Articles | Volume 16, issue 8
https://doi.org/10.5194/acp-16-5021-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-5021-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Comparison of VLT/X-shooter OH and O2 rotational temperatures with consideration of TIMED/SABER emission and temperature profiles
Institute for Astro- and Particle Physics, University of Innsbruck, Technikerstr. 25/8, 6020 Innsbruck, Austria
Wolfgang Kausch
Department of Astrophysics, University of Vienna, Türkenschanzstrasse 17, 1180 Vienna, Austria
Institute for Astro- and Particle Physics, University of Innsbruck, Technikerstr. 25/8, 6020 Innsbruck, Austria
Stefan Kimeswenger
Instituto de Astronomía, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile
Institute for Astro- and Particle Physics, University of Innsbruck, Technikerstr. 25/8, 6020 Innsbruck, Austria
Stefanie Unterguggenberger
Institute for Astro- and Particle Physics, University of Innsbruck, Technikerstr. 25/8, 6020 Innsbruck, Austria
Amy M. Jones
Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany
Related authors
Stefan Noll, John M. C. Plane, Wuhu Feng, Konstantinos S. Kalogerakis, Wolfgang Kausch, Carsten Schmidt, Michael Bittner, and Stefan Kimeswenger
Atmos. Chem. Phys., 24, 1143–1176, https://doi.org/10.5194/acp-24-1143-2024, https://doi.org/10.5194/acp-24-1143-2024, 2024
Short summary
Short summary
The Earth's nighttime radiation in the range from the near-UV to the near-IR mainly originates between 75 and 105 km and consists of lines of different species, which are important indicators of the chemistry and dynamics at these altitudes. Based on astronomical spectra, we have characterised the structure and variability of a pseudo-continuum of a high number of faint lines and discovered a new emission process in the near-IR. By means of simulations, we identified HO2 as the likely emitter.
Stefan Noll, Holger Winkler, Oleg Goussev, and Bastian Proxauf
Atmos. Chem. Phys., 20, 5269–5292, https://doi.org/10.5194/acp-20-5269-2020, https://doi.org/10.5194/acp-20-5269-2020, 2020
Short summary
Short summary
Line emission from hydroxyl (OH) molecules at altitudes of about 90 km strongly contributes to the Earth's night-sky brightness and is therefore used as an important indicator of atmospheric chemistry and dynamics. However, interpreting the measurements can be ambiguous since necessary molecular parameters and the internal state of OH are not well known. Based on high-quality spectral data, we investigated these issues and found solutions for a better understanding of the OH line intensities.
Konstantinos S. Kalogerakis, Daniel Matsiev, Philip C. Cosby, James A. Dodd, Stefano Falcinelli, Jonas Hedin, Alexander A. Kutepov, Stefan Noll, Peter A. Panka, Constantin Romanescu, and Jérôme E. Thiebaud
Ann. Geophys., 36, 13–24, https://doi.org/10.5194/angeo-36-13-2018, https://doi.org/10.5194/angeo-36-13-2018, 2018
Short summary
Short summary
The question of whether mesospheric rotational population distributions of vibrationally excited OH are in equilibrium with the local kinetic temperature has been debated over several decades. We examine the relationship of multi-quantum relaxation pathways with the behavior exhibited by OH(v) rotational population distributions and find that the effective rotational temperatures of mesospheric OH(v) deviate from local thermodynamic equilibrium for all observed vibrational levels.
Stefanie Unterguggenberger, Stefan Noll, Wuhu Feng, John M. C. Plane, Wolfgang Kausch, Stefan Kimeswenger, Amy Jones, and Sabine Moehler
Atmos. Chem. Phys., 17, 4177–4187, https://doi.org/10.5194/acp-17-4177-2017, https://doi.org/10.5194/acp-17-4177-2017, 2017
Short summary
Short summary
This study focuses on the analysis of astronomical medium-resolution spectra from the VLT in Chile to measure airglow pseudo-continuum emission of FeO in the optical regime. Compared to OH or Na emissions, this emission is difficult to measure. Using 3.5 years of spectroscopic data, we found annual and semi-annual variations of the FeO emission. Furthermore, we used WACCM to determine the quantum yield of the FeO-producing Fe + O3 reaction in the atmosphere, which has not been done before.
S. Noll, W. Kausch, S. Kimeswenger, S. Unterguggenberger, and A. M. Jones
Atmos. Chem. Phys., 15, 3647–3669, https://doi.org/10.5194/acp-15-3647-2015, https://doi.org/10.5194/acp-15-3647-2015, 2015
Short summary
Short summary
We discuss a high-quality data set of simultaneous observations of 25 OH bands with an astronomical echelle spectrograph. These data allowed us to analyse band-dependent OH populations and temperatures. In particular, we could find different non-LTE contributions to OH rotational temperatures depending on band, line set, and observing time. This is critical for mesopause studies that use these temperatures as a proxy of the true temperatures.
Stefan Noll, John M. C. Plane, Wuhu Feng, Konstantinos S. Kalogerakis, Wolfgang Kausch, Carsten Schmidt, Michael Bittner, and Stefan Kimeswenger
Atmos. Chem. Phys., 24, 1143–1176, https://doi.org/10.5194/acp-24-1143-2024, https://doi.org/10.5194/acp-24-1143-2024, 2024
Short summary
Short summary
The Earth's nighttime radiation in the range from the near-UV to the near-IR mainly originates between 75 and 105 km and consists of lines of different species, which are important indicators of the chemistry and dynamics at these altitudes. Based on astronomical spectra, we have characterised the structure and variability of a pseudo-continuum of a high number of faint lines and discovered a new emission process in the near-IR. By means of simulations, we identified HO2 as the likely emitter.
Stefan Noll, Holger Winkler, Oleg Goussev, and Bastian Proxauf
Atmos. Chem. Phys., 20, 5269–5292, https://doi.org/10.5194/acp-20-5269-2020, https://doi.org/10.5194/acp-20-5269-2020, 2020
Short summary
Short summary
Line emission from hydroxyl (OH) molecules at altitudes of about 90 km strongly contributes to the Earth's night-sky brightness and is therefore used as an important indicator of atmospheric chemistry and dynamics. However, interpreting the measurements can be ambiguous since necessary molecular parameters and the internal state of OH are not well known. Based on high-quality spectral data, we investigated these issues and found solutions for a better understanding of the OH line intensities.
Konstantinos S. Kalogerakis, Daniel Matsiev, Philip C. Cosby, James A. Dodd, Stefano Falcinelli, Jonas Hedin, Alexander A. Kutepov, Stefan Noll, Peter A. Panka, Constantin Romanescu, and Jérôme E. Thiebaud
Ann. Geophys., 36, 13–24, https://doi.org/10.5194/angeo-36-13-2018, https://doi.org/10.5194/angeo-36-13-2018, 2018
Short summary
Short summary
The question of whether mesospheric rotational population distributions of vibrationally excited OH are in equilibrium with the local kinetic temperature has been debated over several decades. We examine the relationship of multi-quantum relaxation pathways with the behavior exhibited by OH(v) rotational population distributions and find that the effective rotational temperatures of mesospheric OH(v) deviate from local thermodynamic equilibrium for all observed vibrational levels.
Stefanie Unterguggenberger, Stefan Noll, Wuhu Feng, John M. C. Plane, Wolfgang Kausch, Stefan Kimeswenger, Amy Jones, and Sabine Moehler
Atmos. Chem. Phys., 17, 4177–4187, https://doi.org/10.5194/acp-17-4177-2017, https://doi.org/10.5194/acp-17-4177-2017, 2017
Short summary
Short summary
This study focuses on the analysis of astronomical medium-resolution spectra from the VLT in Chile to measure airglow pseudo-continuum emission of FeO in the optical regime. Compared to OH or Na emissions, this emission is difficult to measure. Using 3.5 years of spectroscopic data, we found annual and semi-annual variations of the FeO emission. Furthermore, we used WACCM to determine the quantum yield of the FeO-producing Fe + O3 reaction in the atmosphere, which has not been done before.
S. Noll, W. Kausch, S. Kimeswenger, S. Unterguggenberger, and A. M. Jones
Atmos. Chem. Phys., 15, 3647–3669, https://doi.org/10.5194/acp-15-3647-2015, https://doi.org/10.5194/acp-15-3647-2015, 2015
Short summary
Short summary
We discuss a high-quality data set of simultaneous observations of 25 OH bands with an astronomical echelle spectrograph. These data allowed us to analyse band-dependent OH populations and temperatures. In particular, we could find different non-LTE contributions to OH rotational temperatures depending on band, line set, and observing time. This is critical for mesopause studies that use these temperatures as a proxy of the true temperatures.
Related subject area
Subject: Radiation | Research Activity: Remote Sensing | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Ground-based noontime D-region electron density climatology over northern Norway
Analysis of 24 years of mesopause region OH rotational temperature observations at Davis, Antarctica – Part 1: long-term trends
OH level populations and accuracies of Einstein-A coefficients from hundreds of measured lines
Global nighttime atomic oxygen abundances from GOMOS hydroxyl airglow measurements in the mesopause region
Technical note: Bimodality in mesospheric OH rotational population distributions and implications for temperature measurements
How long do satellites need to overlap? Evaluation of climate data stability from overlapping satellite records
Resolving the mesospheric nighttime 4.3 µm emission puzzle: comparison of the CO2(ν3) and OH(ν) emission models
TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece
OH populations and temperatures from simultaneous spectroscopic observations of 25 bands
CO2(ν2)-O quenching rate coefficient derived from coincidental SABER/TIMED and Fort Collins lidar observations of the mesosphere and lower thermosphere
Relativistic electron beams above thunderclouds
Experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds
Stability of temperatures from TIMED/SABER v1.07 (2002–2009) and Aura/MLS v2.2 (2004–2009) compared with OH(6-2) temperatures observed at Davis Station, Antarctica
Toralf Renkwitz, Mani Sivakandan, Juliana Jaen, and Werner Singer
Atmos. Chem. Phys., 23, 10823–10834, https://doi.org/10.5194/acp-23-10823-2023, https://doi.org/10.5194/acp-23-10823-2023, 2023
Short summary
Short summary
The paper focuses on remote sensing of the lowermost part of the ionosphere (D region) between ca. 50 and 90 km altitude, which overlaps widely with the mesosphere. We present a climatology of electron density over northern Norway, covering solar-maximum and solar-minimum conditions (2014–2022). Excluding detected energetic particle precipitation events, we derived a quiet-profile climatology. We also found a spring–fall asymmetry, while a symmetric solar zenith angle dependence was expected.
W. John R. French, Frank J. Mulligan, and Andrew R. Klekociuk
Atmos. Chem. Phys., 20, 6379–6394, https://doi.org/10.5194/acp-20-6379-2020, https://doi.org/10.5194/acp-20-6379-2020, 2020
Short summary
Short summary
In this study, we analyse 24 years of atmospheric temperatures from the mesopause region (~87 km altitude) derived from ground-based spectrometer observations of hydroxyl airglow at Davis station, Antarctica (68° S, 78° E). These data are used to quantify the effect of the solar cycle and the long-term trend due to increasing greenhouse gas emissions on the atmosphere at this level. A record-low winter-average temperature is reported for 2018 and comparisons are made with satellite observations.
Stefan Noll, Holger Winkler, Oleg Goussev, and Bastian Proxauf
Atmos. Chem. Phys., 20, 5269–5292, https://doi.org/10.5194/acp-20-5269-2020, https://doi.org/10.5194/acp-20-5269-2020, 2020
Short summary
Short summary
Line emission from hydroxyl (OH) molecules at altitudes of about 90 km strongly contributes to the Earth's night-sky brightness and is therefore used as an important indicator of atmospheric chemistry and dynamics. However, interpreting the measurements can be ambiguous since necessary molecular parameters and the internal state of OH are not well known. Based on high-quality spectral data, we investigated these issues and found solutions for a better understanding of the OH line intensities.
Qiuyu Chen, Martin Kaufmann, Yajun Zhu, Jilin Liu, Ralf Koppmann, and Martin Riese
Atmos. Chem. Phys., 19, 13891–13910, https://doi.org/10.5194/acp-19-13891-2019, https://doi.org/10.5194/acp-19-13891-2019, 2019
Short summary
Short summary
Atomic oxygen is one of the most important trace species in the mesopause region. A common technique to derive it from satellite measurements is to measure airglow emissions involved in the photochemistry of oxygen. In this work, hydroxyl nightglow measured by the GOMOS instrument on Envisat is used to derive a 10-year dataset of atomic oxygen in the middle and upper atmosphere. Annual and semiannual oscillations are observed in the data. The new data are consistent with various other datasets.
Konstantinos S. Kalogerakis
Atmos. Chem. Phys., 19, 2629–2634, https://doi.org/10.5194/acp-19-2629-2019, https://doi.org/10.5194/acp-19-2629-2019, 2019
Short summary
Short summary
Light emission from energetic hydroxyl radical, OH*, is a prominent feature in spectra of the night sky. It is routinely used to determine the temperature of the atmosphere near 90 km. This note shows that the common practice of using only a few emission features from low rotational excitation to determine rotational temperatures does not account for the bimodality of the OH population distributions and can lead to large systematic errors.
Elizabeth C. Weatherhead, Jerald Harder, Eduardo A. Araujo-Pradere, Greg Bodeker, Jason M. English, Lawrence E. Flynn, Stacey M. Frith, Jeffrey K. Lazo, Peter Pilewskie, Mark Weber, and Thomas N. Woods
Atmos. Chem. Phys., 17, 15069–15093, https://doi.org/10.5194/acp-17-15069-2017, https://doi.org/10.5194/acp-17-15069-2017, 2017
Short summary
Short summary
Satellite overlap is often carried out as a check on the stability of the data collected. We looked at how length of overlap influences how much information can be derived from the overlap period. Several results surprised us: the confidence we could have in the matchup of two records was independent of the offset, and understanding of the relative drift between the two satellite data sets improved significantly with 2–3 years of overlap. Sudden jumps could easily be confused with drift.
Peter A. Panka, Alexander A. Kutepov, Konstantinos S. Kalogerakis, Diego Janches, James M. Russell, Ladislav Rezac, Artem G. Feofilov, Martin G. Mlynczak, and Erdal Yiğit
Atmos. Chem. Phys., 17, 9751–9760, https://doi.org/10.5194/acp-17-9751-2017, https://doi.org/10.5194/acp-17-9751-2017, 2017
Short summary
Short summary
Recently, theoretical and laboratory studies have suggested an additional
nighttime channel of transfer of vibrational energy of OH molecules to CO2 in the
mesosphere and lower thermosphere (MLT). We show that new mechanism brings
modelled 4.3 μm emissions very close to the SABER/TIMED measurements. This
renders new opportunities for the application of the CO2 4.3 μm observations in
the study of the energetics and dynamics of the nighttime MLT.
Melina-Maria Zempila, Jos H. G. M. van Geffen, Michael Taylor, Ilias Fountoulakis, Maria-Elissavet Koukouli, Michiel van Weele, Ronald J. van der A, Alkiviadis Bais, Charikleia Meleti, and Dimitrios Balis
Atmos. Chem. Phys., 17, 7157–7174, https://doi.org/10.5194/acp-17-7157-2017, https://doi.org/10.5194/acp-17-7157-2017, 2017
Short summary
Short summary
NILU irradiances at five UV channels were used to produce CIE, vitamin D, and DNA- damage daily doses via a neural network (NN) model. The NN was trained with collocated weighted Brewer spectra and uncertainty in the NILU-derived UV effective doses was 7.5 %. TEMIS UV products were found to be ~ 12.5 % higher than the NILU estimates. The results improve for cloud-free days with differences of 0.57 % for CIE, 1.22 % for vitamin D, and 1.18 % for DNA damage, with standard deviations of ~ 11–13 %.
S. Noll, W. Kausch, S. Kimeswenger, S. Unterguggenberger, and A. M. Jones
Atmos. Chem. Phys., 15, 3647–3669, https://doi.org/10.5194/acp-15-3647-2015, https://doi.org/10.5194/acp-15-3647-2015, 2015
Short summary
Short summary
We discuss a high-quality data set of simultaneous observations of 25 OH bands with an astronomical echelle spectrograph. These data allowed us to analyse band-dependent OH populations and temperatures. In particular, we could find different non-LTE contributions to OH rotational temperatures depending on band, line set, and observing time. This is critical for mesopause studies that use these temperatures as a proxy of the true temperatures.
A. G. Feofilov, A. A. Kutepov, C.-Y. She, A. K. Smith, W. D. Pesnell, and R. A. Goldberg
Atmos. Chem. Phys., 12, 9013–9023, https://doi.org/10.5194/acp-12-9013-2012, https://doi.org/10.5194/acp-12-9013-2012, 2012
M. Füllekrug, R. Roussel-Dupré, E. M. D. Symbalisty, J. J. Colman, O. Chanrion, S. Soula, O. van der Velde, A. Odzimek, A. J. Bennett, V. P. Pasko, and T. Neubert
Atmos. Chem. Phys., 11, 7747–7754, https://doi.org/10.5194/acp-11-7747-2011, https://doi.org/10.5194/acp-11-7747-2011, 2011
M. Füllekrug, C. Hanuise, and M. Parrot
Atmos. Chem. Phys., 11, 667–673, https://doi.org/10.5194/acp-11-667-2011, https://doi.org/10.5194/acp-11-667-2011, 2011
W. J. R. French and F. J. Mulligan
Atmos. Chem. Phys., 10, 11439–11446, https://doi.org/10.5194/acp-10-11439-2010, https://doi.org/10.5194/acp-10-11439-2010, 2010
Cited articles
Adler-Golden, S.: Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements, J. Geophys. Res., 102, 19969–19976, https://doi.org/10.1029/97JA01622, 1997.
Baker, D. J. and Stair Jr., A. T.: Rocket measurements of the altitude distributions of the hydroxyl airglow, Phys. Scripta, 37, 611–622, https://doi.org/10.1088/0031-8949/37/4/021, 1988.
Baker, D. J., Thurgood, B. K., Harrison, W. K., Mlynczak, M. G., and Russell, J. M.: Equatorial enhancement of the nighttime OH mesospheric infrared airglow, Phys. Scripta, 75, 615–619, https://doi.org/10.1088/0031-8949/75/5/004, 2007.
Bates, D. R. and Nicolet, M.: The photochemistry of atmospheric water vapor, J. Geophys. Res., 55, 301–327, https://doi.org/10.1029/JZ055i003p00301, 1950.
Beig, G., Keckhut, P., Lowe, R. P., Roble, R. G., Mlynczak, M. G., Scheer, J., Fomichev, V. I., Offermann, D., French, W. J. R., Shepherd, M. G., Semenov, A. I., Remsberg, E. E., She, C. Y., Lübken, F. J., Bremer, J., Clemesha, B. R., Stegman, J., Sigernes, F., and Fadnavis, S.: Review of mesospheric temperature trends, Rev. Geophys., 41, RG1015, https://doi.org/10.1029/2002RG000121, 2003.
Beig, G., Scheer, J., Mlynczak, M. G., and Keckhut, P.: Overview of the temperature response in the mesosphere and lower thermosphere to solar activity, Rev. Geophys., 46, RG3002, https://doi.org/10.1029/2007RG000236, 2008.
Charters, P. E., MacDonald, R. G., and Polanyi, J. C.: Formation of vibrationally excited OH by the reaction H + O3, Appl. Optics, 10, 1747–1754, https://doi.org/10.1364/AO.10.001747, 1971.
Clemesha, B., Simonich, D., and Batista, P.: Sodium lidar measurements of mesopause region temperatures at 23° S, Adv. Space Res., 47, 1165–1171, https://doi.org/10.1016/j.asr.2010.11.030, 2011.
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058, 2005.
Cosby, P. C. and Slanger, T. G.: OH spectroscopy and chemistry investigated with astronomical sky spectra, Can. J. Phys., 85, 77–99, 2007.
Evans, W. F. J., Hunten, D. M., Llewellyn, E. J., and Vallance Jones, A.: Altitude profile of the infrared atmospheric system of oxygen in the dayglow, J. Geophys. Res., 73, 2885–2896, https://doi.org/10.1029/JA073i009p02885, 1968.
Friedman, J. S. and Chu, X.: Nocturnal temperature structure in the mesopause region over the Arecibo Observatory (18.35° N, 66.75° W): seasonal variations, J. Geophys. Res., 112, D14107, https://doi.org/10.1029/2006JD008220, 2007.
Gamache, R. R. and Goldman, A.: Einstein A coefficient, integrated band intensity, and population factors: application to the a1Δg–X3Σ−g(0-0) O2 band, J. Quant. Spectrosc. Ra., 69, 389–401, https://doi.org/10.1016/S0022-4073(00)00072-8, 2001.
Gamache, R. R., Goldman, A., and Rothman, L. S.: Improved spectral parameters for the three most abundant isotopomers of the oxygen molecule, J. Quant. Spectrosc. Ra., 59, 495–509, https://doi.org/10.1016/S0022-4073(97)00124-6, 1998.
Gao, H., Xu, J. Y., Chen, G. M., Yuan, W., and Beletsky, A. B.: Global distributions of OH and O2 (1.27 µm) nightglow emissions observed by TIMED satellite, Sci. China Ser. E, 54, 447–456, https://doi.org/10.1007/s11431-010-4236-5, 2011.
Gelinas, L. J., Hecht, J. H., Walterscheid, R. L., Roble, R. G., and Woithe, J. M.: A seasonal study of mesospheric temperatures and emission intensities at Adelaide and Alice Springs, J. Geophys. Res., 113, A01304, https://doi.org/10.1029/2007JA012587, 2008.
Goldman, A., Schoenfeld, W. G., Goorvitch, D., Chackerian Jr., C., Dothe, H., Mélen, F., Abrams, M. C., and Selby, J. E. A.: Updated line parameters for OH X2II-X2II (v′, v′′) transitions, J. Quant. Spectrosc. Ra., 59, 453–469, https://doi.org/10.1016/S0022-4073(97)00112-X, 1998.
Greer, R. G. H., Llewellyn, E. J., Solheim, B. H., and Witt, G.: The excitation of O2(b1Σg+) in the nightglow, Planet. Space Sci., 29, 383–389, https://doi.org/10.1016/0032-0633(81)90081-7, 1981.
Greer, R. G. H., Murtagh, D. P., McDade, I. C., Dickinson, P. H. G., and Thomas, L.: ETON 1 – a data base pertinent to the study of energy transfer in the oxygen nightglow, Planet. Space Sci., 34, 771–788, https://doi.org/10.1016/0032-0633(86)90074-7, 1986.
Hays, P. B., Kafkalidis, J. F., Skinner, W. R., and Roble, R. G.: A global view of the molecular oxygen night airglow, J. Geophys. Res., 108, 4646, https://doi.org/10.1029/2003JD003400, 2003.
Howell, C. D., Michelangeli, D. V., Allen, M., Yung, Y. L., and Thomas, R. J.: SME observations of O2(a1Δg) nightglow – an assessment of the chemical production mechanisms, Planet. Space Sci., 38, 529–537, https://doi.org/10.1016/0032-0633(90)90145-G, 1990.
Kaufmann, M., Gusev, O. A., Grossmann, K. U., Martín-Torres, F. J., Marsh, D. R., and Kutepov, A. A.: Satellite observations of daytime and nighttime ozone in the mesosphere and lower thermosphere, J. Geophys. Res., 108, 4272, https://doi.org/10.1029/2002JD002800, 2003.
Kausch, W., Noll, S., Smette, A., Kimeswenger, S., Barden, M., Szyszka, C., Jones, A. M., Sana, H., Horst, H., and Kerber, F.: Molecfit: a general tool for telluric absorption correction, II. Quantitative evaluation on ESO-VLT/X-shooter spectra, Astron. Astrophys., 576, A78, https://doi.org/10.1051/0004-6361/201423909, 2015.
Khomich, V. Y., Semenov, A. I., and Shefov, N. N.: Airglow as an Indicator of Upper Atmospheric Structure and Dynamics, Springer, Berlin, Germany, 2008.
Lafferty, W. J., Solodov, A. M., Lugez, C. L., and Fraser, G. T.: Rotational line strengths and self-pressure-broadening coefficients for the 1.27-µm, a1Δg − X3Σ−g, v = (0-0) band of O2, Appl. Optics, 37, 2264–2270, https://doi.org/10.1364/AO.37.002264, 1998.
Leshchishina, O., Kassi, S., Gordon, I. E., Rothman, L. S., Wang, L., and Campargue, A.: High sensitivity CRDS of the a1Δg-X3Σg− band of oxygen near 1.27 µm: extended observations, quadrupole transitions, hot bands and minor isotopologues, J. Quant. Spectrosc. Ra., 111, 2236–2245, https://doi.org/10.1016/j.jqsrt.2010.05.014, 2010.
Lipatov, K. V.: Empirical model of variations in the IR atmospheric system of molecular oxygen: 2. emitting layer height, Geomagn. Aeron., 53, 104–112, https://doi.org/10.1134/S001679321301012X, 2013.
Liu, G. and Shepherd, G. G.: An empirical model for the altitude of the OH nightglow emission, Geophys. Res. Lett., 33, L09805, https://doi.org/10.1029/2005GL025297, 2006.
Llewellyn, E. J. and Long, B. H.: The OH Meinel bands in the airglow – the radiative lifetime, Can. J. Phys., 56, 581–586, https://doi.org/10.1139/p78-076, 1978.
López-González, M. J., López-Moreno, J. J., López-Valverde, M. A., and Rodrigo, R.: Behaviour of the O2 infrared atmospheric (0-0) band in the middle atmosphere during evening twilight and at night, Planet. Space Sci., 37, 61–72, https://doi.org/10.1016/0032-0633(89)90069-X, 1989.
López-González, M. J., López-Moreno, J. J., and Rodrigo, R.: The altitude profile of the Infrared Atmospheric System of O2 in twilight and early night – Derivation of ozone abundances, Planet. Space Sci., 40, 1391–1397, https://doi.org/10.1016/0032-0633(92)90094-5, 1992.
Lowe, R. P., Leblanc, L. M., and Gilbert, K. L.: WINDII/UARS observation of twilight behaviour of the hydroxyl airglow, at mid-latitude equinox, J. Atmos. Terr. Phys., 58, 1863–1869, https://doi.org/10.1016/0021-9169(95)00178-6, 1996.
Marsh, D. R., Smith, A. K., Mlynczak, M. G., and Russell, J. M.: SABER observations of the OH Meinel airglow variability near the mesopause, J. Geophys. Res., 111, A10S05, https://doi.org/10.1029/2005JA011451, 2006.
McDade, I. C., Llewellyn, E. J., Greer, R. G. H., and Murtagh, D. P.: Eton 6 – a rocket measurement of the O2 infrared atmospheric (0-0) band in the nightglow, Planet. Space Sci., 35, 1541–1552, https://doi.org/10.1016/0032-0633(87)90079-1, 1987.
Meinel, A. B.: OH emission bands in the spectrum of the night sky. II, Astrophys. J., 112, 120–130, https://doi.org/10.1086/145321, 1950.
Melo, S. M. L., Lowe, R. P., and Takahashi, H.: The nocturnal behavior of the hydroxyl airglow at the equatorial and low latitudes as observed by WINDII: comparison with ground-based measurements, J. Geophys. Res., 104, 24657–24666, https://doi.org/10.1029/1999JA900291, 1999.
Meriwether, J. W. and Gardner, C. S.: A review of the mesosphere inversion layer phenomenon, J. Geophys. Res., 105, 12405–12416, https://doi.org/10.1029/2000JD900163, 2000.
Meriwether, J. W. and Gerrard, A. J.: Mesosphere inversion layers and stratosphere temperature enhancements, Rev. Geophys., 42, RG3003, https://doi.org/10.1029/2003RG000133, 2004.
Mertens, C. J., Mlynczak, M. G., López-Puertas, M., Wintersteiner, P. P., Picard, R. H., Winick, J. R., Gordley, L. L., and Russell III, J. M.: Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15 µm Earth limb emission under non-LTE conditions, Geophys. Res. Lett., 28, 1391–1394, https://doi.org/10.1029/2000GL012189, 2001.
Mertens, C. J., Schmidlin, F. J., Goldberg, R. A., Remsberg, E. E., Pesnell, W. D., Russell III, J. M., Mlynczak, M. G., López-Puertas, M., Wintersteiner, P. P., Picard, R. H., Winick, J. R., and Gordley, L. L.: SABER observations of mesospheric temperatures and comparisons with falling sphere measurements taken during the 2002 summer MaCWAVE campaign, Geophys. Res. Lett., 31, L03105, https://doi.org/10.1029/2003GL018605, 2004.
Mies, F. H.: Calculated vibrational transition probabilities of OH(X2Π), J. Mol. Spectrosc., 53, 150–188, https://doi.org/10.1016/0022-2852(74)90125-8, 1974.
Mlynczak, M. G., Martin-Torres, F. J., Crowley, G., Kratz, D. P., Funke, B., Lu, G., Lopez-Puertas, M., Russell III, J. M., Kozyra, J., Mertens, C., Sharma, R., Gordley, L., Picard, R., Winick, J., and Paxton, L.: Energy transport in the thermosphere during the solar storms of April 2002, J. Geophys. Res., 110, A12S25, https://doi.org/10.1029/2005JA011141, 2005.
Mlynczak, M. G., Marshall, B. T., Martin-Torres, F. J., Russell III, J. M., Thompson, R. E., Remsberg, E. E., and Gordley, L. L.: Sounding of the atmosphere using broadband emission radiometry observations of daytime mesospheric O2(1Δ) 1.27 µm emission and derivation of ozone, atomic oxygen, and solar and chemical energy deposition rates, J. Geophys. Res., 112, D15306, https://doi.org/10.1029/2006JD008355, 2007.
Modigliani, A., Goldoni, P., Royer, F., Haigron, R., Guglielmi, L., François, P., Horrobin, M., Bristow, P., Vernet, J., Moehler, S., Kerber, F., Ballester, P., Mason, E., and Christensen, L.: The X-shooter pipeline, SPIE Proc. Ser., 7737, 773728, https://doi.org/10.1117/12.857211, 2010.
Moehler, S., Modigliani, A., Freudling, W., Giammichele, N., Gianninas, A., Gonneau, A., Kausch, W., Lançon, A., Noll, S., Rauch, T., and Vinther, J.: Flux calibration of medium-resolution spectra from 300 nm to 2500 nm: model reference spectra and telluric correction, Astron. Astrophys., 568, https://doi.org/10.1051/0004-6361/201423790, 2014.
Mulligan, F. J. and Galligan, J. M.: Mesopause temperatures calculated from the O2(a1Δg) twilight airglow emission recorded at Maynooth (53.2° N, 6.4° W), Ann. Geophys., 13, 558–566, https://doi.org/10.1007/s00585-995-0558-1, 1995.
Nair, H. and Yee, J.-H.: O2(a1Δg, v = 0) chemical loss coefficients determined from SABER sunset measurements, Geophys. Res. Lett., 36, L15829, https://doi.org/10.1029/2009GL039335, 2009.
Newman, S. M., Lane, I. C., Orr-Ewing, A. J., Newnham, D. A., and Ballard, J.: Integrated absorption intensity and Einstein coefficients for the O2a1Δg − X3Σg− (0,0) transition: a comparison of cavity ringdown and high resolution Fourier transform spectroscopy with a long-path absorption cell, J. Chem. Phys., 110, 10749–10757, https://doi.org/10.1063/1.479018, 1999.
Nikoukar, R., Swenson, G. R., Liu, A. Z., and Kamalabadi, F.: On the variability of mesospheric OH emission profiles, J. Geophys. Res., 112, D19109, https://doi.org/10.1029/2007JD008601, 2007.
Noll, S., Kausch, W., Barden, M., Jones, A. M., Szyszka, C., Kimeswenger, S., and Vinther, J.: An atmospheric radiation model for Cerro Paranal. I. The optical spectral range, Astron. Astrophys., 543, https://doi.org/10.1051/0004-6361/201219040, 2012.
Noll, S., Kausch, W., Kimeswenger, S., Unterguggenberger, S., and Jones, A. M.: OH populations and temperatures from simultaneous spectroscopic observations of 25 bands, Atmos. Chem. Phys., 15, 3647–3669, https://doi.org/10.5194/acp-15-3647-2015, 2015.
Ohoyama, H., Kasai, T., Yoshimura, Y., Kimura, H., and Kuwata, K.: Initial distribution of vibration of the OH radicals produced in the H + O3 → OH(X2Π1∕2, 3∕2) + O2 reaction. Chemiluminescence by a crossed beam technique, Chem. Phys., 118, 263–266, https://doi.org/10.1016/0009-2614(85)85312-4, 1985.
Patat, F., Moehler, S., O'Brien, K., Pompei, E., Bensby, T., Carraro, G., de Ugarte Postigo, A., Fox, A., Gavignaud, I., James, G., Korhonen, H., Ledoux, C., Randall, S., Sana, H., Smoker, J., Stefl, S., and Szeifert, T.: Optical atmospheric extinction over Cerro Paranal, Astron. Astrophys., 527, https://doi.org/10.1051/0004-6361/201015537, 2011.
Pendleton Jr., W., Espy, P., Baker, D., Steed, A., and Fetrow, M.: Observation of OH Meinel (7, 4) P (N′′ = 13) transitions in the night airglow, J. Geophys. Res., 94, 505–510, https://doi.org/10.1029/JA094iA01p00505, 1989.
Pendleton Jr., W. R., Espy, P. J., and Hammond, M. R.: Evidence for non-local-thermodynamic-equilibrium rotation in the OH nightglow, J. Geophys. Res., 98, 11567–11579, https://doi.org/10.1029/93JA00740, 1993.
Pendleton Jr., W. R., Baker, D. J., Reese, R. J., and O'Neil, R. R.: Decay of O2(a1Δg) in the evening twilight airglow: implications for the radiative lifetime, Geophys. Res. Lett., 23, 1013–1016, https://doi.org/10.1029/96GL00946, 1996.
Perminov, V. I. and Lipatov, K. V.: Empirical model of variations in the emission of the Infrared Atmospheric system of molecular oxygen: 3. temperature, Geomagn. Aeron., 53, 389–396, https://doi.org/10.1134/S0016793213030158, 2013.
Perminov, V. I. and Semenov, A. I.: Nonequilibrium of the rotational temperature of OH bands with high vibrational excitation, Geomagn. Aeron., 32, 175–178, 1992.
Perminov, V. I., Semenov, A. I., and Shefov, N. N.: On rotational temperature of the hydroxyl emission, Geomagn. Aeron., 47, 756–763, https://doi.org/10.1134/S0016793207060084, 2007.
Reisin, E. R., Scheer, J., Dyrland, M. E., Sigernes, F., Deehr, C. S., Schmidt, C., Höppner, K., Bittner, M., Ammosov, P. P., Gavrilyeva, G. A., Stegman, J., Perminov, V. I., Semenov, A. I., Knieling, P., Koppmann, R., Shiokawa, K., Lowe, R. P., López-González, M. J., Rodríguez, E., Zhao, Y., Taylor, M. J., Buriti, R. A., Espy, P. J., French, W. J. R., Eichmann, K.-U., Burrows, J. P., and von Savigny, C.: Traveling planetary wave activity from mesopause region airglow temperatures determined by the Network for the Detection of Mesospheric Change (NDMC), J. Atmos. Sol.-Terr. Phy., 119, 71–82, https://doi.org/10.1016/j.jastp.2014.07.002, 2014.
Remsberg, E. E., Marshall, B. T., Garcia-Comas, M., Krueger, D., Lingenfelser, G. S., Martin-Torres, J., Mlynczak, M. G., Russell III, J. M., Smith, A. K., Zhao, Y., Brown, C., Gordley, L. L., Lopez-Gonzalez, M. J., Lopez-Puertas, M., She, C.-Y., Taylor, M. J., and Thompson, R. E.: Assessment of the quality of the version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER, J. Geophys. Res., 113, D17101, https://doi.org/10.1029/2008JD010013, 2008.
Rezac, L., Kutepov, A., Russell III, J. M., Feofilov, A. G., Yue, J., and Goldberg, R. A.: Simultaneous retrieval of T(p) and CO2 VMR from two-channel non-LTE limb radiances and application to daytime SABER/TIMED measurements, J. Atmos. Sol.-Terr. Phy., 130, 23–42, https://doi.org/10.1016/j.jastp.2015.05.004, 2015.
Rothman, L. S., Gordon, I. E., Barbe, A., Chris Benner, D., Bernath, P. F., Birk, M., Boudon, V., Brown, L. R., Campargue, A., Champion, J.-P., Chance, K., Coudert, L. H., Dana, V., Devi, V. M., Fally, S., Flaud, J.-M., Gamache, R. R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W. J., Mandin, J.-Y., Massie, S. T., Mikhailenko, S. N., Miller, C. E., Moazzen-Ahmadi, N., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov, V. I., Perrin, A., Predoi-Cross, A., Rinsland, C. P., Rotger, M., Šimečková, M., Smith, M. A. H., Sung, K., Tashkun, S. A., Tennyson, J., Toth, R. A., Vandaele, A. C., and Vander Auwera, J.: The HITRAN 2008 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 110, 533–572, https://doi.org/10.1016/j.jqsrt.2009.02.013, 2009.
Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Chris Benner, D., Bernath, P. F., Birk, M., Bizzocchi, L., Boudon, V., Brown, L. R., Campargue, A., Chance, K., Cohen, E. A., Coudert, L. H., Devi, V. M., Drouin, B. J., Fayt, A., Flaud, J.-M., Gamache, R. R., Harrison, J. J., Hartmann, J.-M., Hill, C., Hodges, J. T., Jacquemart, D., Jolly, A., Lamouroux, J., Le Roy, R. J., Li, G., Long, D. A., Lyulin, O. M., Mackie, C. J., Massie, S. T., Mikhailenko, S., Müller, H. S. P., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E. R., Richard, C., Smith, M. A. H., Starikova, E., Sung, K., Tashkun, S., Tennyson, J., Toon, G. C., Tyuterev, V. G., and Wagner, G.: The HITRAN2012 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 130, 4–50, https://doi.org/10.1016/j.jqsrt.2013.07.002, 2013.
Rousselot, P., Lidman, C., Cuby, J.-G., Moreels, G., and Monnet, G.: Night-sky spectral atlas of OH emission lines in the near-infrared, Astron. Astrophys., 354, 1134–1150, 2000.
Russell III, J. M., Mlynczak, M. G., Gordley, L. L., Tansock Jr., J. J., and Esplin, R. W.: Overview of the SABER experiment and preliminary calibration results, SPIE Proc. Ser., 3756, 277–288, https://doi.org/10.1117/12.366382, 1999.
Scheer, J. and Reisin, E. R.: Refinements of a classical technique of airglow spectroscopy, Adv. Space Res., 27, 1153–1158, https://doi.org/10.1016/S0273-1177(01)00150-8, 2001.
Schmidt, C., Höppner, K., and Bittner, M.: A ground-based spectrometer equipped with an InGaAs array for routine observations of OH(3-1) rotational temperatures in the mesopause region, J. Atmos. Sol.-Terr. Phy., 102, 125–139, https://doi.org/10.1016/j.jastp.2013.05.001, 2013.
Semenov, A. I., Shefov, N. N., and Medvedeva, I. V.: Empirical model of variations in the continuum emission in the upper atmosphere. 1. Intensity, Geomagn. Aeron., 54, 488–499, https://doi.org/10.1134/S0016793214040148, 2014.
Shepherd, M. G., Evans, W. F. J., Hernandez, G., Offermann, D., and Takahashi, H.: Global variability of mesospheric temperature: mean temperature field, J. Geophys. Res., 109, D24117, https://doi.org/10.1029/2004JD005054, 2004.
Shiokawa, K., Otsuka, Y., Suzuki, S., Katoh, T., Katoh, Y., Satoh, M., Ogawa, T., Takahashi, H., Gobbi, D., Nakamura, T., Williams, B. P., She, C.-Y., Taguchi, M., and Shimomai, T.: Development of airglow temperature photometers with cooled-CCD detectors, Earth Planets Space, 59, 585–599, https://doi.org/10.1186/BF03352721, 2007.
Smette, A., Sana, H., Noll, S., Horst, H., Kausch, W., Kimeswenger, S., Barden, M., Szyszka, C., Jones, A. M., Gallenne, A., Vinther, J., Ballester, P., and Taylor, J.: Molecfit: a general tool for telluric absorption correction. I. Method and application to ESO instruments, Astron. Astrophys., 576, https://doi.org/10.1051/0004-6361/201423932, 2015.
Smith, A. K.: Global dynamics of the MLT, Surv. Geophys., 33, 1177–1230, https://doi.org/10.1007/s10712-012-9196-9, 2012.
Takahashi, H., Clemesha, B. R., and Batista, P. P.: Predominant semi-annual oscillation of the upper mesospheric airglow intensities and temperatures in the equatorial region, J. Atmos. Terr. Phys., 57, 407–414, 1995.
Takahashi, H., Gobbi, D., Batista, P. P., Melo, S. M. L., Teixeira, N. R., and Buriti, R. A.: Dynamical influence on the equatorial airglow observed from the south american sector, Adv. Space Res., 2, 817–825, https://doi.org/10.1016/S0273-1177(97)00680-7, 1998.
Vallance Jones, A. and Gattinger, R. L.: The seasonal variation and excitation mechanism of the 1.58μ1Δg-3Σ−g twilight airglow band, Planet. Space Sci., 11, 961–974, https://doi.org/10.1016/0032-0633(63)90123-5, 1963.
van der Loo, M. P. J. and Groenenboom, G. C.: Theoretical transition probabilities for the OH Meinel system, J. Chem. Phys., 126, 114314, https://doi.org/10.1063/1.2646859, 2007.
van der Loo, M. P. J. and Groenenboom, G. C.: Erratum: “Theoretical transition probabilities for the OH Meinel system” [J. Chem. Phys. 126, 114314], J. Chem. Phys., 128, 159902, https://doi.org/10.1063/1.2899016, 2008.
van Rhijn, P. J.: On the brightness of the sky at night and the total amount of starlight, Publ. Astr. Lab. Groningen, 31, 1–83, 1921.
Vernet, J., Dekker, D'Odorico, S., Kaper, L., Kjaergaard, P., Hammer, F., Randich, S., Zerbi, F., Groot, P. M., Hjorth, J., Guinouard, I., Navarro, R., Adolfse, T., Albers, P. W., Amans, J.-P., Andersen, J. J., Andersen, M. I., Binetruy, P., Bristow, P., Castillo, R., Chemla, F., Christensen, L., Conconi, P., Conzelmann, R., Dam, J., De Caprio, V., De Ugarte Postigo, A., Delabre, B., Di Marcantonio, P., Downing, M., Elswijk, E., Finger, G., Fischer, G., Flores, H., François, P., Goldoni, P., Guglielmi, L., Haigron, R., Hanenburg, H., Hendriks, I., Horrobin, M., Horville, D., Jessen, N. C., Kerber, F., Kern, L., Kiekebusch, M., Kleszcz, P., Klougart, J., Kragt, J., Larsen, H. H., Lizon, J.-L., Lucuix, C., Mainieri, V., Manuputy, R., Martayan, C., Mason, E., Mazzoleni, R., Michaelsen, N., Modigliani, A., Moehler, S., Møller, P., Norup Sørensen, A., Nørregaard, P., Péroux, C., Patat, F., Pena, E., Pragt, J., Reinero, C., Rigal, F., Riva, M., Roelfsema, R., Royer, F., Sacco, G., Santin, P., Schoenmaker, T., Spano, P., Sweers, E., Ter Horst, R., Tintori, M., Tromp, N., van Dael, P., van der Vliet, H., Venema, L., Vidali, M., Vinther, J., Vola, P., Winters, R., Wistisen, D., Wulterkens, G., and Zacchei, A.: X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope, Astron. Astrophys., 536, https://doi.org/10.1051/0004-6361/201117752, 2011.
von Savigny, C.: Variability of OH(3-1) emission altitude from 2003 to 2011: long-term stability and universality of the emission rate–altitude relationship, J. Atmos. Sol.-Terr. Phy., 127, 120–128, https://doi.org/10.1016/j.jastp.2015.02.001, 2015.
von Savigny, C., McDade, I. C., Eichmann, K.-U., and Burrows, J. P.: On the dependence of the OH* Meinel emission altitude on vibrational level: SCIAMACHY observations and model simulations, Atmos. Chem. Phys., 12, 8813–8828, https://doi.org/10.5194/acp-12-8813-2012, 2012.
von Zahn, U., Höffner, J., Eska, V., and Alpers, M.: The mesopause altitude: only two distinctive levels worldwide?, Geophys. Res. Lett., 23, 3231–3234, https://doi.org/10.1029/96GL03041, 1996.
Wallace, L., Hinkle, K. H., Livingston, W. C., and Davis, S. P.: An optical and near-infrared (2958–9250 Å) solar flux atlas, Astrophys. J. Suppl. S., 195, https://doi.org/10.1088/0067-0049/195/1/6, 2011.
Washenfelder, R. A., Toon, G. C., Blavier, J.-F., Yang, Z., Allen, N. T., Wennberg, P. O., Vay, S. A., Matross, D. M., and Daube, B. C.: Carbon dioxide column abundances at the Wisconsin Tall Tower site, J. Geophys. Res., 111, D22305, https://doi.org/10.1029/2006JD007154, 2006.
Watanabe, T., Nakamura, M., and Ogawa, T.: Rocket measurements of O2 atmospheric and OH Meinel bands in the airglow, J. Geophys. Res., 86, 5768–5774, https://doi.org/10.1029/JA086iA07p05768, 1981.
Xu, J., Smith, A. K., Jiang, G., Gao, H., Wei, Y., Mlynczak, M. G., and Russell III, J. M.: Strong longitudinal variations in the OH nightglow, J. Geophys. Res., 37, L21801, https://doi.org/10.1029/2010GL043972, 2010.
Xu, J., Gao, H., Smith, A. K., and Zhu, Y.: Using TIMED/SABER nightglow observations to investigate hydroxyl emission mechanisms in the mesopause region, J. Geophys. Res., 117, D02301, https://doi.org/10.1029/2011JD016342, 2012.
Yee, J.-H., Crowley, G., Roble, R. G., Skinner, W. R., Burrage, M. D., and Hays, P. B.: Global simulations and observations of O(1S), O2(1Σ) and OH mesospheric nightglow emissions, J. Geophys. Res., 102, 19949–19968, https://doi.org/10.1029/96JA01833, 1997.
Short summary
We compare temperatures derived from simultaneous observations of 25 OH and two O2 mesospheric airglow bands taken with the X-shooter spectrograph at the Very Large Telescope in Chile. Considering emission and temperature profile data from the radiometer SABER on the TIMED satellite, we find significant time-dependent non-thermal contributions to the OH-based temperatures, especially for bands originating from high vibrational levels. Many studies of the mesopause region are affected.
We compare temperatures derived from simultaneous observations of 25 OH and two O2 mesospheric...
Altmetrics
Final-revised paper
Preprint