Articles | Volume 16, issue 2
https://doi.org/10.5194/acp-16-1029-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-1029-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Historic records of organic compounds from a high Alpine glacier: influences of biomass burning, anthropogenic emissions, and dust transport
C. Müller-Tautges
Institute of Inorganic Chemistry and Analytical Chemistry,
Johannes Gutenberg University of Mainz, Mainz, Germany
A. Eichler
Laboratory of Radiochemistry and Environmental Chemistry,
Paul Scherrer Institute, Villigen, Switzerland
Oeschger Centre for Climate Research, University of Bern,
Bern, Switzerland
M. Schwikowski
Laboratory of Radiochemistry and Environmental Chemistry,
Paul Scherrer Institute, Villigen, Switzerland
Oeschger Centre for Climate Research, University of Bern,
Bern, Switzerland
Department for Chemistry and Biochemistry, University of
Bern, Bern, Switzerland
G. B. Pezzatti
Insubric Ecosystems Research Group, Swiss Federal
Institute for Forest, Snow and Landscape Research WSL, Bellinzona,
Switzerland
M. Conedera
Insubric Ecosystems Research Group, Swiss Federal
Institute for Forest, Snow and Landscape Research WSL, Bellinzona,
Switzerland
T. Hoffmann
CORRESPONDING AUTHOR
Institute of Inorganic Chemistry and Analytical Chemistry,
Johannes Gutenberg University of Mainz, Mainz, Germany
Related authors
No articles found.
Paolo Gabrielli, Theo M. Jenk, Michele Bertó, Giuliano Dreossi, Daniela Festi, Werner Kofler, Mai Winstrup, Klaus Oeggl, Margit Schwikowski, Barbara Stenni, and Carlo Barbante
EGUsphere, https://doi.org/10.5194/egusphere-2025-2174, https://doi.org/10.5194/egusphere-2025-2174, 2025
Short summary
Short summary
A low latitude-high altitude Alpine ice core record was obtained in 2011 from the glacier Alto dell’Ortles (Eastern Alps, Italy) and provided evidence of one of the oldest Alpine ice core records spanning the last ~7000 years, back to the last Northern Hemisphere Climatic Optimum. Here we provide a new Alto dell’Ortles chronology of improved accuracy that will allow to constrain Holocene climatic and environmental histories emerging from this high-altitude glacial archive of Central Europe.
Johanna Schäfer, Anja Beschnitt, François Burgay, Thomas Singer, Margit Schwikowski, and Thorsten Hoffmann
Atmos. Meas. Tech., 18, 421–430, https://doi.org/10.5194/amt-18-421-2025, https://doi.org/10.5194/amt-18-421-2025, 2025
Short summary
Short summary
Glaciers preserve organic compounds from atmospheric aerosols, which can serve as markers for emission sources. Most studies overlook the enantiomers of chiral compounds. We developed a two-dimensional liquid chromatography method to determine the chiral ratios of the monoterpene oxidation products cis-pinic acid and cis-pinonic acid in ice-core samples. Applied to samples from the Belukha Glacier (1870–1970 CE), the method revealed fluctuating chiral ratios for the analytes.
Elena Di Stefano, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Deborah Fiorini, Roberto Garzonio, Margit Schwikowski, and Valter Maggi
The Cryosphere, 18, 2865–2874, https://doi.org/10.5194/tc-18-2865-2024, https://doi.org/10.5194/tc-18-2865-2024, 2024
Short summary
Short summary
Rising temperatures are impacting the reliability of glaciers as environmental archives. This study reports how meltwater percolation affects the distribution of tritium and cesium, which are commonly used as temporal markers in dating ice cores, in a temperate glacier. Our findings challenge the established application of radionuclides for dating mountain ice cores and indicate tritium as the best choice.
Dorothea Elisabeth Moser, Elizabeth R. Thomas, Christoph Nehrbass-Ahles, Anja Eichler, and Eric Wolff
The Cryosphere, 18, 2691–2718, https://doi.org/10.5194/tc-18-2691-2024, https://doi.org/10.5194/tc-18-2691-2024, 2024
Short summary
Short summary
Increasing temperatures worldwide lead to more melting of glaciers and ice caps, even in the polar regions. This is why ice-core scientists need to prepare to analyse records affected by melting and refreezing. In this paper, we present a summary of how near-surface melt forms, what structural imprints it leaves in snow, how various signatures used for ice-core climate reconstruction are altered, and how we can still extract valuable insights from melt-affected ice cores.
Horst Machguth, Anja Eichler, Margit Schwikowski, Sabina Brütsch, Enrico Mattea, Stanislav Kutuzov, Martin Heule, Ryskul Usubaliev, Sultan Belekov, Vladimir N. Mikhalenko, Martin Hoelzle, and Marlene Kronenberg
The Cryosphere, 18, 1633–1646, https://doi.org/10.5194/tc-18-1633-2024, https://doi.org/10.5194/tc-18-1633-2024, 2024
Short summary
Short summary
In 2018 we drilled an 18 m ice core on the summit of Grigoriev ice cap, located in the Tien Shan mountains of Kyrgyzstan. The core analysis reveals strong melting since the early 2000s. Regardless of this, we find that the structure and temperature of the ice have changed little since the 1980s. The probable cause of this apparent stability is (i) an increase in snowfall and (ii) the fact that meltwater nowadays leaves the glacier and thereby removes so-called latent heat.
Emma Nilsson, Carmen Paulina Vega, Dmitry Divine, Anja Eichler, Tonu Martma, Robert Mulvaney, Elisabeth Schlosser, Margit Schwikowski, and Elisabeth Isaksson
EGUsphere, https://doi.org/10.5194/egusphere-2023-3156, https://doi.org/10.5194/egusphere-2023-3156, 2024
Preprint withdrawn
Short summary
Short summary
To project future climate change it is necessary to understand paleoclimate including past sea ice conditions. We have investigated methane sulphonic acid (MSA) in Antarctic firn and ice cores to reconstruct sea ice extent (SIE) and found that the MSA – SIE as well as the MSA – phytoplankton biomass relationship varies across the different firn and ice cores. These inconsistencies in correlations across records suggest that MSA in Fimbul Ice Shelf cores does not reliably indicate regional SIE.
Sandra Melzner, Marco Conedera, Johannes Hübl, and Mauro Rossi
Nat. Hazards Earth Syst. Sci., 23, 3079–3093, https://doi.org/10.5194/nhess-23-3079-2023, https://doi.org/10.5194/nhess-23-3079-2023, 2023
Short summary
Short summary
The estimation of the temporal frequency of the involved rockfall processes is an important part in hazard and risk assessments. Different methods can be used to collect and analyse rockfall data. From a statistical point of view, rockfall datasets are nearly always incomplete. Accurate data collection approaches and the application of statistical methods on existing rockfall data series as reported in this study should be better considered in rockfall hazard and risk assessments in the future.
Ling Fang, Theo M. Jenk, Dominic Winski, Karl Kreutz, Hanna L. Brooks, Emma Erwin, Erich Osterberg, Seth Campbell, Cameron Wake, and Margit Schwikowski
The Cryosphere, 17, 4007–4020, https://doi.org/10.5194/tc-17-4007-2023, https://doi.org/10.5194/tc-17-4007-2023, 2023
Short summary
Short summary
Understanding the behavior of ocean–atmosphere teleconnections in the North Pacific during warm intervals can aid in predicting future warming scenarios. However, majority ice core records from Alaska–Yukon region only provide data for the last few centuries. This study introduces a continuous chronology for Denali ice core from Begguya, Alaska, using multiple dating methods. The early-Holocene-origin Denali ice core will facilitate future investigations of hydroclimate in the North Pacific.
Anja Eichler, Michel Legrand, Theo M. Jenk, Susanne Preunkert, Camilla Andersson, Sabine Eckhardt, Magnuz Engardt, Andreas Plach, and Margit Schwikowski
The Cryosphere, 17, 2119–2137, https://doi.org/10.5194/tc-17-2119-2023, https://doi.org/10.5194/tc-17-2119-2023, 2023
Short summary
Short summary
We investigate how a 250-year history of the emission of air pollutants (major inorganic aerosol constituents, black carbon, and trace species) is preserved in ice cores from four sites in the European Alps. The observed uniform timing in species-dependent longer-term concentration changes reveals that the different ice-core records provide a consistent, spatially representative signal of the pollution history from western European countries.
Jose V. Moris, Pedro Álvarez-Álvarez, Marco Conedera, Annalie Dorph, Thomas D. Hessilt, Hugh G. P. Hunt, Renata Libonati, Lucas S. Menezes, Mortimer M. Müller, Francisco J. Pérez-Invernón, Gianni B. Pezzatti, Nicolau Pineda, Rebecca C. Scholten, Sander Veraverbeke, B. Mike Wotton, and Davide Ascoli
Earth Syst. Sci. Data, 15, 1151–1163, https://doi.org/10.5194/essd-15-1151-2023, https://doi.org/10.5194/essd-15-1151-2023, 2023
Short summary
Short summary
This work describes a database on holdover times of lightning-ignited wildfires (LIWs). Holdover time is defined as the time between lightning-induced fire ignition and fire detection. The database contains 42 datasets built with data on more than 152 375 LIWs from 13 countries in five continents from 1921 to 2020. This database is the first freely-available, harmonized and ready-to-use global source of holdover time data, which may be used to investigate LIWs and model the holdover phenomenon.
Wangbin Zhang, Shugui Hou, Shuang-Ye Wu, Hongxi Pang, Sharon B. Sneed, Elena V. Korotkikh, Paul A. Mayewski, Theo M. Jenk, and Margit Schwikowski
The Cryosphere, 16, 1997–2008, https://doi.org/10.5194/tc-16-1997-2022, https://doi.org/10.5194/tc-16-1997-2022, 2022
Short summary
Short summary
This study proposes a quantitative method to reconstruct annual precipitation records at the millennial timescale from the Tibetan ice cores through combining annual layer identification based on LA-ICP-MS measurement with an ice flow model. The reliability of this method is assessed by comparing our results with other reconstructed and modeled precipitation series for the Tibetan Plateau. The assessment shows that the method has a promising performance.
Paolo Gabrielli, Theo Manuel Jenk, Michele Bertó, Giuliano Dreossi, Daniela Festi, Werner Kofler, Mai Winstrup, Klaus Oeggl, Margit Schwikowski, Barbara Stenni, and Carlo Barbante
Clim. Past Discuss., https://doi.org/10.5194/cp-2022-20, https://doi.org/10.5194/cp-2022-20, 2022
Revised manuscript not accepted
Short summary
Short summary
We present a methodology that reduces the chronological uncertainty of an Alpine ice core record from the glacier Alto dell’Ortles, Italy. This chronology will allow the constraint of the Holocene climatic and environmental histories emerging from this archive of Central Europe. This method will allow to obtain accurate chronologies also from other ice cores from-low latitude/high-altitude glaciers that typically suffer from larger dating uncertainties compared with well dated polar records.
Daniela Festi, Margit Schwikowski, Valter Maggi, Klaus Oeggl, and Theo Manuel Jenk
The Cryosphere, 15, 4135–4143, https://doi.org/10.5194/tc-15-4135-2021, https://doi.org/10.5194/tc-15-4135-2021, 2021
Short summary
Short summary
In our study we dated a 46 m deep ice core retrieved from the Adamello glacier (Central Italian Alps). We obtained a timescale combining the results of radionuclides 210Pb and 137Cs with annual layer counting derived from pollen and refractory black carbon concentrations. Our results indicate that the surface of the glacier is older than the drilling date of 2016 by about 20 years, therefore revealing that the glacier is at high risk of collapsing under current climate warming conditions.
Shugui Hou, Wangbin Zhang, Ling Fang, Theo M. Jenk, Shuangye Wu, Hongxi Pang, and Margit Schwikowski
The Cryosphere, 15, 2109–2114, https://doi.org/10.5194/tc-15-2109-2021, https://doi.org/10.5194/tc-15-2109-2021, 2021
Short summary
Short summary
We present ages for two new ice cores reaching bedrock, from the Zangser Kangri (ZK) glacier in the northwestern Tibetan Plateau and the Shulenanshan (SLNS) glacier in the western Qilian Mountains. We estimated bottom ages of 8.90±0.57/0.56 ka and 7.46±1.46/1.79 ka for the ZK and SLNS ice core respectively, constraining the time range accessible by Tibetan ice cores to the Holocene.
Ling Fang, Theo M. Jenk, Thomas Singer, Shugui Hou, and Margit Schwikowski
The Cryosphere, 15, 1537–1550, https://doi.org/10.5194/tc-15-1537-2021, https://doi.org/10.5194/tc-15-1537-2021, 2021
Short summary
Short summary
The interpretation of the ice-core-preserved signal requires a precise chronology. Radiocarbon (14C) dating of the water-insoluble organic carbon (WIOC) fraction has become an important dating tool. However, this method is restricted by the low concentration in the ice. In this work, we report first 14C dating results using the dissolved organic carbon (DOC) fraction. The resulting ages are comparable in both fractions, but by using the DOC fraction the required ice mass can be reduced.
Sebastian Hellmann, Johanna Kerch, Ilka Weikusat, Andreas Bauder, Melchior Grab, Guillaume Jouvet, Margit Schwikowski, and Hansruedi Maurer
The Cryosphere, 15, 677–694, https://doi.org/10.5194/tc-15-677-2021, https://doi.org/10.5194/tc-15-677-2021, 2021
Short summary
Short summary
We analyse the orientation of ice crystals in an Alpine glacier and compare this orientation with the ice flow direction. We found that the crystals orient in the direction of the largest stress which is in the flow direction in the upper parts of the glacier and in the vertical direction for deeper zones of the glacier. The grains cluster around this maximum stress direction, in particular four-point maxima, most likely as a result of recrystallisation under relatively warm conditions.
Guillaume Jouvet, Stefan Röllin, Hans Sahli, José Corcho, Lars Gnägi, Loris Compagno, Dominik Sidler, Margit Schwikowski, Andreas Bauder, and Martin Funk
The Cryosphere, 14, 4233–4251, https://doi.org/10.5194/tc-14-4233-2020, https://doi.org/10.5194/tc-14-4233-2020, 2020
Short summary
Short summary
We show that plutonium is an effective tracer to identify ice originating from the early 1960s at the surface of a mountain glacier after a long time within the ice flow, giving unique information on the long-term former ice motion. Combined with ice flow modelling, the dating can be extended to the entire glacier, and we show that an airplane which crash-landed on the Gauligletscher in 1946 will likely soon be released from the ice close to the place where pieces have emerged in recent years.
Jacinta Edebeli, Jürg C. Trachsel, Sven E. Avak, Markus Ammann, Martin Schneebeli, Anja Eichler, and Thorsten Bartels-Rausch
Atmos. Chem. Phys., 20, 13443–13454, https://doi.org/10.5194/acp-20-13443-2020, https://doi.org/10.5194/acp-20-13443-2020, 2020
Short summary
Short summary
Earth’s snow cover is very dynamic and can change its physical properties within hours, as is well known by skiers. Snow is also a well-known host of chemical reactions – the products of which impact air composition and quality. Here, we present laboratory experiments that show how the dynamics of snow make snow essentially inert with respect to gas-phase ozone with time despite its content of reactive chemicals. Impacts on polar atmospheric chemistry are discussed.
Dimitri Osmont, Sandra Brugger, Anina Gilgen, Helga Weber, Michael Sigl, Robin L. Modini, Christoph Schwörer, Willy Tinner, Stefan Wunderle, and Margit Schwikowski
The Cryosphere, 14, 3731–3745, https://doi.org/10.5194/tc-14-3731-2020, https://doi.org/10.5194/tc-14-3731-2020, 2020
Short summary
Short summary
In this interdisciplinary case study, we were able to link biomass burning emissions from the June 2017 wildfires in Portugal to their deposition in the snowpack at Jungfraujoch, Swiss Alps. We analysed black carbon and charcoal in the snowpack, calculated backward trajectories, and monitored the fire evolution by remote sensing. Such case studies help to understand the representativity of biomass burning records in ice cores and how biomass burning tracers are archived in the snowpack.
Shugui Hou, Wangbin Zhang, Hongxi Pang, Shuang-Ye Wu, Theo M. Jenk, Margit Schwikowski, and Yetang Wang
The Cryosphere, 13, 1743–1752, https://doi.org/10.5194/tc-13-1743-2019, https://doi.org/10.5194/tc-13-1743-2019, 2019
Short summary
Short summary
The apparent discrepancy between the Holocene δ18O records of the Guliya and the Chongce ice cores may be attributed to a possible misinterpretation of the Guliya ice core chronology.
Dimitri Osmont, Michael Sigl, Anja Eichler, Theo M. Jenk, and Margit Schwikowski
Clim. Past, 15, 579–592, https://doi.org/10.5194/cp-15-579-2019, https://doi.org/10.5194/cp-15-579-2019, 2019
Short summary
Short summary
We present the first black carbon (BC) ice-core record from the Andes (Illimani, Bolivia). It spans the entire Holocene and reflects biomass burning emissions from the Amazon Basin, with high (low) concentrations during warm–dry (wet–cold) periods. The highest fire activity occurred during the Holocene Climatic Optimum (7000–3000 BCE). Recent BC levels, increasing since 1730 CE, do not exceed those of the Medieval Warm Period. The contribution from industrial and traffic emissions remains minor.
Michael Sigl, Nerilie J. Abram, Jacopo Gabrieli, Theo M. Jenk, Dimitri Osmont, and Margit Schwikowski
The Cryosphere, 12, 3311–3331, https://doi.org/10.5194/tc-12-3311-2018, https://doi.org/10.5194/tc-12-3311-2018, 2018
Short summary
Short summary
The fast retreat of Alpine glaciers since the mid-19th century documented in photographs is used as a symbol for the human impact on global climate, yet the key driving forces remain elusive. Here we argue that not industrial soot but volcanic eruptions were responsible for an apparently accelerated deglaciation starting in the 1850s. Our findings support a negligible role of human activity in forcing glacier recession at the end of the Little Ice Age, highlighting the role of natural drivers.
Dimitri Osmont, Isabel A. Wendl, Loïc Schmidely, Michael Sigl, Carmen P. Vega, Elisabeth Isaksson, and Margit Schwikowski
Atmos. Chem. Phys., 18, 12777–12795, https://doi.org/10.5194/acp-18-12777-2018, https://doi.org/10.5194/acp-18-12777-2018, 2018
Short summary
Short summary
This study presents the first long-term and high-resolution refractory black carbon (rBC) ice core record from Svalbard, spanning the last 800 years. Our results show that rBC has had a predominant anthropogenic origin since the beginning of the Industrial Revolution in Europe and that rBC concentrations have been declining in the last 40 years. We discuss the impact of 20th century snowmelt on our record. We reconstruct biomass burning trends prior to 1800 by using a multi-proxy approach.
Anina Gilgen, Carole Adolf, Sandra O. Brugger, Luisa Ickes, Margit Schwikowski, Jacqueline F. N. van Leeuwen, Willy Tinner, and Ulrike Lohmann
Atmos. Chem. Phys., 18, 11813–11829, https://doi.org/10.5194/acp-18-11813-2018, https://doi.org/10.5194/acp-18-11813-2018, 2018
Short summary
Short summary
Microscopic charcoal particles are fire-specific tracers, which are presently the primary source for reconstructing past fire activity. In this study, we implement microscopic charcoal particles into a global aerosol–climate model to better understand the transport of charcoal on a large scale. We find that the model captures a significant portion of the spatial variability but fails to reproduce the extreme variability observed in the charcoal data.
Shugui Hou, Theo M. Jenk, Wangbin Zhang, Chaomin Wang, Shuangye Wu, Yetang Wang, Hongxi Pang, and Margit Schwikowski
The Cryosphere, 12, 2341–2348, https://doi.org/10.5194/tc-12-2341-2018, https://doi.org/10.5194/tc-12-2341-2018, 2018
Short summary
Short summary
We present multiple lines of evidence indicating that the Chongce ice cores drilled from the northwestern Tibetan Plateau reaches back only to the early Holocene. This result is at least, 1 order of magnitude younger than the nearby Guliya ice core (~30 km away from the Chongce ice core drilling site) but similar to other Tibetan ice cores. Thus it is necessary to explore multiple dating techniques to confirm the age ranges of the Tibetan ice cores.
Mackenzie M. Grieman, Murat Aydin, Elisabeth Isaksson, Margit Schwikowski, and Eric S. Saltzman
Clim. Past, 14, 637–651, https://doi.org/10.5194/cp-14-637-2018, https://doi.org/10.5194/cp-14-637-2018, 2018
Short summary
Short summary
This study presents organic acid levels in an ice core from Svalbard over the past 800 years. These acids are produced from wildfire emissions and transported as aerosol. Organic acid levels are high early in the record and decline until the 20th century. Siberia and Europe are likely the primary source regions of the fire emissions. The data are similar to those from a Siberian ice core prior to 1400 CE. The timing of the divergence after 1400 CE is similar to a shift in North Atlantic climate.
Carmen Paulina Vega, Elisabeth Isaksson, Elisabeth Schlosser, Dmitry Divine, Tõnu Martma, Robert Mulvaney, Anja Eichler, and Margit Schwikowski-Gigar
The Cryosphere, 12, 1681–1697, https://doi.org/10.5194/tc-12-1681-2018, https://doi.org/10.5194/tc-12-1681-2018, 2018
Short summary
Short summary
Ions were measured in firn and ice cores from Fimbul Ice Shelf, Antarctica, to evaluate sea-salt loads. A significant sixfold increase in sea salts was found in the S100 core after 1950s which suggests that it contains a more local sea-salt signal, dominated by processes during sea-ice formation in the neighbouring waters. In contrast, firn cores from three ice rises register the larger-scale signal of atmospheric flow conditions and transport of sea-salt aerosols produced over open water.
Pascal Bohleber, Leo Sold, Douglas R. Hardy, Margit Schwikowski, Patrick Klenk, Andrea Fischer, Pascal Sirguey, Nicolas J. Cullen, Mariusz Potocki, Helene Hoffmann, and Paul Mayewski
The Cryosphere, 11, 469–482, https://doi.org/10.5194/tc-11-469-2017, https://doi.org/10.5194/tc-11-469-2017, 2017
Short summary
Short summary
Our study is the first to use ground-penetrating radar (GPR) to investigate ice thickness and internal layering at Kilimanjaro’s largest ice body, the Northern Ice Field (NIF). For monitoring the ongoing ice loss, our ice thickness soundings allowed us to estimate the total ice volume remaining at NIF's southern portion. Englacial GPR reflections indicate undisturbed layers within NIF's center and provide a first link between age information obtained from ice coring and vertical wall sampling.
Rune Strand Ødegård, Atle Nesje, Ketil Isaksen, Liss Marie Andreassen, Trond Eiken, Margit Schwikowski, and Chiara Uglietti
The Cryosphere, 11, 17–32, https://doi.org/10.5194/tc-11-17-2017, https://doi.org/10.5194/tc-11-17-2017, 2017
Short summary
Short summary
Despite numerous spectacular archaeological discoveries worldwide related to melting ice, governing processes related to ice patch development are still largely unexplored. We present new results from Jotunheimen in central southern Norway showing that the Juvfonne ice patch has existed continuously since ca. 7600 cal years BP. This is the oldest dating of ice in mainland Norway. Moss mats along the margin of Juvfonne in 2014 were covered by the expanding ice patch about 2000 years ago.
Chiara Uglietti, Alexander Zapf, Theo Manuel Jenk, Michael Sigl, Sönke Szidat, Gary Salazar, and Margit Schwikowski
The Cryosphere, 10, 3091–3105, https://doi.org/10.5194/tc-10-3091-2016, https://doi.org/10.5194/tc-10-3091-2016, 2016
Short summary
Short summary
A meaningful interpretation of the climatic history contained in ice cores requires a precise chronology. For dating the older and deeper part of the glaciers, radiocarbon analysis can be used when organic matter such as plant or insect fragments are found in the ice. Since this happens rarely, a complementary dating tool, based on radiocarbon dating of the insoluble fraction of carbonaceous aerosols entrapped in the ice, allows for ice dating between 200 and more than 10 000 years.
Paolo Gabrielli, Carlo Barbante, Giuliano Bertagna, Michele Bertó, Daniel Binder, Alberto Carton, Luca Carturan, Federico Cazorzi, Giulio Cozzi, Giancarlo Dalla Fontana, Mary Davis, Fabrizio De Blasi, Roberto Dinale, Gianfranco Dragà, Giuliano Dreossi, Daniela Festi, Massimo Frezzotti, Jacopo Gabrieli, Stephan P. Galos, Patrick Ginot, Petra Heidenwolf, Theo M. Jenk, Natalie Kehrwald, Donald Kenny, Olivier Magand, Volkmar Mair, Vladimir Mikhalenko, Ping Nan Lin, Klaus Oeggl, Gianni Piffer, Mirko Rinaldi, Ulrich Schotterer, Margit Schwikowski, Roberto Seppi, Andrea Spolaor, Barbara Stenni, David Tonidandel, Chiara Uglietti, Victor Zagorodnov, Thomas Zanoner, and Piero Zennaro
The Cryosphere, 10, 2779–2797, https://doi.org/10.5194/tc-10-2779-2016, https://doi.org/10.5194/tc-10-2779-2016, 2016
Short summary
Short summary
New ice cores were extracted from Alto dell'Ortles, the highest glacier of South Tyrol in the Italian Alps, to check whether prehistoric ice, which is coeval to the famous 5300-yr-old Tyrolean Iceman, is still preserved in this region. Dating of the ice cores confirms the hypothesis and indicates the drilling site has been glaciated since the end of the Northern Hemisphere Climatic Optimum (7000 yrs BP). We also infer that an unprecedented acceleration of the glacier flow has recently begun.
Carmen P. Vega, Elisabeth Schlosser, Dmitry V. Divine, Jack Kohler, Tõnu Martma, Anja Eichler, Margit Schwikowski, and Elisabeth Isaksson
The Cryosphere, 10, 2763–2777, https://doi.org/10.5194/tc-10-2763-2016, https://doi.org/10.5194/tc-10-2763-2016, 2016
Short summary
Short summary
Surface mass balance and water stable isotopes from firn cores on three ice rises at Fimbul Ice Shelf are reported. The results suggest that the ice rises are suitable sites for the retrieval of longer firn and ice cores. The first deuterium excess data for the area suggests a possible role of seasonal moisture transport changes on the annual isotopic signal. Large-scale atmospheric circulation patterns most likely provide the dominant influence on water stable isotope ratios at the sites.
Carmen P. Vega, Veijo A. Pohjola, Emilie Beaudon, Björn Claremar, Ward J. J. van Pelt, Rickard Pettersson, Elisabeth Isaksson, Tõnu Martma, Margit Schwikowski, and Carl E. Bøggild
The Cryosphere, 10, 961–976, https://doi.org/10.5194/tc-10-961-2016, https://doi.org/10.5194/tc-10-961-2016, 2016
Short summary
Short summary
To quantify post-depositional relocation of major ions by meltwater in snow and firn at Lomonosovfonna, Svalbard, consecutive ice cores drilled at this site were used to construct a synthetic core. The relocation length of most of the ions was on the order of 1 m between 2007 and 2010. Considering the ionic relocation lengths and annual melt percentages, we estimate that the atmospheric ionic signal remains preserved in recently drilled Lomonosovfonna ice cores at an annual or bi-annual resolution.
M. O. Andreae, O. C. Acevedo, A. Araùjo, P. Artaxo, C. G. G. Barbosa, H. M. J. Barbosa, J. Brito, S. Carbone, X. Chi, B. B. L. Cintra, N. F. da Silva, N. L. Dias, C. Q. Dias-Júnior, F. Ditas, R. Ditz, A. F. L. Godoi, R. H. M. Godoi, M. Heimann, T. Hoffmann, J. Kesselmeier, T. Könemann, M. L. Krüger, J. V. Lavric, A. O. Manzi, A. P. Lopes, D. L. Martins, E. F. Mikhailov, D. Moran-Zuloaga, B. W. Nelson, A. C. Nölscher, D. Santos Nogueira, M. T. F. Piedade, C. Pöhlker, U. Pöschl, C. A. Quesada, L. V. Rizzo, C.-U. Ro, N. Ruckteschler, L. D. A. Sá, M. de Oliveira Sá, C. B. Sales, R. M. N. dos Santos, J. Saturno, J. Schöngart, M. Sörgel, C. M. de Souza, R. A. F. de Souza, H. Su, N. Targhetta, J. Tóta, I. Trebs, S. Trumbore, A. van Eijck, D. Walter, Z. Wang, B. Weber, J. Williams, J. Winderlich, F. Wittmann, S. Wolff, and A. M. Yáñez-Serrano
Atmos. Chem. Phys., 15, 10723–10776, https://doi.org/10.5194/acp-15-10723-2015, https://doi.org/10.5194/acp-15-10723-2015, 2015
Short summary
Short summary
This paper describes the Amazon Tall Tower Observatory (ATTO), a new atmosphere-biosphere observatory located in the remote Amazon Basin. It presents results from ecosystem ecology, meteorology, trace gas, and aerosol measurements collected at the ATTO site during the first 3 years of operation.
J. Gabbi, M. Huss, A. Bauder, F. Cao, and M. Schwikowski
The Cryosphere, 9, 1385–1400, https://doi.org/10.5194/tc-9-1385-2015, https://doi.org/10.5194/tc-9-1385-2015, 2015
Short summary
Short summary
Light-absorbing impurities in snow and ice increase the absorption of solar radiation and thus enhance melting. We investigated the effect of Saharan dust and black carbon on the mass balance of an Alpine glacier over 1914-2014. Snow impurities increased melt by 15-19% depending on the location on the glacier. From the accumulation area towards the equilibrium line, the effect of impurities increased as more frequent years with negative mass balance led to a re-exposure of dust-enriched layers.
I. A. Wendl, A. Eichler, E. Isaksson, T. Martma, and M. Schwikowski
Atmos. Chem. Phys., 15, 7287–7300, https://doi.org/10.5194/acp-15-7287-2015, https://doi.org/10.5194/acp-15-7287-2015, 2015
Short summary
Short summary
Nitrate and ammonium ice core records from Lomonosovfonna, Svalbard, indicated anthropogenic pollution from Eurasia as major source during the 20th century. In pre-industrial times nitrate is correlated with methane sulfonate, which we explain with a fertilising effect, presumably triggered by enhanced atmospheric nitrogen input to the ocean. Eurasia was likely the main source area also of pre-industrial nitrate, but for ammonium, biogenic emissions from Siberian boreal forests were dominant.
S. Kang, F. Wang, U. Morgenstern, Y. Zhang, B. Grigholm, S. Kaspari, M. Schwikowski, J. Ren, T. Yao, D. Qin, and P. A. Mayewski
The Cryosphere, 9, 1213–1222, https://doi.org/10.5194/tc-9-1213-2015, https://doi.org/10.5194/tc-9-1213-2015, 2015
Short summary
L. Sold, M. Huss, A. Eichler, M. Schwikowski, and M. Hoelzle
The Cryosphere, 9, 1075–1087, https://doi.org/10.5194/tc-9-1075-2015, https://doi.org/10.5194/tc-9-1075-2015, 2015
Short summary
Short summary
This study presents a method for estimating annual accumulation rates on a temperate Alpine glacier based on the interpretation of internal reflection horizons in helicopter-borne ground-penetrating radar (GPR) data. In combination with a simple model for firn densification and refreezing of meltwater, GPR can be used not only to complement existing mass balance monitoring programmes but also to retrospectively extend newly initiated time series.
Y.-L. Zhang, R.-J. Huang, I. El Haddad, K.-F. Ho, J.-J. Cao, Y. Han, P. Zotter, C. Bozzetti, K. R. Daellenbach, F. Canonaco, J. G. Slowik, G. Salazar, M. Schwikowski, J. Schnelle-Kreis, G. Abbaszade, R. Zimmermann, U. Baltensperger, A. S. H. Prévôt, and S. Szidat
Atmos. Chem. Phys., 15, 1299–1312, https://doi.org/10.5194/acp-15-1299-2015, https://doi.org/10.5194/acp-15-1299-2015, 2015
Short summary
Short summary
Source apportionment of fine carbonaceous aerosols using radiocarbon and other organic markers measurements during 2013 winter haze episodes was conducted at four megacities in China. Our results demonstrate that fossil emissions predominate EC with a mean contribution of 75±8%, whereas non-fossil sources account for 55±10% of OC; and the increment of TC on heavily polluted days was mainly driven by the increase of secondary OC from both fossil-fuel and non-fossil emissions.
P. Zotter, V. G. Ciobanu, Y. L. Zhang, I. El-Haddad, M. Macchia, K. R. Daellenbach, G. A. Salazar, R.-J. Huang, L. Wacker, C. Hueglin, A. Piazzalunga, P. Fermo, M. Schwikowski, U. Baltensperger, S. Szidat, and A. S. H. Prévôt
Atmos. Chem. Phys., 14, 13551–13570, https://doi.org/10.5194/acp-14-13551-2014, https://doi.org/10.5194/acp-14-13551-2014, 2014
I. A. Wendl, J. A. Menking, R. Färber, M. Gysel, S. D. Kaspari, M. J. G. Laborde, and M. Schwikowski
Atmos. Meas. Tech., 7, 2667–2681, https://doi.org/10.5194/amt-7-2667-2014, https://doi.org/10.5194/amt-7-2667-2014, 2014
S. Kaspari, T. H. Painter, M. Gysel, S. M. Skiles, and M. Schwikowski
Atmos. Chem. Phys., 14, 8089–8103, https://doi.org/10.5194/acp-14-8089-2014, https://doi.org/10.5194/acp-14-8089-2014, 2014
I. Mariani, A. Eichler, T. M. Jenk, S. Brönnimann, R. Auchmann, M. C. Leuenberger, and M. Schwikowski
Clim. Past, 10, 1093–1108, https://doi.org/10.5194/cp-10-1093-2014, https://doi.org/10.5194/cp-10-1093-2014, 2014
A. L. Corrigan, L. M. Russell, S. Takahama, M. Äijälä, M. Ehn, H. Junninen, J. Rinne, T. Petäjä, M. Kulmala, A. L. Vogel, T. Hoffmann, C. J. Ebben, F. M. Geiger, P. Chhabra, J. H. Seinfeld, D. R. Worsnop, W. Song, J. Auld, and J. Williams
Atmos. Chem. Phys., 13, 12233–12256, https://doi.org/10.5194/acp-13-12233-2013, https://doi.org/10.5194/acp-13-12233-2013, 2013
A. L. Vogel, M. Äijälä, A. L. Corrigan, H. Junninen, M. Ehn, T. Petäjä, D. R. Worsnop, M. Kulmala, L. M. Russell, J. Williams, and T. Hoffmann
Atmos. Chem. Phys., 13, 10933–10950, https://doi.org/10.5194/acp-13-10933-2013, https://doi.org/10.5194/acp-13-10933-2013, 2013
T. Papina, T. Blyakharchuk, A. Eichler, N. Malygina, E. Mitrofanova, and M. Schwikowski
Clim. Past, 9, 2399–2411, https://doi.org/10.5194/cp-9-2399-2013, https://doi.org/10.5194/cp-9-2399-2013, 2013
M. Schwikowski, M. Schläppi, P. Santibañez, A. Rivera, and G. Casassa
The Cryosphere, 7, 1635–1644, https://doi.org/10.5194/tc-7-1635-2013, https://doi.org/10.5194/tc-7-1635-2013, 2013
S. Brönnimann, I. Mariani, M. Schwikowski, R. Auchmann, and A. Eichler
Clim. Past, 9, 2013–2022, https://doi.org/10.5194/cp-9-2013-2013, https://doi.org/10.5194/cp-9-2013-2013, 2013
A. L. Vogel, M. Äijälä, M. Brüggemann, M. Ehn, H. Junninen, T. Petäjä, D. R. Worsnop, M. Kulmala, J. Williams, and T. Hoffmann
Atmos. Meas. Tech., 6, 431–443, https://doi.org/10.5194/amt-6-431-2013, https://doi.org/10.5194/amt-6-431-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Asian dust transport of proteinaceous matter from the Gobi Desert to northern China
Machine-learning-assisted chemical characterization and optical properties of atmospheric brown carbon in Nanjing, China
Technical note: Reconstructing missing surface aerosol elemental carbon data in long-term series with ensemble learning
Enhanced emission of intermediate-volatility/semi-volatile organic matter in gas and particle phases from ship exhausts with low-sulfur fuels
Measurement report: Crustal materials play an increasing role in elevating particle pH – insights from 12-year records in a typical inland city of China
Significant contributions of biomass burning to PM2.5-bound aromatic compounds: insights from field observations and quantum chemical calculations
Measurement report: In-depth characterization of ship emissions during operations in a Mediterranean port
Direct measurement of N2O5 heterogeneous uptake coefficients on atmospheric aerosols in southwestern China and evaluation of current parameterizations
Measurement report: Per- and polyfluoroalkyl substances (PFAS) in particulate matter (PM10) from activated sludge aeration
African dust transported to Barbados in the wintertime lacks indicators of chemical aging
A 60-year atmospheric nitrate isotope record from a southeastern Greenland ice core with minimal postdepositional alteration
Measurement report: Characterization of aerosol hygroscopicity over Southeast Asia during the NASA CAMP2Ex campaign
Molecular characterization of organic aerosols in urban and forested areas of Paris using high-resolution mass spectrometry
Measurement report: Wintertime aerosol characterization at an urban traffic site in Helsinki, Finland
Source apportionment and ecotoxicity of PM2.5 pollution events in a major Southern Hemisphere megacity: influence of a biofuel-impacted fleet and biomass burning
The impacts of pollution sources and temperature on the light absorption of HULIS were revealed by UHPLC-HRMS/MS at the molecular structure level
Marine organic aerosol at Mace Head: effects from phytoplankton and source region variability
Elemental composition, iron mineralogy and solubility of anthropogenic and natural mineral dust aerosols in Namibia: a case study analysis from the AEROCLO-sA campaign
Fossil-Dominated SOA Formation in Coastal China: Size-Divergent Pathways of Aqueous Fenton Reactions versus Gas-phase VOC Autoxidation
Measurement report: Sources and meteorology influencing highly time-resolved PM2.5 trace elements at three urban sites in the extremely polluted Indo-Gangetic Plain in India
Formation of highly absorptive secondary brown carbon through nighttime multiphase chemistry of biomass burning emissions
Hydroxymethanesulfonate (HMS) Formation under Urban and Marine Atmosphere: role of aerosol ionic strength
Measurement report: Vertically resolved atmospheric properties observed over the Southern Great Plains with the ArcticShark uncrewed aerial system
Technical note: Towards a stronger observational support for haze pollution control by interpreting carbonaceous aerosol results derived from different measurement approaches
Non-biogenic sources are an important but overlooked contributor to aerosol isoprene-derived organosulfates during winter in northern China
Unveiling single-particle composition, size, shape, and mixing state of freshly emitted Icelandic dust via electron microscopy analysis
The Critical Role of Volatile Organic Compounds Emission in Nitrate Formation in Lhasa, Tibetan Plateau: Insights from Oxygen Isotope Anomaly Measurements
The critical role of aqueous-phase processes in aromatic-derived nitrogen-containing organic aerosol formation in cities with different energy consumption patterns
Characterization of atmospheric water-soluble brown carbon in the Athabasca oil sands region, Canada
Sensitivity of aerosol and cloud properties to coupling strength of marine boundary layer clouds over the northwest Atlantic
Measurement Report: Molecular composition, sources, and evolution of atmospheric organic aerosols in a basin city in China
Burning conditions and transportation pathways determine biomass-burning aerosol properties in the Ascension Island marine boundary layer
Observations of high-time-resolution and size-resolved aerosol chemical composition and microphysics in the central Arctic: implications for climate-relevant particle properties
Measurement report: Brown carbon aerosol in rural Germany – sources, chemistry, and diurnal variations
Particle flux-gradient relationships in the high Arctic: Emission and deposition patterns across three surface types
Climatology of aerosol pH and its controlling factors at the Melpitz continental background site in central Europe
Atmospheric chemistry in East Asia determines the iron solubility of aerosol particles supplied to the North Pacific Ocean
Measurement Report: Polycyclic aromatic hydrocarbons (PAHs) and their alkylated (RPAHs), nitrated (NPAHs) and oxygenated (OPAHs) derivatives in the global marine atmosphere: occurrence, spatial variations, and source apportionment
Multiple eco-regions contribute to the seasonal cycle of Antarctic aerosol size distributions
Seasonal investigation of ultrafine-particle organic composition in an eastern Amazonian rainforest
Characterizing lead-rich particles in Beijing's atmosphere following coal-to-gas conversion: Insights from single particle aerosol mass spectrometry
Contrasting solubility and speciation of metal ions in total suspended particulate matter and fog from the coast of Namibia
Significant secondary formation of nitrogenous organic aerosols in an urban atmosphere revealed by bihourly measurements of bulk organic nitrogen and comprehensive molecular markers
High-resolution analyses of concentrations and sizes of refractory black carbon particles deposited in northwestern Greenland over the past 350 years – Part 2: Seasonal and temporal trends in refractory black carbon originated from fossil fuel combustion and biomass burning
Carbonate content and stable isotopic composition of aerosol carbon in the Canadian High Arctic
Significant role of biomass burning in heavy haze formation in Nanjing, a megacity in China: molecular-level insights from intensive PM2.5 sampling on winter hazy days
Widespread trace bromine and iodine in remote tropospheric non-sea-salt aerosols
Iron isotopes reveal significant aerosol dissolution over the Pacific Ocean
Formation and chemical evolution of secondary organic aerosol in two different environments: a dual-chamber study
Complementary aerosol mass spectrometry elucidates sources of wintertime sub-micron particle pollution in Fairbanks, Alaska, during ALPACA 2022
Ren-Guo Zhu, Hua-Yun Xiao, Meiju Yin, Hao Xiao, Zhongkui Zhou, Yuanyuan Pan, Guo Wei, and Cheng Liu
Atmos. Chem. Phys., 25, 7699–7718, https://doi.org/10.5194/acp-25-7699-2025, https://doi.org/10.5194/acp-25-7699-2025, 2025
Short summary
Short summary
The concentrations and δ15N isotopic values of CAAs (combined amino acids) in surface soil and plants from the Gobi Desert, as well as in PM2.5 samples from four cities in Northern China, were measured. CAAs transported by Gobi dust were rich in alanine, glycine and glutamic acid. Glycine and leucine in Gobi Desert sources exhibited δ15N depletion by more than 6 ‰ compared to their values in urban PM2.5. Substantial protein-N deposition can be transported by the Gobi Desert to northern China over brief periods.
Yu Huang, Xingru Li, Dan Dan Huang, Ruoyuan Lei, Binhuang Zhou, Yunjiang Zhang, and Xinlei Ge
Atmos. Chem. Phys., 25, 7619–7645, https://doi.org/10.5194/acp-25-7619-2025, https://doi.org/10.5194/acp-25-7619-2025, 2025
Short summary
Short summary
This work comprises a comprehensive investigation into the chemical and optical properties of brown carbon (BrC) in PM2.5 samples collected in Nanjing, China. In particular, we used a machine learning approach to identify a list of key BrC species, which can be a good reference for future studies. Our findings extend understanding of BrC properties and are valuable to the assessment of BrC's impact on air quality and radiative forcing.
Qingxiao Meng, Yunjiang Zhang, Sheng Zhong, Jie Fang, Lili Tang, Yongcai Rao, Minfeng Zhou, Jian Qiu, Xiaofeng Xu, Jean-Eudes Petit, Olivier Favez, and Xinlei Ge
Atmos. Chem. Phys., 25, 7485–7498, https://doi.org/10.5194/acp-25-7485-2025, https://doi.org/10.5194/acp-25-7485-2025, 2025
Short summary
Short summary
We developed a machine-learning-based method to reconstruct missing elemental carbon (EC) data in four Chinese cities from 2013 to 2023. Using machine learning, we filled data gaps and introduced a new approach to analyze EC trends. Our findings reveal a significant decline in EC due to stricter pollution controls, though this slowed after 2020. This study provides a versatile framework for addressing data gaps and supports strategies to reduce urban air pollution and its climate impacts.
Binyu Xiao, Fan Zhang, Zeyu Liu, Yan Zhang, Rui Li, Can Wu, Xinyi Wan, Yi Wang, Yubao Chen, Yong Han, Min Cui, Libo Zhang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 25, 7053–7069, https://doi.org/10.5194/acp-25-7053-2025, https://doi.org/10.5194/acp-25-7053-2025, 2025
Short summary
Short summary
Intermediate-volatility/semi-volatile organic compounds in gas and particle phases from ship exhausts are enhanced due to the switch of fuels from low sulfur to ultra-low sulfur. The findings indicate that optimization is necessary for the forthcoming global implementation of an ultra-low-sulfur oil policy. Besides, we find that organic diagnostic markers of hopanes in conjunction with the ratio of octadecanoic to tetradecanoic could be considered potential tracers for heavy fuel oil exhausts.
Hongyu Zhang, Shenbo Wang, Zhangsen Dong, Xiao Li, and Ruiqin Zhang
Atmos. Chem. Phys., 25, 6943–6955, https://doi.org/10.5194/acp-25-6943-2025, https://doi.org/10.5194/acp-25-6943-2025, 2025
Short summary
Short summary
Analyzing 12-year Zhengzhou data revealed post-2019 crustal material rebound caused by soil dust resuspension, elevating particle pH. Similar coarse particle increases are observed across cities of the North China Plain. Long-term particle acidity evolution in this region requires an integrated assessment of interactions among acidic precursors, ammonia, and crustal components.
Yanqin Ren, Zhenhai Wu, Fang Bi, Hong Li, Haijie Zhang, Junling Li, Rui Gao, Fangyun Long, Zhengyang Liu, Yuanyuan Ji, and Gehui Wang
Atmos. Chem. Phys., 25, 6975–6990, https://doi.org/10.5194/acp-25-6975-2025, https://doi.org/10.5194/acp-25-6975-2025, 2025
Short summary
Short summary
The daily concentrations of Polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs), and nitrated phenols (NPs) in PM2.5 were all increased during the heating season. Biomass burning was identified to be the primary source of these aromatic compounds, particularly for PAHs. Phenol and nitrobenzene are two main primary precursors for 4NP, with phenol showing lower reaction barriers. P-Cresol was identified as the primary precursor for the formation of 4-methyl-5-nitrocatechol.
Lise Le Berre, Brice Temime-Roussel, Grazia Maria Lanzafame, Barbara D'Anna, Nicolas Marchand, Stéphane Sauvage, Marvin Dufresne, Liselotte Tinel, Thierry Leonardis, Joel Ferreira de Brito, Alexandre Armengaud, Grégory Gille, Ludovic Lanzi, Romain Bourjot, and Henri Wortham
Atmos. Chem. Phys., 25, 6575–6605, https://doi.org/10.5194/acp-25-6575-2025, https://doi.org/10.5194/acp-25-6575-2025, 2025
Short summary
Short summary
A summer campaign in a Mediterranean port examined pollution caused by ships. Two stations in the port measured pollution levels and captured over 350 ship plumes to study their chemical composition. Results showed that pollution levels, such as ultra-fine particles, were higher in the port than in the city and offer strong support to improve emission inventories. These findings may also serve as reference to assess the benefits of a sulfur Emission Control Area in the Mediterranean in 2025.
Jiayin Li, Tianyu Zhai, Xiaorui Chen, Haichao Wang, Shuyang Xie, Shiyi Chen, Chunmeng Li, Yuanjun Gong, Huabin Dong, and Keding Lu
Atmos. Chem. Phys., 25, 6395–6406, https://doi.org/10.5194/acp-25-6395-2025, https://doi.org/10.5194/acp-25-6395-2025, 2025
Short summary
Short summary
We directly measured the dinitrogen pentoxide (N2O5) uptake coefficient using an aerosol flow tube, which critically impacts the NOx fate and particulate nitrate formation in a typical highland city, Kunming, in China. We found that the performance of current γ (N2O5) parameterizations showed deviations with the varying aerosol liquid water content (ALWC). Such differences would lead to biased estimation of particulate nitrate production potential. We give suggestions for future research directions.
Jishnu Pandamkulangara Kizhakkethil, Zongbo Shi, Anna Bogush, and Ivan Kourtchev
Atmos. Chem. Phys., 25, 5947–5958, https://doi.org/10.5194/acp-25-5947-2025, https://doi.org/10.5194/acp-25-5947-2025, 2025
Short summary
Short summary
Pollution with per- and polyfluoroalkyl substances (PFAS) has received attention due to their environmental persistence and bioaccumulation, but their sources remain poorly understood. PM10 (particulate matter) collected above a scaled-down activated sludge tank treating domestic sewage in the UK was analysed for a range of short-, medium-, and long-chain PFAS. Eight PFAS were detected in the PM10. Our results suggest that wastewater treatment processes, i.e. activated sludge aeration, could aerosolise PFAS into airborne PM.
Haley M. Royer, Michael T. Sheridan, Hope E. Elliott, Edmund Blades, Nurun Nahar Lata, Zezhen Cheng, Swarup China, Zihua Zhu, Andrew P. Ault, and Cassandra J. Gaston
Atmos. Chem. Phys., 25, 5743–5759, https://doi.org/10.5194/acp-25-5743-2025, https://doi.org/10.5194/acp-25-5743-2025, 2025
Short summary
Short summary
Saharan dust transported across the Atlantic to the Caribbean, South America, and North America is hypothesized to undergo chemical processing by acids that enhances cloud droplet formation and nutrient availability. In this study, chemical analysis performed on African dust deposited over Barbados shows that acid tracers are found mostly on sea salt and smoke particles, rather than dust, indicating that dust particles undergo minimal chemical processing.
Zhao Wei, Shohei Hattori, Asuka Tsuruta, Zhuang Jiang, Sakiko Ishino, Koji Fujita, Sumito Matoba, Lei Geng, Alexis Lamothe, Ryu Uemura, Naohiro Yoshida, Joel Savarino, and Yoshinori Iizuka
Atmos. Chem. Phys., 25, 5727–5742, https://doi.org/10.5194/acp-25-5727-2025, https://doi.org/10.5194/acp-25-5727-2025, 2025
Short summary
Short summary
Nitrate isotope records in ice cores reveal changes in NOₓ emissions and atmospheric oxidation chemistry driven by human activity. However, UV-driven postdepositional processes can alter nitrate in snow, making snow accumulation rates critical for preserving these records. This study examines nitrate isotopes in a southeastern Greenland ice core, where high snow accumulation minimizes these effects, providing a reliable archive of atmospheric nitrogen cycling.
Genevieve Rose Lorenzo, Luke D. Ziemba, Avelino F. Arellano, Mary C. Barth, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard Ferrare, Miguel Ricardo A. Hilario, Michael A. Shook, Simone Tilmes, Jian Wang, Qian Xiao, Jun Zhang, and Armin Sorooshian
Atmos. Chem. Phys., 25, 5469–5495, https://doi.org/10.5194/acp-25-5469-2025, https://doi.org/10.5194/acp-25-5469-2025, 2025
Short summary
Short summary
Novel aerosol hygroscopicity analyses of CAMP2Ex (Cloud, Aerosol, and Monsoon Processes Philippines Experiment) field campaign data show low aerosol hygroscopicity values in Southeast Asia. Organic carbon from smoke decreases hygroscopicity to levels more like those in continental than in polluted marine regions. Hygroscopicity changes at cloud level demonstrate how surface particles impact clouds in the region, affecting model representation of aerosol and cloud interactions in similar polluted marine regions with high organic carbon emissions.
Diana L. Pereira, Chiara Giorio, Aline Gratien, Alexander Zherebker, Gael Noyalet, Servanne Chevaillier, Stéphanie Alage, Elie Almarj, Antonin Bergé, Thomas Bertin, Mathieu Cazaunau, Patrice Coll, Ludovico Di Antonio, Sergio Harb, Johannes Heuser, Cécile Gaimoz, Oscar Guillemant, Brigitte Language, Olivier Lauret, Camilo Macias, Franck Maisonneuve, Bénédicte Picquet-Varrault, Raquel Torres, Sylvain Triquet, Pascal Zapf, Lelia Hawkins, Drew Pronovost, Sydney Riley, Pierre-Marie Flaud, Emilie Perraudin, Pauline Pouyes, Eric Villenave, Alexandre Albinet, Olivier Favez, Robin Aujay-Plouzeau, Vincent Michoud, Christopher Cantrell, Manuela Cirtog, Claudia Di Biagio, Jean-François Doussin, and Paola Formenti
Atmos. Chem. Phys., 25, 4885–4905, https://doi.org/10.5194/acp-25-4885-2025, https://doi.org/10.5194/acp-25-4885-2025, 2025
Short summary
Short summary
In order to study aerosols in environments influenced by anthropogenic and biogenic emissions, we performed analyses of samples collected during the ACROSS (Atmospheric Chemistry Of the Suburban Forest) campaign in summer 2022 in the greater Paris area. After analysis of the chemical composition by means of total carbon determination and high-resolution mass spectrometry, this work highlights the influence of anthropogenic inputs on the chemical composition of both urban and forested areas.
Kimmo Teinilä, Sanna Saarikoski, Henna Lintusaari, Teemu Lepistö, Petteri Marjanen, Minna Aurela, Heidi Hellén, Toni Tykkä, Markus Lampimäki, Janne Lampilahti, Luis Barreira, Timo Mäkelä, Leena Kangas, Juha Hatakka, Sami Harni, Joel Kuula, Jarkko V. Niemi, Harri Portin, Jaakko Yli-Ojanperä, Ville Niemelä, Milja Jäppi, Katrianne Lehtipalo, Joonas Vanhanen, Liisa Pirjola, Hanna E. Manninen, Tuukka Petäjä, Topi Rönkkö, and Hilkka Timonen
Atmos. Chem. Phys., 25, 4907–4928, https://doi.org/10.5194/acp-25-4907-2025, https://doi.org/10.5194/acp-25-4907-2025, 2025
Short summary
Short summary
Physical and chemical properties of particulate matter and concentrations of trace gases were measured in a street canyon in Helsinki, Finland, and an urban background site in January–February 2022 to investigate the effect of wintertime conditions on pollutants. State-of-the-art instruments and a mobile laboratory were used, and the measurement data were analysed further with modelling tools like positive matrix factorization and the Pollution Detection Algorithm.
Guilherme Martins Pereira, Leonardo Yoshiaki Kamigauti, Rubens Fabio Pereira, Djacinto Monteiro dos Santos, Thayná da Silva Santos, José Vinicius Martins, Célia Alves, Cátia Gonçalves, Ismael Casotti Rienda, Nora Kováts, Thiago Nogueira, Luciana Rizzo, Paulo Artaxo, Regina Maura de Miranda, Marcia Akemi Yamasoe, Edmilson Dias de Freitas, Pérola de Castro Vasconcellos, and Maria de Fatima Andrade
Atmos. Chem. Phys., 25, 4587–4616, https://doi.org/10.5194/acp-25-4587-2025, https://doi.org/10.5194/acp-25-4587-2025, 2025
Short summary
Short summary
The chemical composition of fine particulate matter was studied in the megacity of São Paulo (Brazil) during a polluted period. Vehicular-related sources remain relevant; however, a high contribution of biomass burning was observed and correlated with sample ecotoxicity. Emerging biomass burning sources, such as forest fires and sugarcane-bagasse-based power plants, highlight the need for additional control measures alongside stricter rules concerning vehicular emissions.
Tao Qiu, Yanting Qiu, Yongyi Yuan, Rui Su, Xiangxinyue Meng, Jialiang Ma, Xiaofan Wang, Yu Gu, Zhijun Wu, Yang Ning, Xiuyi Hua, Dapeng Liang, and Deming Dong
EGUsphere, https://doi.org/10.5194/egusphere-2025-1808, https://doi.org/10.5194/egusphere-2025-1808, 2025
Short summary
Short summary
Our research reveals that some species from biomass burning and coal combustion dominate the light absorption of organic aerosols during winter. Cold weather helps these species accumulate in aerosols by slowing their degradation and altering atmospheric chemical processes. This means colder regions might experience stronger and more persistent climate impacts. Our findings highlight the importance of local temperatures and pollution sources when tackling climate challenges.
Emmanuel Chevassus, Kirsten N. Fossum, Darius Ceburnis, Lu Lei, Chunshui Lin, Wei Xu, Colin O'Dowd, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 25, 4107–4129, https://doi.org/10.5194/acp-25-4107-2025, https://doi.org/10.5194/acp-25-4107-2025, 2025
Short summary
Short summary
This study presents the first source apportionment of organic aerosol at Mace Head via high-resolution mass spectrometry. Introducing transfer entropy as a novel method reveals that aged organic aerosol originates from both open-ocean ozonolysis and local peat-burning oxidation. Methanesulfonic acid and organic sea spray both mirror phytoplankton activity, with the former closely tied to coccolithophore blooms and the latter linked to diatoms, chlorophytes, and cyanobacteria.
Paola Formenti, Chiara Giorio, Karine Desboeufs, Alexander Zherebker, Marco Gaetani, Clarissa Baldo, Gautier Landrot, Simona Montebello, Servanne Chevaillier, Sylvain Triquet, Guillaume Siour, Claudia Di Biagio, Francesco Battaglia, Jean-François Doussin, Anais Feron, Andreas Namwoonde, and Stuart John Piketh
EGUsphere, https://doi.org/10.5194/egusphere-2025-446, https://doi.org/10.5194/egusphere-2025-446, 2025
Short summary
Short summary
The elemental composition and solubility of several metals, including iron, at a coastal site in Namibia in August–September 2017, indicate that natural and anthropogenic dust had different solubility depending on mineralogy but mostly to the processing by fluoride ions from marine emissions, pointing out to the complexity of atmospheric/oceanic interactions in this region of the world influenced by the Benguela current and significant aerosol load.
Jia-Yuan Wang, Meng-Xue Tang, Shan Lu, Ke-Jin Tang, Xing Peng, Ling-Yan He, and Xiao-Feng Huang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1034, https://doi.org/10.5194/egusphere-2025-1034, 2025
Short summary
Short summary
Our study explores how secondary organic aerosols (SOA), a major component of air pollution, form in different particle sizes in a coastal city in China. We found that SOA in fine particles is mainly produced through aqueous chemical reactions, especially those involving iron. In contrast, coarse particles form SOA through reactions with ozone and gases from both fossil fuels and natural sources. These findings highlight the need for size-specific air pollution models.
Ashutosh K. Shukla, Sachchida N. Tripathi, Shamitaksha Talukdar, Vishnu Murari, Sreenivas Gaddamidi, Manousos-Ioannis Manousakas, Vipul Lalchandani, Kuldeep Dixit, Vinayak M. Ruge, Peeyush Khare, Mayank Kumar, Vikram Singh, Neeraj Rastogi, Suresh Tiwari, Atul K. Srivastava, Dilip Ganguly, Kaspar Rudolf Daellenbach, and André S. H. Prévôt
Atmos. Chem. Phys., 25, 3765–3784, https://doi.org/10.5194/acp-25-3765-2025, https://doi.org/10.5194/acp-25-3765-2025, 2025
Short summary
Short summary
Our study delves into the elemental composition of aerosols at three sites across the Indo-Gangetic Plain (IGP), revealing distinct patterns during pollution episodes. We found significant increases in chlorine (Cl)-rich and solid fuel combustion (SFC) sources, indicating dynamic emission sources, agricultural burning impacts, and meteorological influences. Surges in Cl-rich particles during cold periods highlight their role in particle growth under high-relative-humidity conditions.
Ye Kuang, Biao Luo, Shan Huang, Junwen Liu, Weiwei Hu, Yuwen Peng, Duohong Chen, Dingli Yue, Wanyun Xu, Bin Yuan, and Min Shao
Atmos. Chem. Phys., 25, 3737–3752, https://doi.org/10.5194/acp-25-3737-2025, https://doi.org/10.5194/acp-25-3737-2025, 2025
Short summary
Short summary
This research reveals the potential importance of nighttime NO3 radical chemistry and aerosol water in the rapid formation of secondary brown carbon from diluted biomass burning emissions. The findings enhance our understanding of nighttime biomass burning evolution and its implications for climate and regional air quality, especially regarding interactions with background aerosol water and water-rich fogs and clouds.
Rongshuang Xu, Yu-Chi Lin, Siyu Bian, Feng Xie, and Yan-Lin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-683, https://doi.org/10.5194/egusphere-2025-683, 2025
Short summary
Short summary
This work reported the hydroxymethanesulfonate (HMS) level in a continental city and, for the first time, in marine atmosphere. The enhancement by aerosol ionic strength (IS) on HMS formation was quantified which first rise with increasing IS, peaking at 4 mol kg–1 before declining. Given the IS range of marine (2–6) and urban aerosol (6–20 mol kg–1) and the clearly negative correlation between humidity and IS, the moderate IS level under humid condition may notably boost ambient HMS formation.
Fan Mei, Qi Zhang, Damao Zhang, Jerome D. Fast, Gourihar Kulkarni, Mikhail S. Pekour, Christopher R. Niedek, Susanne Glienke, Israel Silber, Beat Schmid, Jason M. Tomlinson, Hardeep S. Mehta, Xena Mansoura, Zezhen Cheng, Gregory W. Vandergrift, Nurun Nahar Lata, Swarup China, and Zihua Zhu
Atmos. Chem. Phys., 25, 3425–3444, https://doi.org/10.5194/acp-25-3425-2025, https://doi.org/10.5194/acp-25-3425-2025, 2025
Short summary
Short summary
This study highlights the unique capability of the ArcticShark, an uncrewed aerial system, in measuring vertically resolved atmospheric properties. Data from 32 research flights in 2023 reveal seasonal patterns and correlations with conventional measurements. The consistency and complementarity of in situ and remote sensing methods are highlighted. The study demonstrates the ArcticShark’s versatility in bridging data gaps and improving the understanding of vertical atmospheric structures.
Yuan Cheng, Ying-jie Zhong, Zhi-qing Zhang, Xu-bing Cao, and Jiu-meng Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-537, https://doi.org/10.5194/egusphere-2025-537, 2025
Short summary
Short summary
As an emerging hotspot of atmospheric sciences, Northeast China is distinct due to the frigid winter and the strong emissions from agricultural fires. Based on field campaigns conducted in Harbin, we successively identified the analytical method that could lead to proper results of organic and elemental carbon. Our results are believed to be a support for future efforts on exploration of the PM2.5 sources in Northeast China, which are essential for further improving the regional air quality.
Ting Yang, Yu Xu, Yu-Chen Wang, Yi-Jia Ma, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
Atmos. Chem. Phys., 25, 2967–2978, https://doi.org/10.5194/acp-25-2967-2025, https://doi.org/10.5194/acp-25-2967-2025, 2025
Short summary
Short summary
Previous measurement–model comparisons of atmospheric isoprene levels showed a significant unidentified source of isoprene in some northern Chinese cities during winter. Here, the first combination of large-scale observations and field combustion experiments provides novel insights into biomass burning emissions as a significant source of isoprene-derived organosulfates during winter in northern cities of China.
Agnesh Panta, Konrad Kandler, Kerstin Schepanski, Andres Alastuey, Pavla Dagsson Waldhauserova, Sylvain Dupont, Melanie Eknayan, Cristina González-Flórez, Adolfo González-Romero, Martina Klose, Mara Montag, Xavier Querol, Jesús Yus-Díez, and Carlos Pérez García-Pando
EGUsphere, https://doi.org/10.5194/egusphere-2025-494, https://doi.org/10.5194/egusphere-2025-494, 2025
Short summary
Short summary
Iceland is among the most active dust source areas in the world. Dust properties are influenced by particle size, mineralogy, shape, and mixing state. This work characterizes freshly emitted individual aerosol particles of Icelandic dust using electron microscopy. Our study provides insights into critical particle-specific information will contribute to better constraining climate models that consider mineralogical variations in their representation of the dust cycle.
Xueqin Zheng, Junwen Liu, Nima Chuduo, Bian Ba, Pengfei Yu, Phu Drolgar, Fang Cao, and Yanlin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-164, https://doi.org/10.5194/egusphere-2025-164, 2025
Short summary
Short summary
In this study, we present the first report on the annual variation of stable oxygen isotope anomalies (∆17O = δ17O - 0.52 × δ18O) in NO3- collected from the urban area of Lhasa , on the Tibetan Plateau, China. Using a Bayesian isotope mixture model, we found that the relative contribution of the NO3+VOC pathway to NO3- formation in spring in Lhasa was several times higher than in urban cities, highlighting the significant influence of VOC transported from outside the Tibetan Plateau.
Yi-Jia Ma, Yu Xu, Ting Yang, Lin Gui, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
Atmos. Chem. Phys., 25, 2763–2780, https://doi.org/10.5194/acp-25-2763-2025, https://doi.org/10.5194/acp-25-2763-2025, 2025
Short summary
Short summary
The abundance, potential precursors, and main formation mechanisms of nitrogen-containing organic compounds (NOCs) in PM2.5 during winter were compared among cities with different energy consumption patterns. The aerosol NOC pollution during winter in China is closely associated with the intensity of precursor emissions and the aqueous-phase processes. Our results highlight the importance of emission reduction strategies in controlling aerosol NOCs pollution during winter in China.
Dane Blanchard, Mark Gordon, Duc Huy Dang, Paul Andrew Makar, and Julian Aherne
Atmos. Chem. Phys., 25, 2423–2442, https://doi.org/10.5194/acp-25-2423-2025, https://doi.org/10.5194/acp-25-2423-2025, 2025
Short summary
Short summary
This study offers the first known evaluation of water-soluble brown carbon aerosols in the Athabasca oil sands region (AOSR), Canada. Fluorescence spectroscopy analysis of aerosol samples from five regional sites (collected during the summer of 2021) identified oil sands operations as a measurable brown carbon source. Industrial aerosol emissions were unlikely to impact regional radiative forcing. These findings show that fluorescence spectroscopy can be used to monitor brown carbon in the AOSR.
Kira Zeider, Kayla McCauley, Sanja Dmitrovic, Leong Wai Siu, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Simon Kirschler, John B. Nowak, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, Paquita Zuidema, and Armin Sorooshian
Atmos. Chem. Phys., 25, 2407–2422, https://doi.org/10.5194/acp-25-2407-2025, https://doi.org/10.5194/acp-25-2407-2025, 2025
Short summary
Short summary
In situ aircraft data collected over the northwest Atlantic Ocean are utilized to compare aerosol conditions and turbulence between near-surface and below-cloud-base altitudes for different regimes of coupling strength between those two levels, along with how cloud microphysical properties vary across those regimes. Stronger coupling yields more homogenous aerosol structure vertically along with higher cloud drop concentrations and sea salt influence in clouds.
Junke Zhang, Xinyi Fu, Chunying Chen, Yunfei Su, Siyu Liu, Luyao Chen, Yubao Chen, Gehui Wang, and Andre S. H. Prevot
EGUsphere, https://doi.org/10.5194/egusphere-2025-92, https://doi.org/10.5194/egusphere-2025-92, 2025
Short summary
Short summary
The 125 organic aerosol (OA) compounds in PM2.5 in winter in Chengdu were measured at the molecular level. OA was dominated by fatty acids, phthalate esters, and anhydrosugars, and were deeply influenced by anthropogenic sources. As pollution worsens: secondary inorganic species and secondary organic carbon (OC) dominated the increase in PM2.5; fatty acids and anhydrosugars dominated the increase in OA; and the contribution of secondary formation and biomass burning to OC increased markedly.
Amie Dobracki, Ernie R. Lewis, Arthur J. Sedlacek III, Tyler Tatro, Maria A. Zawadowicz, and Paquita Zuidema
Atmos. Chem. Phys., 25, 2333–2363, https://doi.org/10.5194/acp-25-2333-2025, https://doi.org/10.5194/acp-25-2333-2025, 2025
Short summary
Short summary
Biomass-burning aerosol is commonly present in the marine boundary layer over the southeast Atlantic Ocean between June and October. Our research indicates that burning conditions, aerosol transport pathways, and prolonged oxidation processes (heterogeneous and aqueous phases) determine the chemical, microphysical, and optical properties of the boundary layer aerosol. Notably, we find that the aerosol optical properties can be estimated from the chemical properties alone.
Benjamin Heutte, Nora Bergner, Hélène Angot, Jakob B. Pernov, Lubna Dada, Jessica A. Mirrielees, Ivo Beck, Andrea Baccarini, Matthew Boyer, Jessie M. Creamean, Kaspar R. Daellenbach, Imad El Haddad, Markus M. Frey, Silvia Henning, Tiia Laurila, Vaios Moschos, Tuukka Petäjä, Kerri A. Pratt, Lauriane L. J. Quéléver, Matthew D. Shupe, Paul Zieger, Tuija Jokinen, and Julia Schmale
Atmos. Chem. Phys., 25, 2207–2241, https://doi.org/10.5194/acp-25-2207-2025, https://doi.org/10.5194/acp-25-2207-2025, 2025
Short summary
Short summary
Limited aerosol measurements in the central Arctic hinder our understanding of aerosol–climate interactions in the region. Our year-long observations of aerosol physicochemical properties during the MOSAiC expedition reveal strong seasonal variations in aerosol chemical composition, where the short-term variability is heavily affected by storms in the Arctic. Local wind-generated particles are shown to be an important source of cloud seeds, especially in autumn.
Feng Jiang, Harald Saathoff, Uzoamaka Ezenobi, Junwei Song, Hengheng Zhang, Linyu Gao, and Thomas Leisner
Atmos. Chem. Phys., 25, 1917–1930, https://doi.org/10.5194/acp-25-1917-2025, https://doi.org/10.5194/acp-25-1917-2025, 2025
Short summary
Short summary
The chemical composition of brown carbon in the particle and gas phase was determined by mass spectrometry. BrC in the gas phase was mainly controlled by secondary formation and particle-to-gas partitioning. BrC in the particle phase was mainly from secondary formation. This work helps to get a better understanding of diurnal variations and the sources of brown carbon aerosol at a rural location in central Europe.
Theresa Mathes, Heather Guy, John Prytherch, Julia Kojoj, Ian Brooks, Sonja Murto, Paul Zieger, Birgit Wehner, Michael Tjernström, and Andreas Held
EGUsphere, https://doi.org/10.5194/egusphere-2025-183, https://doi.org/10.5194/egusphere-2025-183, 2025
Short summary
Short summary
The Arctic is warming faster than the global average and aerosol-cloud-sea-ice interactions are crucial for studying its climate system. During the ARTofMELT Expedition 2023, particle and sensible heat fluxes were measured over multiple surfaces. Wide lead surfaces acted as particle sources with the strongest sensible heat fluxes, while closed ice surfaces acted as a particle sink. This study improves methods to measure these interactions, enhancing our understanding of Arctic climate processes.
Vikram Pratap, Christopher J. Hennigan, Bastian Stieger, Andreas Tilgner, Laurent Poulain, Dominik van Pinxteren, Gerald Spindler, and Hartmut Herrmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-457, https://doi.org/10.5194/egusphere-2025-457, 2025
Short summary
Short summary
In this work, we characterize trends in aerosol pH and its controlling factors over the period of 2010 – 2019 at the Melpitz research station in eastern Germany. We find strong trends in aerosol pH and major inorganic species in response to changing emissions. We conduct a detailed thermodynamic analysis of the aerosol system and discuss implications for controlling PM2.5 in the region.
Kohei Sakata, Shotaro Takano, Atsushi Matsuki, Yasuo Takeichi, Hiroshi Tanimoto, Aya Sakaguchi, Minako Kurisu, and Yoshio Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2025-161, https://doi.org/10.5194/egusphere-2025-161, 2025
Short summary
Short summary
Deposition of aerosol iron (Fe) into the ocean stimulates primary production and influences the global carbon cycle, although the factors governing the aerosol Fe solubility remain uncertain. Our observations in Japan revealed that both mineral dust and anthropogenic aerosols are significant sources of dissolved Fe, and that atmospheric chemical weathering enhances their solubility. This finding is expected to play a crucial role in estimating the supply of dissolved iron to the ocean.
Rui Li, Yubing Shen, Yumeng Shao, Yining Gao, Ziwei Yao, Qian Liu, Xing Liu, and Guitao Shi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3740, https://doi.org/10.5194/egusphere-2024-3740, 2025
Short summary
Short summary
It is the first time to reveal the global variations of PAHs derivatives in the marine air. We found that marine aerosols in East China Sea (ECS) and Western Pacific (WP) were significantly affected by coal and engine combustion, while those in Bismarck Sea (BS) and East Australian Sea (EAS) were mainly influenced by wildfire and coal combustion. Antarctic Ocean (AO) was dominated by biomass burning and local shipping emissions. This finding help elucidate the mechanism of global PAH cycle.
James Brean, David C. S. Beddows, Eija Asmi, Aki Virkkula, Lauriane L. J. Quéléver, Mikko Sipilä, Floortje Van Den Heuvel, Thomas Lachlan-Cope, Anna Jones, Markus Frey, Angelo Lupi, Jiyeon Park, Young Jun Yoon, Rolf Weller, Giselle L. Marincovich, Gabriela C. Mulena, Roy M. Harrison, and Manuel Dall'Osto
Atmos. Chem. Phys., 25, 1145–1162, https://doi.org/10.5194/acp-25-1145-2025, https://doi.org/10.5194/acp-25-1145-2025, 2025
Short summary
Short summary
Our results emphasise how understanding the geographical variation in surface types across the Antarctic is key to understanding secondary aerosol sources.
Adam E. Thomas, Hayley S. Glicker, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
Atmos. Chem. Phys., 25, 959–977, https://doi.org/10.5194/acp-25-959-2025, https://doi.org/10.5194/acp-25-959-2025, 2025
Short summary
Short summary
We present measurements of the organic composition of ultrafine particles collected from the eastern Amazon, an understudied region that is subjected to increasing human influence. We find that while isoprene chemistry is likely significant for ultrafine-particle growth throughout the year, compounds related to other sources, such as biological-spore emissions and biomass burning, exhibit striking seasonal differences, implying extensive variation in regional ultrafine-particle sources.
Xiufeng Lian, Yongjiang Xu, Fengxian Liu, Long Peng, Xiaodong Hu, Guigang Tang, Xu Dao, Hui Guo, Liwei Wang, Bo Huang, Chunlei Cheng, Lei Li, Guohua Zhang, Xinhui Bi, Xiaofei Wang, Zhen Zhou, and Mei Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-3469, https://doi.org/10.5194/egusphere-2024-3469, 2025
Short summary
Short summary
In this study, we analyzed the mixing state and atmospheric chemical processes of Pb-rich single particles in Beijing. Then, we focused on analyzing the differences in Pb-rich particles between the heating period and non-heating period, as well as the formation mechanism of lead nitrate after coal-to-gas conversion. Our results highlighted the improvement of coal-to-gas conversion on Pb in the particulate.
Chiara Giorio, Anne Monod, Valerio Di Marco, Pierre Herckes, Denise Napolitano, Amy Sullivan, Gautier Landrot, Daniel Warnes, Marika Nasti, Sara D'Aronco, Agathe Gérardin, Nicolas Brun, Karine Desboeufs, Sylvain Triquet, Servanne Chevaillier, Claudia Di Biagio, Francesco Battaglia, Frédéric Burnet, Stuart J. Piketh, Andreas Namwoonde, Jean-François Doussin, and Paola Formenti
EGUsphere, https://doi.org/10.5194/egusphere-2024-4140, https://doi.org/10.5194/egusphere-2024-4140, 2025
Short summary
Short summary
A comparison between the solubility of trace metals in pairs of total suspended particulate (TSP) and fog water samples collected in Henties Bay, Namibia, during the AEROCLO-sA field campaign is presented. We found enhanced solubility of metals in fog samples which we attributed to metal-ligand complexes formation in the early stages of particle activation into droplets which can then remain in a kinetically stable form in fog or lead to the formation of colloidal nanoparticles.
Xu Yu, Min Zhou, Shuhui Zhu, Liping Qiao, Jinjian Li, Yingge Ma, Zijing Zhang, Kezheng Liao, Hongli Wang, and Jian Zhen Yu
EGUsphere, https://doi.org/10.5194/egusphere-2024-4103, https://doi.org/10.5194/egusphere-2024-4103, 2025
Short summary
Short summary
Online measurements of bulk aerosol organic nitrogen (ON), in conjunction with a comprehensive array of source markers, have revealed five emission sources and five potentially significant formation processes of nitrogenous organic aerosols. This study provides first quantitative source analysis of ON aerosol and valuable observational evidence on secondary ON aerosol formation through NH3 and NOx chemistries.
Kumiko Goto-Azuma, Yoshimi Ogawa-Tsukagawa, Kaori Fukuda, Koji Fujita, Motohiro Hirabayashi, Remi Dallmayr, Jun Ogata, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Sumito Matoba, Moe Kadota, Akane Tsushima, Naoko Nagatsuka, and Teruo Aoki
Atmos. Chem. Phys., 25, 657–683, https://doi.org/10.5194/acp-25-657-2025, https://doi.org/10.5194/acp-25-657-2025, 2025
Short summary
Short summary
Monthly ice core records spanning 350 years from Greenland show trends in refractory black carbon (rBC) concentrations and sizes. rBC levels have increased since the 1870s due to the inflow of anthropogenic rBC, with larger diameters than those from biomass burning (BB) rBC. High summer BB rBC peaks may reduce the ice sheet albedo, but BB rBC showed no increase until the early 2000s. These results are vital for validating aerosol and climate models.
Petr Vodička, Kimitaka Kawamura, Bhagawati Kunwar, Lin Huang, Dhananjay K. Deshmukh, Md. Mozammel Haque, Sangeeta Sharma, and Leonard Barrie
EGUsphere, https://doi.org/10.5194/egusphere-2024-3656, https://doi.org/10.5194/egusphere-2024-3656, 2025
Short summary
Short summary
Carbonate carbon (CC) is not negligible in Arctic total suspended particles (TSP). If not considered, CC biases the contribution of elemental and organic carbon. CC content in TSP was strongly reflected in the δ13C values of total carbon (TC). Carbon contribution from CaCO3 supports strong dependence of CC and δ13C on Ca. Finally, two hypothetical CC sources were identified based on the analysis of air mass back trajectories – dust resuspension and marine microorganisms.
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Changliu Wu, Fang Cao, Sönke Szidat, and Yanlin Zhang
Atmos. Chem. Phys., 25, 73–91, https://doi.org/10.5194/acp-25-73-2025, https://doi.org/10.5194/acp-25-73-2025, 2025
Short summary
Short summary
Reports on molecular-level knowledge of high-temporal-resolution particulate matter ≤2.5 µm in diameter (PM2.5) on hazy days are limited. We investigated various PM2.5 species and their sources. The results show biomass burning (BB) was the main source of organic carbon. Moreover, BB enhanced fungal spore emissions and secondary aerosol formation. The contribution of non-fossil sources increased with increasing haze pollution, suggesting BB may be an important driver of haze events in winter.
Gregory P. Schill, Karl D. Froyd, Daniel M. Murphy, Christina J. Williamson, Charles A. Brock, Tomás Sherwen, Mat J. Evans, Eric A. Ray, Eric C. Apel, Rebecca S. Hornbrook, Alan J. Hills, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Ilann Bourgeois, Donald R. Blake, Joshua P. DiGangi, and Glenn S. Diskin
Atmos. Chem. Phys., 25, 45–71, https://doi.org/10.5194/acp-25-45-2025, https://doi.org/10.5194/acp-25-45-2025, 2025
Short summary
Short summary
Using single-particle mass spectrometry, we show that trace concentrations of bromine and iodine are ubiquitous in remote tropospheric aerosol and suggest that aerosols are an important part of the global reactive iodine budget. Comparisons to a global climate model with detailed iodine chemistry are favorable in the background atmosphere; however, the model cannot replicate our measurements near the ocean surface, in biomass burning plumes, and in the stratosphere.
Capucine Camin, François Lacan, Catherine Pradoux, Marie Labatut, Anne Johansen, and James W. Murray
EGUsphere, https://doi.org/10.5194/egusphere-2024-3777, https://doi.org/10.5194/egusphere-2024-3777, 2024
Short summary
Short summary
This manuscript presents the chemical composition of aerosols (> 1µm) over the Equatorial and Tropical Pacific Ocean, presenting the first measurements of iron isotopes in aerosols from this region. Iron concentrations and isotopes were determined using a Neptune MC-ICPMS. Our data analysis reveals that a significant portion of the aerosols undergo dissolution and removal during atmospheric transport. These findings contribute to original conclusions about the chemistry and physics of aerosols.
Andreas Aktypis, Dontavious J. Sippial, Christina N. Vasilakopoulou, Angeliki Matrali, Christos Kaltsonoudis, Andrea Simonati, Marco Paglione, Matteo Rinaldi, Stefano Decesari, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 13769–13791, https://doi.org/10.5194/acp-24-13769-2024, https://doi.org/10.5194/acp-24-13769-2024, 2024
Short summary
Short summary
A dual-chamber system was deployed in two different environments (Po Valley, Italy, and Pertouli forest, Greece) to study the potential of ambient air directly injected into the chambers, to form secondary organic aerosol (SOA). In the Po Valley, the system reacts rapidly, forming large amounts of SOA, while in Pertouli the SOA formation chemistry appears to have been practically terminated before the beginning of most experiments, so there is little additional SOA formation potential left.
Amna Ijaz, Brice Temime-Roussel, Benjamin Chazeau, Sarah Albertin, Stephen R. Arnold, Brice Barrett, Slimane Bekki, Natalie Brett, Meeta Cesler-Maloney, Elsa Dieudonne, Kayane K. Dingilian, Javier G. Fochesatto, Jingqiu Mao, Allison Moon, Joel Savarino, William Simpson, Rodney J. Weber, Kathy S. Law, and Barbara D'Anna
EGUsphere, https://doi.org/10.5194/egusphere-2024-3789, https://doi.org/10.5194/egusphere-2024-3789, 2024
Short summary
Short summary
Fairbanks is among the most polluted cities with the highest particulate matter (PM) levels in the US during winters. Highly time-resolved measurements of the sub-micron PM elucidated residential heating with wood and oil and hydrocarbon-like organics from traffic, as well as sulphur-containing organic aerosol, to be the key pollution sources. Remarkable differences existed between complementary instruments, warranting the deployment of multiple tools at sites with wide-ranging influences.
Cited articles
Bäck, J., Aalto, J., Henriksson, M., Hakola, H., He, Q., and Boy, M.:
Chemodiversity of a Scots pine stand and implications for terpene air
concentrations, Biogeosciences, 9, 689–702, https://doi.org/10.5194/bg-9-689-2012, 2012.
Bajocco, S., Pezzatti, G. B., de Angelis, A., Conedera, M., and Ricotta, C.:
Bootstrapping wildfire selectivity for the forest types of Canton Ticino
(Switzerland), Earth Interact., 15, 1–11, https://doi.org/10.1175/2011EI387.1, 2011.
Barbante, C., Schwikowski, M., Döring, T., Gäggeler, H. W.,
Schotterer, U., Tobler, L., van de Velde, K., Ferrari, C., Cozzi, G.,
Turetta, A., Rosman, K., Bolshov, M., Capodaglio, G., Cescon, P., and
Boutron, C.: Historical record of European emissions of heavy metals
to the atmosphere since the 1650s from Alpine snow/ice cores drilled
near Monte Rosa, Environ. Sci. Technol., 38, 4085–4090,
https://doi.org/10.1021/es049759r, 2004.
BUWAL: Schriftenreihe Umwelt Nr. 256: Vom Menschen verursachte
Luftschadstoff-Emissionen in der Schweiz von 1900 bis 2010, Bundesamt
für Umwelt, Wald und Landschaft BUWAL, Bern, 1995.
Cheng, Y., Brook, J. R., Li, S.-M., and Leithead, A.: Seasonal
variation in the biogenic secondary organic aerosol tracer cis-pinonic
acid: enhancement due to emissions from regional and local biomass
burning, Atmos. Environ., 45, 7105–7112,
https://doi.org/10.1016/j.atmosenv.2011.09.036, 2011.
de Angelis, M., Traversi, R., and Udisti, R.: Long-term trends of
mono-carboxylic acids in Antarctica: comparison of changes in sources
and transport processes at the two EPICA deep drilling sites, Tellus B, 64, 573,
https://doi.org/10.3402/tellusb.v64i0.17331, 2012.
de Angelis, A., Ricotta, C., Conedera, M., and Pezzatti, G. B.: Modelling the
meteorological forest fire niche in heterogeneous pyrologic conditions, PLoS
ONE, 10, e0116875, https://doi.org/10.1371/journal.pone.0116875, 2015.
Dindorf, T., Kuhn, U., Ganzeveld, L., Schebeske, G., Ciccioli, P.,
Holzke, C., Köble, R., Seufert, G., and Kesselmeier, J.:
Significant light and temperature dependent monoterpene emissions from
European beech (Fagus sylvatica L.) and their potential
impact on the European volatile organic compound budget,
J. Geophys. Res., 111, D16,
https://doi.org/10.1029/2005JD006751, 2006.
Döscher, A., Gäggeler, H. W., Schotterer, U., and
Schwikowski, M.: A historical record of ammonium concentrations from
a glacier in the Alps, Geophys. Res. Lett., 23, 2741–2744,
https://doi.org/10.1029/96GL02615, 1996.
EDGAR: Emission Database for Global Atmospheric Research (EDGAR),
European Commission, Joint Research Centre (JRC)/PBL Netherlands
Environmental Assessment Agency, release version 4.2, available at:
http://edgar.jrc.ec.europa.eu/, last
access: 28 April 2014, 2010.
Eichler, A.: Deposition von Spurenstoffen in Firn und Eis alpiner Gletscher,
Untersuchung von Nord-Süd-Gradienten, Dissertation, University of Bern, Bern,
2000 (in German).
Eichler, A., Schwikowski, M., and Gäggeler, H. W.: An Alpine ice-core
record of anthropogenic HF and HCl emissions, Geophys. Res. Lett., 27,
3225–3228, https://doi.org/10.1029/2000GL012006, 2000a.
Eichler, A., Schwikowski, M., Gäggeler, H. W., Furrer, V., Synal, H.-A.,
Beer, J., Saurer, M., and Funk, M.: Glaciochemical dating of an ice core from
upper Grenzgletscher (4200 m a. s. l. ), J. Glaciol., 46, 507–515,
https://doi.org/10.3189/172756500781833098, 2000b.
Eichler, A., Schwikowski, M., and Gäggeler, H. W.: Meltwater-induced
relocation of chemical species in Alpine firn, Tellus B, 53, 192–203,
https://doi.org/10.1034/j.1600-0889.2001.d01-15.x, 2001.
Eichler, A., Brütsch, S., Olivier, S., Papina, T., and Schwikowski, M.:
A 750 year ice core record of past biogenic emissions from Siberian
boreal forests, Geophys. Res. Lett., 36, L18813, https://doi.org/10.1029/2009GL038807,
2009.
Ervens, B., Feingold, G., Frost, G. J., and Kreidenweis, S. M.: A modeling
study of aqueous phase production of dicarboxylic acids: 1. Chemical
pathways and speciated organic mass production, J. Geophys. Res., 109,
D15205, https://doi.org/10.1029/2003JD004387, 2004.
Fischer, H., Wagenbach, D., and Kipfstuhl, J.: Sulfate and nitrate firn
concentrations on the Greenland ice sheet 1. Largescale geographical
deposition changes, J. Geophys. Res., 103, 21927–21934,
https://doi.org/10.1029/98JD01885, 1998a.
Fischer, H., Werner, M., Wagenbach, D., Schwager, M., Thorsteinnson, T.,
Wilhelms, F., Kipfstuhl, J., and Sommer, S.: Little Ice Age clearly recorded
in northern Greenland ice cores, Geophys. Res. Lett., 25, 1749–1752,
https://doi.org/10.1029/98GL01177, 1998b.
Fu, T., Jacob, D.,Wittrock, F., Burrows, J., Vrekoussis, M., and Henze, D.:
Global budgets of atmospheric glyoxal and methylglyoxal, and implications for
formation of secondary organic aerosols, J. Geophys. Res., 113, D15303,
https://doi.org/10.1029/2007JD009505, 2008.
Gabrieli, J., Vallelonga, P., Cozzi, G., Gabrielli, P., Gambaro, A.,
Sigl, M., Decet, F., Schwikowski, M., Gäggeler, H., Boutron, C.,
Cescon, P., and Barbante, C.: Post 17th century changes of European PAH
emissions recorded in high-altitude Alpine snow and ice, Environ. Sci.
Technol., 44, 3260–3266, https://doi.org/10.1021/es903365s, 2010.
Gabrielli, P., Barbante, C., Boutron, C., Cozzi, G., Gaspari, V.,
Planchon, F., Ferrari, C., Turetta, C., Hong, S., and Cescon, P.: Variations
in atmospheric trace elements in Dome C (East Antarctica) ice over the last
two climatic cycles, Atmos. Environ., 39, 6420–6429,
https://doi.org/10.1016/j.atmosenv.2005.07.025, 2005.
Gaeggeler, K., Prevot, A. S. H., Dommen, J., Legreid, G., Reimann, S., and
Baltensperger, U.: Residential wood burning in an Alpine valley as a source
for oxygenated volatile organic compounds, hydrocarbons and organic acids,
Atmos. Environ., 42, 8278–8287, https://doi.org/10.1016/j.atmosenv.2008.07.038, 2008.
Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C., Beine, H. J.,
Bergin, M., Bottenheim, J., Boxe, C. S., Carver, G., Chen, G., Crawford, J. H.,
Dominé, F., Frey, M. M., Guzmán, M. I., Heard, D. E., Helmig, D., Hoffmann, M. R.,
Honrath, R. E., Huey, L. G., Hutterli, M., Jacobi, H. W., Klán, P., Lefer, B.,
McConnell, J., Plane, J., Sander, R., Savarino, J., Shepson, P. B., Simpson, W. R.,
Sodeau, J. R., von Glasow, R., Weller, R., Wolff, E. W., and Zhu, T.: An overview of
snow photochemistry: evidence, mechanisms and impacts, Atmos. Chem. Phys., 7, 4329–4373, https://doi.org/10.5194/acp-7-4329-2007, 2007.
Grosjean, D., van Cauwenberghe, K., Schmid, J. P., Kelley, P. E., and
Pitts, J. N.: Identification of C3–C10 aliphatic dicarboxylic acids in
airborne particulate matter, Environ. Sci. Technol., 12, 313–317,
https://doi.org/10.1021/es60139a005, 1978.
Guilhermet, J., Preunkert, S., Voisin, D., Baduel, C., and Legrand, M.: Major
20th century changes of water-soluble humic-like substances (HULIS WS)
aerosol over Europe inferred from Alpine ice cores, J. Geophys. Res. Atmos.,
118, 3869–3878, https://doi.org/10.1002/jgrd.50201, 2013.
Hatakeyama, S., Ohno, M., Weng, J., Takagi, H., and Akimoto, H.: Mechanism
for the formation of gaseous and particulate products from ozone-cycloalkene
reactions in air, Environ. Sci. Technol., 21, 52–57,
https://doi.org/10.1021/es00155a005, 1987.
Hoffmann, T., Bandur, R., Marggraf, U., and Linscheid, M.: Molecular
composition of organic aerosols formed in the α-pinene∕O3
reaction: implications for new particle formation processes, J. Geophys.
Res., 103, 25569, https://doi.org/10.1029/98JD01816, 1998.
Hutterli, M. A., Bales, R. C., McConnell, J. R., and Stewart, R. W.: HCHO in
Antarctic snow: preservation in ice cores and air–snow exchange, Geophys.
Res. Lett., 8, 76-1–76-4, https://doi.org/10.1029/2001GL014256, 2002.
Janson, R. W.: Monoterpene emissions from Scots pine and Norwegian spruce, J.
Geophys. Res., 98, 2839, https://doi.org/10.1029/92JD02394, 1993.
Kahnt, A., Behrouzi, S., Vermeylen, R., Safi Shalamzari, M., Vercauteren, J.,
Roekens, E., Claeys, M., and Maenhaut, W.: One-year study of nitro-organic
compounds and their relation to wood burning in PM10 aerosol from
a rural site in Belgium, Atmos. Environ., 81, 561–568,
https://doi.org/10.1016/j.atmosenv.2013.09.041, 2013.
Kautzman, K. E., Surratt, J. D., Chan, M. N., Chan, A. W. H., Hersey, S. P.,
Chhabra, P. S., Dalleska, N. F., Wennberg, P. O., Flagan, R. C., and
Seinfeld, J. H.: Chemical composition of gas- and aerosol-phase products from
the photooxidation of naphthalene, J. Phys. Chem. A, 114, 913–934,
https://doi.org/10.1021/jp908530s, 2010.
Kawamura, K., Suzuki, I., Fujii, Y., and Watanabe, O.: Ice core record of
fatty acids over the past 450 years in Greenland, Geophys. Res. Lett.,
23, 2665–2668, https://doi.org/10.1029/96GL02428, 1996.
Kawamura, K., Yokoyama, K., Fujii, O., and Watanabe, O.: A Greenland ice core
record of low molecular weight dicarboxylic acids, ketocarboxylic acids, and
alpha-dicarbonyls: a trend from Little Ice Age to the present (1540 to
1989 AD), J. Geophys. Res., 106, 1331–1345, https://doi.org/10.1029/2000JD900465, 2001.
Kawamura, K., Izawa, Y., Mochida, M., and Shiraiwa, T.: Ice core records of
biomass burning tracers (levoglucosan and dehydroabietic, vanillic and
p-hydroxybenzoic acids) and total organic carbon for past 300 years
in the Kamchatka Peninsula, Northeast Asia, Geochim. Cosmochim. Ac., 99,
317–329, https://doi.org/10.1016/j.gca.2012.08.006, 2012.
Kellerhals, T., Brütsch, S., Sigl, M., Knüsel, S., Gäggeler,
H. W., and Schwikowski, M.: Ammonium concentration in ice cores – a new
proxy for regional temperature reconstruction?, J. Geophys. Res.-Atmos., 115,
D16123, https://doi.org/10.1029/2009JD012603, 2010.
Kim, K., Choi, W., Hoffmann, M. R., Yoon, H.-I., and Park, B.-K.:
Photoreductive dissolution of iron oxides trapped in ice and its
environmental implications, Environ. Sci. Technol., 44, 4142–4148,
https://doi.org/10.1021/es9037808, 2010.
Koch, S., Winterhalter, R., Uherek, E., Kolloff, A., Neeb, P., and
Moortgat, G. K.: Formation of new particles in the gas-phase ozonolysis of
monoterpenes, Atmos. Environ., 34, 4031–4042,
https://doi.org/10.1016/S1352-2310(00)00133-3, 2000.
Komenda, M. and Koppmann, R.: Monoterpene emissions from Scots pine
(Pinus sylvestris): field studies of emission rate variabilities, J.
Geophys. Res., 107, ACH 1-1–ACH 1-13, https://doi.org/10.1029/2001JD000691, 2002.
Lacorte, S., Quintana, J., Tauler, R., Ventura, F., Tovar-Sánchez, A.,
and Duarte, C.: Ultra-trace determination of persistent organic pollutants in
Arctic ice using stir bar sorptive extraction and gas chromatography coupled
to mass spectrometry, J. Chromatogr. A, 1216, 8581–8589,
https://doi.org/10.1016/j.chroma.2009.10.029, 2009.
Largiuni, O., Udisti, R., Becagli, S., Traversi, R., Maggi, V.,
Bolzacchini, E., Casati, P., Uglietti, C., and Borghi, S.: Formaldehyde
record from Lys glacier firn core, Monte Rosa massif (Italy), Atmos.
Environ., 37, 3849–3860, https://doi.org/10.1016/S1352-2310(03)00474-6, 2003.
Lee, S., Baumann, K., Schauer, J. J., Sheesley, R. J., Naeher, L. P.,
Meinardi, S., Blake, D. R., Edgerton, E. S., Russell, A. G., and
Clements, M.: Gaseous and particulate emissions from prescribed burning in
Georgia, Environ. Sci. Technol., 39, 9049–9056, https://doi.org/10.1021/es051583l, 2005.
Legrand, M. and de Angelis, M.: Light carboxylic acids in Greenland ice:
a record of past forest fires and vegetation emissions from the boreal zone,
J. Geophys. Res. Atmos., 101, 4129–4145, https://doi.org/10.1029/95JD03296, 1996.
Legrand, M., de Angelis, M., Staffelbach, T., Neftel, A., and Stauffer, B.:
Large perturbations of ammonium and organic acids content in the
summit-Greenland Ice Core, fingerprint from forest fires?, Geophys. Res.
Lett., 19, 473–475, https://doi.org/10.1029/91GL03121, 1992.
Legrand, M., Preunkert, S., Wagenbach, D., and Fischer, H.: Seasonally
resolved Alpine and Greenland ice core records of anthropogenic HCl emissions
over the 20th century, J. Geophys. Res., 107, 4139, https://doi.org/10.1029/2001JD001165,
2002.
Legrand, M., Preunkert, S., Wagenbach, D., Cachier, H., and Puxbaum, H.:
A historical record of formate and acetate from a high-elevation Alpine
glacier: implications for their natural vs. anthropogenic budgets at the
European scale, J. Geophys. Res. Atmos., 108, 4788, https://doi.org/10.1029/2003JD003594,
2003.
Legrand, M., Preunkert, S., Schock, M., Cerqueira, M., Kasper-Giebl, A.,
Afonso, J., Pio, C., Gelencsér, A., and Dombrowski-Etchevers, I.: Major
20th century changes of carbonaceous aerosol components (EC, WinOC, DOC,
HULIS, carboxylic acids, and cellulose) derived from Alpine ice cores, J.
Geophys. Res., 112, D23S11, https://doi.org/10.1029/2006JD008080, 2007.
Legrand, M., Preunkert, S., Jourdain, B., Guilhermet, J., Faïn, X.,
Alekhina, I., and Petit, J. R.: Water-soluble organic carbon in snow and ice
deposited at Alpine, Greenland, and Antarctic sites: a critical review of
available data and their atmospheric relevance, Clim. Past, 9, 2195–2211,
https://doi.org/10.5194/cp-9-2195-2013, 2013.
Li, X., Qin, D., and Zhou, H.: Organic acids: differences in ice core records
between Glacier 1, Tianshan, China and the polar areas, Chinese Sci. Bull.,
46, 80–83, https://doi.org/10.1007/BF03183216, 2001.
Martin, R. S., Villanueva, I., Zhang, J., and Popp, C. J.: Nonmethane
hydrocarbon, monocarboxylic acid, and low molecular weight aldehyde and
ketone emissions from vegetation in central New Mexico, Environ. Sci.
Technol., 33, 2186–2192, https://doi.org/10.1021/es980468q, 1999.
Mayewski, P. A., Lyons, W. B., Spencer, M. J., Twickler, M., Dansgaard, W.,
Koci, B., Davidson, C. I., and Honrath, R. E.: Sulfate and nitrate
concentrations from a South Greenland ice core, Science, 232, 975–977,
https://doi.org/10.1126/science.232.4753.975, 1986.
McConnell, J. R., Edwards, R., Kok, G. L., Flanner, M. G., Zender, C. S.,
Saltzman, E. S., Banta, J. R., Pasteris, D. R., Carter, M. M., and
Kahl, J. D. W.: 20th-century industrial black carbon emissions altered Arctic
climate forcing, Science, 317, 1381–1384, https://doi.org/10.1126/science.1144856, 2007.
MeteoSwiss, Federal Office of Meteorology and Climatology, Climate trends in
Switzerland, available at:
http://www.meteoswiss.admin.ch/home/climate/present-day/climate-trends.html#ths200m0;south;year;1864-smoother,
last access: 30 August, 2015.
Müller-Tautges, C., Eichler, A., Schwikowski, M., and Hoffmann, T.: A new
sensitive method for the quantification of glyoxal and methylglyoxal in snow
and ice by stir bar sorptive extraction and liquid desorption-HPLC-ESI-MS,
Anal. Bioanal. Chem., 406, 2525–2532, https://doi.org/10.1007/s00216-014-7640-z, 2014.
Nishino, N., Arey, J., and Atkinson, R.: Formation Yields of Glyoxal and
Methylglyoxal from the Gas-Phase OH Radical-Initiated Reactions of Toluene,
Xylenes, and Trimethylbenzenes as a Function of NO2 Concentration, J. Phys
Chem. A, 114, 10140–10147, https://doi.org/10.1021/jp105112h, 2010.
O'Dowd, C. D., Aalto, P., Hmeri, K., Kulmala, M., and Hoffmann, T.: Aerosol
formation: atmospheric particles from organic vapours, Nature, 416, 497–498,
https://doi.org/10.1038/416497a, 2002.
Pavlova, P. A., Schmid, P., Bogdal, C., Steinlin, C., Jenk, T. M., and
Schwikowski, M.: Polychlorinated biphenyls in glaciers. 1. Deposition history
from an Alpine ice core, Environ. Sci. Technol., 48, 7842–7848,
https://doi.org/10.1021/es5017922, 2014.
Pérez-Rial, D., Peñuelas, J., López-Mahía, P., and
Llusià, J.: Terpenoid emissions from Quercus robur, a case study
of Galicia (NW Spain), J. Environ. Monit., 11, 1268, https://doi.org/10.1039/b819960d,
2009.
Pezzatti, G. B., Bajocco, S., Torriani, D., and Conedera, M.: Selective
burning of forest vegetation in Canton Ticino (southern Switzerland), Plant
Biosyst., 143, 609–620, https://doi.org/10.1080/11263500903233292, 2009.
Pezzatti, G. B., Reinhard, M., and Conedera, M.: Swissfire: the new Swiss
forest fire database, Swiss For. J., 161, 465–469,
https://doi.org/10.3188/szf.2010.0465, 2010.
Preunkert, S. and Legrand, M.: Towards a quasi-complete reconstruction of
past atmospheric aerosol load and composition (organic and inorganic) over
Europe since 1920 inferred from Alpine ice cores, Clim. Past, 9, 1403–1416,
https://doi.org/10.5194/cp-9-1403-2013, 2013.
Preunkert, S., Legrand, M., and Wagenbach, D.: Sulfate trends in a Col du
Dome French Alps ice core: a record of anthropogenic sulfate levels in the
European midtroposphere over the twentieth century, J. Geophys. Res. Atmos.,
106, 31991–32004, https://doi.org/10.1029/2001JD000792, 2001.
Preunkert, S., Wagenbach, D., and Legrand, M.: A seasonally resolved alpine
ice core record of nitrate: comparison with anthropogenic inventories and
estimation of preindustrial emissions of NO in Europe, J. Geophys. Res.
Atmos., 108, 4681, https://doi.org/10.1029/2003JD003475, 2003.
Rodríguez, E., Fernández, G., Ledesma, B., Álvarez, P., and
Beltrán, F. J.: Photocatalytic degradation of organics in water in the
presence of iron oxides: influence of carboxylic acids, Appl. Catal.
B-Environ., 92, 240–249, https://doi.org/10.1016/j.apcatb.2009.07.013, 2009.
Schweizerische Gesamtenergiestatistik: Schweizerische Eidgenossenschaft,
Bundesamt für Energiewirtschaft, available at:
http://www.bfe.admin.ch/themen/00526/00541/00542/00631/index.html?dossier_id=00763&lang=en
(last access: 30 August 2015), 2012.
Schwikowski, M., Brütsch, S., Gäggeler, H. W., and Schotterer, U.:
A high-resolution air chemistry record from an Alpine ice core: fiescherhorn
glacier, Swiss Alps, J. Geophys. Res., 104, 13709–13719,
https://doi.org/10.1029/1998JD100112, 1999.
Schwikowski, M., Barbante, C., Doering, T., Gaeggeler, H. W., Boutron, C.,
Schotterer, U., Tobler, L., van de Velde, K., Ferrari, C., Cozzi, G.,
Rosman, K., and Cescon, P.: Post-17th-century changes of European lead
emissions recorded in high-altitude Alpine snow and ice, Environ. Sci.
Technol., 38, 957–964, https://doi.org/10.1021/es034715o, 2004.
Simoneit, B. R. T.: Biomass burning – a review of organic tracers for smoke
from incomplete combustion, Appl. Geochem., 17, 129–162,
https://doi.org/10.1016/S0883-2927(01)00061-0,
2002.
Simpson, I. J., Akagi, S. K., Barletta, B., Blake, N. J., Choi, Y., Diskin,
G. S., Fried, A., Fuelberg, H. E., Meinardi, S., Rowland, F. S., Vay, S. A.,
Weinheimer, A. J., Wennberg, P. O., Wiebring, P., Wisthaler, A., Yang, M.,
Yokelson, R. J., and Blake, D. R.: Boreal forest fire emissions in fresh
Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs),
CO2, CO, NO2, NO, HCN and CH3CN, Atmos. Chem. Phys., 11, 6445–6463,
https://doi.org/10.5194/acp-11-6445-2011, 2011.
Staffelbach, T., Neftel, A., Stauffer, B., and Jacob, D.: A record of the
atmospheric methane sink from formaldehyde in polar ice cores, Nature, 349,
603–605, https://doi.org/10.1038/349603a0, 1991.
Stemmler, K., Bugmann, S., Buchmann, B., Reimann, S., and Staehelin, J.:
Large decrease of VOC emissions of Switzerland's car fleet during the past
decade: results from a highway tunnel study, Atmos. Environ., 39,
1009–1018, https://doi.org/10.1016/j.atmosenv.2004.10.010, 2005.
Stephanou, E. G. and Stratigakis, N.: Oxocarboxylic and α,ω-dicarboxylic acids: photooxidation products of biogenic
unsaturated fatty acids present in urban aerosols, Environ. Sci. Technol.,
27, 1403–1407, https://doi.org/10.1021/es00044a016, 1993.
van de Velde, K., Boutron, C. F., Ferrari, C. P., Moreau, A., Delmas, R. J.,
Barbante, C., Bellomi, T., Capodaglio, G., and Cescon, P.: A two hundred
years record of atmospheric cadmium, copper and zinc concentrations in high
altitude snow and ice from the French–Italian Alps, Geophys. Res. Lett., 27,
249–252, https://doi.org/10.1029/1999GL010786, 2000.
Villa, S., Negrelli, C., Maggi, V., Finizio, A., and Vighi, M.: Analysis of
a firn core for assessing POP seasonal accumulation on an Alpine glacier,
Ecotox. Environ. Safe., 63, 17–24, https://doi.org/10.1016/j.ecoenv.2005.05.006, 2006.
Wang, J., Yao, T., Xu, B., Wu, G., and Xiang, S.: Formate and acetate records
in the Muztagata ice core, Northwest Tibetan Plateau, Chinese Sci. Bull., 49,
1620, https://doi.org/10.1007/BF03184132, 2004.
Wang, X., Xu, B., Kang, S., Cong, Z., and Yao, T.: The historical residue
trends of DDT, hexachlorocyclohexanes and polycyclic aromatic hydrocarbons in
an ice core from Mt. Everest, central Himalayas, China, Atmos. Environ., 42,
6699–6709, https://doi.org/10.1016/j.atmosenv.2008.04.035, 2008.
Yu, J., Cocker, D. R., Griffin, R. J., Flagan, R. C., and Seinfeld, J. H.:
Gas-phase ozone oxidation of monoterpenes: gaseous and particulate products,
J. Atmos. Chem., 34, 207–258, https://doi.org/10.1023/A:1006254930583, 1999.
Zhang, Y. Y., Müller, L., Winterhalter, R., Moortgat, G. K., Hoffmann,
T., and Pöschl, U.: Seasonal cycle and temperature dependence of pinene
oxidation products, dicarboxylic acids and nitrophenols in fine and coarse
air particulate matter, Atmos. Chem. Phys., 10, 7859–7873,
https://doi.org/10.5194/acp-10-7859-2010, 2010.
Short summary
The paper focuses on the determination and interpretation of historic records of organic compounds in an ice core from Grenzgletscher in the southern Swiss Alps, covering the time period from 1942 to 1993. The resulting long-term records of organic species were found to be influenced by the forest fire history in southern Switzerland, anthropogenic emissions, as well as changing mineral dust transport to the drilling site.
The paper focuses on the determination and interpretation of historic records of organic...
Altmetrics
Final-revised paper
Preprint