Articles | Volume 16, issue 15
https://doi.org/10.5194/acp-16-10021-2016
https://doi.org/10.5194/acp-16-10021-2016
Research article
 | 
09 Aug 2016
Research article |  | 09 Aug 2016

The representation of solar cycle signals in stratospheric ozone – Part 1: A comparison of recently updated satellite observations

Amanda C. Maycock, Katja Matthes, Susann Tegtmeier, Rémi Thiéblemont, and Lon Hood

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Amanda Maycock on behalf of the Authors (24 Jun 2016)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (28 Jun 2016) by Martin Dameris
RR by Joseph Zawodny (28 Jun 2016)
ED: Publish as is (07 Jul 2016) by Martin Dameris
AR by Amanda Maycock on behalf of the Authors (09 Jul 2016)
Short summary
The impact of changes in incoming solar radiation on stratospheric ozone has important impacts on the atmosphere. Understanding this ozone response is crucial for constraining how solar activity affects climate. This study analyses the solar ozone response (SOR) in satellite datasets and shows that there are substantial differences in the magnitude and spatial structure across different records. In particular, the SOR in the new SAGE v7.0 mixing ratio data is smaller than in the previous v6.2.
Altmetrics
Final-revised paper
Preprint