations for evaluation of MACC reanalysis data

Olga Lyapina et al.

Data sets

Airbase database EEA data service (European Environment Agency, http://www.eea.europa.eu) http://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-8

The MACC reanalysis: an 8 yr data set of atmospheric composition (data available at: http://apps.ecmwf.int/datasets/data/macc-reanalysis/) A. Inness, F. Baier, A. Benedetti, I. Bouarar, S. Chabrillat, H. Clark, C. Clerbaux, P. Coheur, R. J. Engelen, Q. Errera, J. Flemming, M. George, C. Granier, J. Hadji-Lazaro, V. Huijnen, D. Hurtmans, L. Jones, J. W. Kaiser, J. Kapsomenakis, K. Lefever, J. Leitão, M. Razinger, A. Richter, M. G. Schultz, A. J. Simmons, M. Suttie, O. Stein, J.-N. Thépaut, V. Thouret, M. Vrekoussis, C. Zerefos, and the MACC team https://doi.org/10.5194/acp-13-4073-2013

Download
Short summary
This study applies numerical clustering for the classification of about 1500 ozone data sets in Europe. We show the usefulness of cluster analysis (CA) for the quantitative evaluation of a global model: pre-selection of stations and validation of a global model in a phase-space produce clearer and more interpretable results. CA can be easily updated for new stations, different length of data, and other type of input properties, as well as other type of data (for example, meteorological).
Altmetrics
Final-revised paper
Preprint