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Abstract. Changes in incoming solar ultraviolet radiation over the 11-year solar cycle affect strato-

spheric ozone abundances. It is important to quantify the magnitude, structure and seasonality of

the associated solar-ozone response (SOR) to understand the impact of the 11-year solar cycle on

climate. Part I of this two-part study uses multiple linear regression analysis to extract the SOR in

a number of recently updated satellite datasets covering different periods within the epoch 1970 to5

2013. The annual mean SOR in the updated version 7.0 (v7.0) SAGE II number density dataset

(1984-2004) is very consistent with that found in the previous v6.2. In contrast, we find a substantial

decrease in the magnitude of the SOR in the tropical upper stratosphere in SAGE II v7.0 mixing ra-

tio dataset compared to the v6.2. This difference is shown to be largely attributable to the change in

the independent stratospheric temperature dataset used to convert SAGE II ozone number densities10

to mixing ratios. Since these temperature records contain substantial uncertainties, we suggest that

datasets based on SAGE II number densities are currently most reliable for evaluating the SOR. We

further analyse three extended ozone datasets that combine SAGE II v7.0 number density data with

more recent GOMOS or OSIRIS measurements. The extended SAGE-OSIRIS dataset (1984-2013)

shows a smaller and less statistically significant SOR across much of the tropical upper stratosphere15

compared to the SAGE II data alone. In contrast, the two SAGE-GOMOS datasets (1984-2011) show

SORs that compare better with the original SAGE II data and therefore appear to provide a more re-

liable estimate of the SOR. We also analyse the SOR in recent SBUVMOD version 8.6 (VN8.6)

(1970-2012) and SBUV Merged Cohesive VN8.6 (1978-2012) datasets and compare them to the

previous SBUVMOB VN8.0 (1970-2009). Over their full lengths, the three records generally agree20

in terms of the broad magnitude and structure of the annual mean SOR. The main difference is that

SBUVMOD VN8.6 shows a smaller and less significant SOR in the tropical upper stratosphere, and
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therefore more closely resembles the SAGE II v7.0 mixing ratio data than does the SBUV Merged

Cohesive VN8.6, which has a more continuous SOR of ⇠2% in this region. The sparse spatial and

temporal sampling of limb satellite measurements prohibits the extraction of sub-annual variations25

in the SOR from SAGE-based datasets. However, the SBUVMOD VN8.6 dataset suggests substan-

tial month-to-month variations in the SOR, particularly in the winter extratropics, which may be

important for the proposed high latitude dynamical response to solar variability. Overall, the results

highlight substantial uncertainties in the magnitude and structure of the observed SOR from different

satellite records. The implications of these uncertainties for understanding and modelling the effects30

of solar forcing on climate should be explored.

1 Introduction

Whilst fractional changes in total solar irradiance (TSI) between the maximum and minimum phases

of the approximately 11 year solar cycle are known to be small (<0.1%), there is enhanced fractional

variability in the ultraviolet (UV) spectral region (>6%) (e.g. Ermolli et al. (2013)). An increase in35

UV irradiance impacts stratospheric heating rates, and thus temperatures, through two main mecha-

nisms: (1) enhanced absorption of radiation by ozone, and (2) enhanced production of ozone through

the photolysis of oxygen at wavelengths less than 242 nm. Consistent with these mechanisms, past

studies using observations, reanalysis data and models have identified an increase in annual mean

temperature in the upper stratosphere of up to ⇠1.5 K between solar maximum and minimum (e.g.40

Ramaswamy et al. (2001); Mitchell et al. (2015a); Austin et al. (2008)), and an increase in ozone

abundances of a few percent (Soukharev and Hood, 2006; Haigh, 1994). These radiatively driven

changes modify the meridional temperature gradients in the upper stratosphere, which can lead to a

modulation of planetary wave propagation and breaking, and changes in the strength of the strato-

spheric polar vortex (e.g. Kuroda and Kodera (2002); Matthes et al. (2004, 2006); Gray et al. (2010);45

Ineson et al. (2011)). Such feedback mechanisms can lead to amplified changes in regional sur-

face climate via stratosphere-troposphere dynamical coupling (e.g. Gray et al. (2010)). Constraining

the stratospheric response to solar forcing is therefore important for understanding solar-climate

coupling and potential sources of decadal variability in the climate system (e.g. Thiéblemont et al.

(2015)).50

The solar-ozone response (SOR) has been estimated to make a substantial contribution to varia-

tions in stratospheric temperatures over the 11-year solar cycle. Gray et al. (2009) used an estimate

of the SOR from SAGE II (Stratospheric Aerosol and Gas Experiment II) version 6.2 (v6.2) satellite

ozone mixing ratio data and spectral solar irradiance (SSI) variations from Lean (2000) to show that

the contribution of the SOR to temperature changes between the maximum and minimum phases of55

the 11-year solar cycle is around 60% at the tropical stratopause, 30-40% between 40-50 km, and

70-80% between 20-30 km. Shibata and Kodera (2005) conducted similar calculations using esti-
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mates of the SOR from two atmospheric chemical models and found that the SOR accounted for

only around 20-25% of the solar-cycle temperature response near the tropical stratopause. Since the

two studies used similar SSI data, this difference must arise from the SOR estimated from SAGE II60

observations used by Gray et al. (2009) being different from that simulated in the atmospheric chem-

istry models used by Shibata and Kodera (2005). It is therefore important to evaluate the SOR and its

uncertainties in different observational datasets to understand the climate response to solar variabil-

ity and to provide an independent means for evaluating the performance of atmospheric chemistry

models (e.g. Austin et al. (2008); see also Part II).65

Whilst past studies have quantified the SOR in observations (e.g. Soukharev and Hood (2006);

Randel and Wu (2007); Remsberg and Lingenfelser (2010); Remsberg (2014); Bourassa et al. (2014);

Lean (2014)), there are differences in the magnitudes and structures between individual satellite

records. It is not clear whether these are due to inter-instrument differences in observational periods

and/or differences in instrument resolution, sampling or drifts. There are also apparent differences70

in the structure and magnitude of the SOR between observations and atmospheric chemistry mod-

els (e.g. Haigh (1994); Soukharev and Hood (2006); Austin et al. (2008); Dhomse et al. (2011)).

These issues are compounded by current uncertainties in the characteristics of spectral solar irradi-

ance variability (e.g. Ermolli et al. (2013)), which have implications for constraining the magnitude

and structure of the SOR because of its dependence on photochemical processes (Haigh et al., 2010;75

Dhomse et al., 2015; Ball et al., 2016). These factors present an additional challenge for under-

standing and evaluating the overall climate response to solar variability, particularly since dynamical

feedbacks may amplify the effects of an initially small forcing (e.g. Matthes et al. (2006)).

The aim of this two part study (see also Maycock et al., in prep.) is to evaluate the representation of

the SOR and its uncertainties in satellite observations and global models. The present Part I describes80

the SOR in the latest version 7.0 (v7.0) of the SAGE II dataset and compares it to the former v6.2,

which has been used in several solar-climate studies (e.g. Soukharev and Hood (2006); Gray et al.

(2009)) and in several ozone databases developed for climate models without interactive chemistry

(Cionni et al., 2011; Bodeker et al., 2013). A number of merged satellite ozone datasets, which

extend SAGE II using more recent measurements, have also been created and analysed as part of85

the WCRP/SPARC (World Climate research Programme/Stratospheric-tropospheric Processes and

their Role in Climate) SI2N ozone trends activity (e.g. Tummon et al. (2015)); we analyse the SOR

in three of these combined satellite ozone datasets. We also analyse the SOR in two versions of the

recently released VN8.6 of the Solar Backscatter Ultraviolet Instrument (SBUV) data and compare

these to the former SBUVMOD VN8.0 data.90

Part II of the study (Maycock et al., in prep.) describes the SOR in atmospheric chemistry-climate

model simulations from the WCRP/SPARC Chemistry-Climate Model Initiative (CCMI) and com-

pares them to a subset of the observational records discussed here that are determined to be most

reliable for diagnosing the SOR (see below). Part II also discusses the representation of the SOR
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in the climate model ozone dataset created for the fifth Coupled Model Intercomparison Project95

(CMIP5) (Cionni et al., 2011). This leads to a discussion of the representation of the SOR in the

ozone dataset being created for CMIP6 model simulations (Hegglin et al., in prep.).

Given the potential application of the results described below for use in climate model simula-

tions, it is prudent to briefly review the typical requirements of an ozone database for models by

describing the CMIP5 dataset as a representative example (Cionni et al., 2011) (see also Bodeker100

et al. (2013)). The CMIP5 ozone database provided monthly mean ozone mixing ratios on a regular

latitude/pressure grid at a horizontal resolution of 5�⇥5� (lon/lat) on 24 pressure levels covering

1000-1 hPa for the period 1850-2100. Data were provided on the following pressure levels: 1000,

850, 700, 600, 500, 400, 300, 250, 200, 150, 100, 80, 70, 50, 30, 20, 15, 10, 7, 5, 3, 2, 1.5, 1 hPa.

Stratospheric ozone data (at p300 hPa) were given as zonal mean values. Therefore for any de-105

scription of the SOR must fulfil these (or similar) criteria to be viable for use in climate models (i.e.

global coverage at monthly mean resolution and with sufficient vertical and horizontal resolution

throughout the stratosphere).

2 Ozone datasets

The satellite ozone datasets examined in this study are summarised in Table 1. A detailed overview110

of their spatial and temporal sampling characteristics and, where appropriate, their merging proce-

dures is provided by Tummon et al. (2015) and references therein. Their main properties are briefly

summarised below. Since our goal is to extract a signal with power on a quasi-decadal timescale, it

is desirable to use the longest available timeseries and we therefore analyse all datasets for their full

time periods. For the longest record considered, this amounts to approximately three solar cycles.115

2.1 SAGE II based records

The SAGE II record forms the basis of many long-term ozone datasets (see e.g. Tummon et al.

(2015)). As a limb-viewing instrument, the spatial and temporal sampling of SAGE is fairly sparse,

with a given latitude measured approximately once per month; however, it is recognised as having

good long-term stability and a vertical resolution of ⇠1 km in the stratosphere, which are character-120

istics that are likely to be important for analysing the SOR. We use zonal and monthly mean ozone

data from October 1984 to August 2005 provided through the WCRP/SPARC Data Inititive (SDI)

(Tegtmeier et al., 2013).

The native retrieval coordinate of SAGE II is units of ozone number densities on altitude levels;

data are post-processed to volume mixing ratios (vmr) on pressure levels using temperatures from a125

meteorological reanalysis dataset. The SAGE II retrieval algorithm was recently updated as part of

the version 7.0 release (Damadeo et al., 2013). The SOR in SAGE II v6.2 data has been discussed in

a number of studies: e.g. Randel and Wu (2007); Soukharev and Hood (2006); Gray et al. (2009) for
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mixing ratios, and Remsberg and Lingenfelser (2010) for number densities. Here we compare the

SOR in the latest v7.0 release to the previous v6.2 in units of number densities and mixing ratios. It130

is important to conduct this comparison for both sets of units because the temperature record used to

convert SAGE II to mixing ratios was changed between v6.2 and v7.0 from National Meteorological

Center/National Center for Environmental Prediction (NMC/NCEP) to Modern Era-Retrospective

Analysis for Research and Applications version 1 (MERRA-1) reanalysis data. The impact of this

change on the SOR has not been previously evaluated and is described in Section 4.1.135

As a solar occultation instrument, SAGE II profiles can be categorised as a sunrise (SR) or sunset

(SS) measurement. There are known variations in the relative numbers of SR/SS retrievals over the

SAGE II record. For example, SAGE II obtained profiles in two narrow latitude bands each day,

15 each at sunrise and sunset, but after November 2000 SAGE II measured only one profile per

orbit at either SR or SS. These variations in SR/SS sampling have been shown to affect estimates140

of climatological ozone values due to diurnal cycle effects (Toohey et al., 2013), but could also

affect temporal variability in monthly mean ozone values. To account for the possible effects of

these sampling issues on the estimation of the SOR, we add an additional term to the multiple linear

regression model for SAGE II data that represents the fraction of SR to total (SR+SS) profiles used

to generate each monthly mean data point (see Section 3).145

The SAGE II mission stopped measuring in 2005. Since then several satellite instruments have

continued to measure ozone, and there are now a number of combined datasets that have extended

SAGE II to near the present day. These datasets were recently analysed as part of the WCRP/SPARC

SI2N activity to evaluate long-term ozone trends (see Tummon et al. (2015) and references therein),

including SWOOSH (Stratospheric Water and OzOne Satellite Homogenized) (Davis et al., 2016),150

GOZCARDS (Froidevaux et al., 2015), SAGE-GOMOS (Global Ozone Monitoring by Occultation

of Stars) (Kyrölä et al., 2015; Penckwitt et al., 2015), and SAGE-OSIRIS (Optical Spectrograph

and Infrared Imager System) (Bourassa et al., 2014). As mentioned above, SAGE II mixing ra-

tios are produced by conversion of number densities using an independent temperature record. The

uncertainties in the SOR that result from using different stratospheric temperature records for this155

conversion are demonstrated in Section 4.1. This leads us to focus our analysis of the SOR on the

extended records that provide ozone as number densities and are therefore less dependent on the

conversion issues that accompany the choice of a particular temperature record (see Section 4.2).

Since SWOOSH and GOZCARDS currently only provide ozone mixing ratios we do not analyse

them here.160

The three extended ozone datasets all include SAGE II v7.0 number densities. Differences in the

SOR between the datasets may therefore arise as a result of the more recent measurements used to

extend SAGE II and/or from the methods used to merge the different satellite records. Two of the

datasets extend SAGE II using GOMOS, which flew on the ENVISAT satellite and covers 2002-

2011, but take different approaches for combining the two records. Kyrölä et al. (2015) use GOMOS165
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as a reference and adjust SAGE II sunrise and sunset profiles separately at each latitude and altitude;

this dataset will be referred to as SAGE-GOMOS 1. Conversely, Penckwitt et al. (2015) use SAGE

II as a reference and adjust GOMOS data using seasonally-varying offsets at each latitude and alti-

tude; this dataset will be referred to as SAGE-GOMOS 2. The third dataset analysed extends SAGE

II using OSIRIS data and covers 1984-2013 (Bourassa et al., 2014; Sioris et al., 2014). Latitude170

and altitude dependent offsets are calculated for the deseasonalised data during the instrument over-

lap period (January 2002-August 2005), and the OSIRIS data are adjusted to produce a consistent

combined SAGE II and OSIRIS timeseries.

2.2 SBUV based records

In addition to SAGE II, the other main long-term internally-calibrated satellite ozone dataset is com-175

prised of data from the Backscatter Ultraviolet Radiometer (BUV) and Solar Backscatter Ultraviolet

Radiometer (SBUV) instruments on board Nimbus satellites and the SBUV/2 instruments on various

National Oceanic and Atmospheric Administration (NOAA) satellites. Data are available as mixing

ratios on pressure levels from January 1970 to near the present day. As nadir-viewing instruments,

the BUV/SBUV records have more frequent global coverage than the limb-viewing SAGE II, but180

their vertical resolution is at least an order of magnitude poorer at pressures greater than ⇠15 hPa

rendering it more difficult to resolve detailed ozone structures in the mid and lower stratosphere.

Since the entire BUV/SBUV record is comprised of multiple records from different satellites, inter-

instrument biases and drifts must also be accounted for to produce a homogenised record.

We analyse zonal and monthly mean data from the SBUV Merged Ozone Dataset (SBUVMOD)185

version 8.0 (VN8.0) dataset and the latest release SBUV VN8.6 (McPeters et al., 2013; Bhartia et al.,

2013), thereby complementing previous analyses of the SOR (e.g. Soukharev and Hood (2006)).

SBUVMOD VN8.0 covers the period 1970-2009 and was downloaded from

http://acd-ext.gsfc.nasa.gov/Data_services/merged/data/sbuv.70-09.za.v8_prof.vmr.rev1.txt.

Two versions of the SBUV VN8.6 record have been produced so far: the SBUVMOD VN8.6 dataset190

from NASA which covers 1970-2012 (Frith et al., 2014), and the SBUV Merged Cohesive dataset

from NOAA which covers 1978-2012 (Wild and Long, 2015). These are identical to the datasets

analysed as part of the SI2N activity (e.g. Tummon et al. (2015)). The two SBUV VN8.6 datasets

contain some differences in the data that is included from different instruments within a particular

period (see Figure 1 in Tummon et al. (2015)), and in the methods for averaging and merging these195

data. SBUV Merged Cohesive VN8.6 uses data from a single instrument in any time period; the

individual records are then bias-corrected to produce a continuous record (Wild and Long, 2015). In

contrast, SBUVMOD VN8.6 is constructed by averaging all available data within a particular time

window (Frith et al., 2014). The SBUVMOD datasets extend back to 1970 by including data from

the BUV instrument on Nimbus 4 from 1970-1976, whereas the SBUV Merged Cohesive dataset200

starts from 1978 with the first SBUV instrument on Nimbus 7.
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3 The multiple linear regression model

Following numerous earlier studies (e.g. Frame and Gray (2010); Soukharev and Hood (2006);

Mitchell et al. (2015a)), the SOR is diagnosed using multiple linear regression (MLR); this technique

enables the signals associated with different forcings within a single timeseries to be separated.205

The ozone data are first deseasonalised by removing the long-term monthly mean at each latitude

and pressure (or altitude). As in past studies, we then perform an MLR analysis on the timeseries of

monthly mean ozone anomalies at each location, O
0

3(t), to diagnose the 11 year solar cycle compo-

nent:

O
0

3(t) =A⇥F10.7(t)+B⇥CO2(t)+C ⇥EESC(t)

+D⇥ENSO(t)+E⇥QBOA(t)+F ⇥QBOB(t)+ r(t), (1)210

where r(t) is a residual. The analysis mainly focuses on annual-mean signals, which are calculated

by regressing all months as a single timeseries.

The monthly basis functions are: the F10.7cm radio solar flux

(http://lasp.colorado.edu/lisird/tss/noaa_radio_flux.html), the CO2 concentration at Mauna Loa

(http://www.esrl.noaa.gov/gmd/ccgg/trends/data.html), the equivalent effective stratospheric chlo-215

rine (EESC), the Nino 3.4 index calculated from the Extended Reconstructed Sea Surface Tempera-

ture (ERSST) v3b dataset

(http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html), and two quasi biennial oscillation

(QBO) indices representing tropical zonal winds at 30 and 50 hPa

(http://www.cpc.ncep.noaa.gov/data/indices/). Figure 1 shows example timeseries of these indices220

from 1970-2015 in arbitrary units. The coefficients A-F are calculated using linear least squares

regression.

ENSO is the main regressor for which a lagged response in stratospheric ozone might be expected;

however, we find that the SOR is not sensitive to lagging the ozone anomalies with respect to the

Nino 3.4 index by 0-12 months. We therefore do not include any lags in Equation 1. We have also225

tested the sensitivity of the diagnosed SOR to the use of a spatially-varying EESC field using output

from the UM-UKCA chemistry-climate model REF-C1 CCMI integration. However, this has virtu-

ally no effect on the SOR compared to the use of a single EESC timeseries for all locations, and we

therefore adopt the latter approach for simplicity.

We do not include a volcanic term in the regression model, but instead choose to exclude data230

from the 2 year periods following the two major tropical volcanic eruptions during the analysis

epoch: El Chićhon (data excluded from April 1982 - March 1984) and Mt. Pinatubo (data excluded

from June 1991 - May 1993). These periods are excluded from the analysis for two reasons: firstly,

some of the datasets analysed implicitly exclude data in these periods for quality control purposes,

whereas others do not. For consistency, we therefore exclude these periods for all datasets. Secondly,235
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removing these periods reduces the likelihood of aliasing between volcanic and solar signals, which

can be an issue within relatively short climate data records (Chiodo et al., 2014).

We adopt the widely used F10.7cm solar flux as a proxy for solar activity in the MLR model.

This is a more appropriate measure for variations in the UV spectral region, the key driver of the

stratospheric ozone response, than other indices such as total solar irradiance (Gray et al., 2010);240

however, it should be noted that the F10.7cm flux is not a direct measurement of UV variability,

but rather is a proxy for variations at these wavelengths. Throughout the manuscript the SOR is

expressed as percent ozone change per 130 solar flux units (1 SFU = 10�22 Wm�2Hz�1) to represent

the difference between the 11 year solar cycle maximum and minimum.

The 95% confidence intervals on the SORs are estimated by:245

A± t↵/2,n�(k+1)

p
CAA, (2)

where A is the solar regression coefficient in Equation 1, t↵/2,n�(k+1) is the critical t-value at a

confidence level, ↵, of 0.05 with degrees of freedom n� (k+1) where n is the number of data

points in the regression, k is the number of regressors, and CAA is the variance of the estimated

solar regression coefficient A.250

As mentioned in Section 2.1, the SAGE II record is affected by irregular SR and SS sampling

as a function of time. This could introduce spurious variability in the monthly mean ozone values,

particularly in the upper stratosphere, as a result of the diurnal cycle in ozone. However, many

previous regression studies of SAGE II data have not accounted for the non-stationarity in SR/SS

sampling (e.g. Randel and Wu (2007)). Here, we account for this by including an additional term255

in Equation 1 that quantifies the ratio between the number of SR and the total (SR+SS) number of

profiles used to produce each monthly mean SAGE II data point; this index can take values between

0 and 1. An example of this index for the SAGE II v7.0 dataset at 1 hPa averaged over the tropics

(30�S-30�N) is shown in Figure 2.

One important issue for MLR analysis is the handling of possible autocorrelation in the regression260

residuals and its effects on the estimation of statistical uncertainties. A Durbin-Watson test does

not reveal significant autocorrelation in the regression residuals at most locations; however, this is

likely to be because there is a considerable fraction of missing data points in many of the datasets

analysed. In the analysis of chemistry-climate model simulations in Part II of this study, for which

there is implicit complete spatial and temporal sampling, a Durbin-Watson test reveals significant265

serial correlation in the regression residuals in many locations for lags of one and two months,

particularly in the lower stratosphere and mesosphere. This autocorrelation can lead to spurious

overestimation of the statistical significance of the regression coefficients and we therefore include

an autoregressive term in the MLR model. Given the significant serial correlation of the residuals in

the chemistry-climate models at up to two months lag in some regions, a second order autoregressive270
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noise process (AR2) is used, which assumes the residuals r(t) have the form:

r(t) = ar(t� 1)+ br(t� 2)+w(t), (3)

where a and b are constants and w(t) is a white noise process; this is the same approach employed

in the recent SPARC SI2N analysis of ozone trends (Tummon et al., 2015; Harris et al., 2015). The

inclusion of this term has a very minor effect on the results for the observational datasets in Part I,275

but has a greater effect for the model results in Part II. We therefore include it in the analysis here

for consistency between both parts of the study.

4 Results

4.1 The SOR in SAGE II datasets

Figure 3 shows timeseries of monthly and tropical (30�S-30�N) mean percent ozone anomalies from280

1984 to 2004 at select stratospheric levels for SAGE II v6.2 and v7.0 in units of mixing ratios (on

pressure surfaces) and number densities (on approximately equivalent altitude surfaces). Data are

only plotted where at least 1/2 of the points within the tropical band have values in a given month.

The lowest panel shows the monthly F10.7 cm solar flux for reference.

The anomalies in the two ozone number density datasets (blue and green lines) are in close agree-285

ment in the mid-stratosphere (24, 31 and 36 km) both in terms of high frequency fluctuations and

long-term changes. At 31 km, there are ozone variations that are consistent with a QBO influence. At

36 and 40 km, there are variations that are visibly in phase with the solar cycle, with relatively high

ozone values from 1989 to 1992 during solar cycle 22 maximum, and lower ozone values from 1994

to 1998 during the cycle minimum. The data show greater variance in the early and later parts of the290

records and fluctuations in phase with the solar cycle are not evident from the timeseries alone.

The two SAGE II ozone mixing ratio datasets (black and red lines) are also in reasonable agree-

ment for long-term changes in the mid-stratosphere (10 and 30 hPa). However, in the upper strato-

sphere (1 and 3 hPa) there are substantial differences in both short and long-term variations. For

example, SAGE II v6.2 (black line) shows persistent negative anomalies in the early part of the295

record which are not evident in v7.0 (red line). These coincide with the 11 year solar cycle 21 min-

imum from 1985 to 1988. Furthermore, in the latter part of the record, v6.2 shows relatively large

amplitude fluctuations with mean positive anomalies from 2002 to 2004, which coincide with the

peak and subsequent declining phase of solar cycle 23. Thus, there are differences in the evolution

of ozone between the two SAGE II mixing ratio datasets, particularly in the upper stratosphere.300

Overall, the two versions of SAGE II number densities are in closer agreement than the mixing ratio

data.

Figures 4(a) and (b) show latitude-altitude plots of the SOR for SAGE II v6.2 and v7.0 number

densities, respectively. The 95% confidence intervals for the SORs in Figure 4 expressed as percent
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ozone anomalies are shown in Figure 5. The SORs in Figures 4(a) and (b) are generally consistent305

for the two datasets, and show positive values of 2-4% across the tropical and subtropical strato-

sphere, except for a region of small (<1%) negative values at 30 km in the tropics. There is a relative

maximum in the SOR of 3-4% in the tropics at 50 km, and two off equatorial peaks of a similar mag-

nitude at ⇠40 km and ±35�. These findings are consistent with Remsberg and Lingenfelser (2010)

and Remsberg (2014), who found similar 11 year solar-like signals in tropical upper stratospheric310

ozone number densities in SAGE II v6.2 and v7.0. The confidence intervals for the SORs in Figures

5(a) and 5(b) show the largest uncertainty at the equator at ⇠45 km, which is close to a maximum in

the SOR. The uncertainties between 35-45 km are slightly larger in the northern subtropics compared

to the southern subtropics. The uncertainties in the lower stratosphere between 22-28 km are smaller

in magnitude, but this is partly because the SOR is also smaller here (note the confidence intervals315

are expressed as percent ozone to be directly comparable to Figure 4). Overall, the 95% confidence

intervals are around 30-50% of the magnitude of the ‘best estimate’ SOR in Figure 4 indicating that

there are considerable uncertainties in the SOR in the SAGE II datasets. This has implications for

understanding the contribution of the SOR to the climate response to the solar cycle.

Figures 4(c) and 4(d) show equivalent plots to 4(a) and 4(b) for SAGE II in units of mixing ratios320

on pressure levels. The SORs between ⇠50-10 hPa are very similar in the two versions and strongly

resemble Figures 4(a) and 4(b), with a positive SOR in the tropical lower stratosphere of ⇠1-2%.

The structures of the SOR between 20 and ⇠7 hPa are also similar, with subtropical maxima of 1-

2% and a distinct equatorial minimum. However, the SORs in the upper stratosphere are markedly

different between v6.2 and v7.0. Polewards of ±20� the structure of the SORs are similar in both325

datasets, but the magnitude is ⇠1% larger in v6.2. In the tropics, the v6.2 data show a large peak in

the SOR in the uppermost stratosphere of up to 5%, whereas the v7.0 data show a smaller SOR of

1% in this region.

The confidence intervals for the SAGE II mixing ratio SORs in Figures 5(c) and 5(d) are gener-

ally similar to those for number densities, with the exception of the uncertainties being considerably330

larger in the tropical upper stratosphere in both datasets, but particularly in SAGE II v6.2. The rela-

tively large uncertainties in the ‘best estimate’ of the SOR would feed through to similar uncertainties

in the contribution of the SOR to the atmospheric response to the 11-year solar cycle (Gray et al.,

2009; Shibata and Kodera, 2005). It is therefore important to understand the causes of the differences

in SOR between the SAGE II v6.2 and v7.0 datasets, since it presents a limitation for understand-335

ing and simulating the climate response to solar forcing (e.g. Ermolli et al. (2013); Mitchell et al.

(2015b)). This is explored in the next section.

4.1.1 Differences in NMC/NCEP and MERRA-1 stratospheric temperature records

Since the two versions of SAGE II show comparable SORs for number densities, the differences

between Figures 4(c) and 4(d) must be related to the conversion of SAGE II data to ozone mixing340
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ratios. As described in Section 2, SAGE II v6.2 employed NMC/NCEP temperature data for this

conversion, but this was changed to MERRA-1 for v7.0 (see Damadeo et al. (2013) for details). The

differences in the SOR in the upper stratosphere must therefore be related to the use of different

temperature records in the conversion. It is known that the evolution of stratospheric temperatures

in some reanalyses show unphysical variability and trends (Mitchell et al., 2015a), and these have345

been corrected for in some solar-climate studies (e.g. Frame and Gray (2010); Hood et al. (2015)).

However, the effect of temperatures on the SOR in SAGE II data has not been considered previously.

Indeed, spurious variations in stratospheric temperatures in reanalyses datasets, which are introduced

through changes in the observing system over time, could mask or enhance the signal of the 11 year

solar cycle in SAGE II ozone mixing ratios.350

Figure 6 shows timeseries of annual and tropical mean temperature anomalies at select strato-

spheric levels (1, 2, 5, 10, 30 hPa) for the NMC/NCEP and MERRA-1 datasets. The NMC/NCEP

temperatures are those provided with the published SAGE II data files and cover 1985-2003. MERRA-

1 data were downloaded for 1979-2013 from the NASA GFSC website. At 30 hPa, the evolution of

the two temperature records is nearly identical during the period of overlap, with a long-term cool-355

ing trend of ⇠0.6 K decade�1 that is strongly connected to an apparent step-wise cooling of ⇠2 K

between 1992 and 1994. However, at pressures less than 30 hPa there are substantial differences be-

tween the records. The NMC/NCEP data show exceptional behaviour between 2000-03. At 1 hPa,

there is a warming of more than 3 K over this short period, which is coincident with a warming of

⇠1 K at 2 hPa. In contrast, at 5 and 10 hPa there is a cooling of more than 4 and 2 K, respectively,360

over this period. The magnitude and vertical structure of these changes in the NMC/NCEP record

seems inexplicable as to be related to any physical process, particularly when compared to the vari-

ations found in the remainder of the record. Some of these issues may be related to the method used

to construct the NMC/NCEP temperature record itself. NCEP reanalysis data were only available

for pressures greater than 10 hPa, requiring the addition of operational analyses to extend the data365

to the stratopause. Data from an atmospheric model was used to further extend the temperature data

to the mesosphere, but these levels are not considered here (see e.g. Damadeo et al. (2013) for more

details). The NMC/NCEP temperature record used to convert SAGE II is therefore constructed from

several component datasets. Regardless of the exact cause, it seems likely that some of the temper-

ature variations in the NMC/NCEP record are spurious and this may impact on the diagnosed SOR370

in the SAGE II v6.2 mixing ratio data.

The temperature variations in MERRA-1 over the period 1985-2003 are generally smaller in mag-

nitude than those found in NMC/NCEP, with the exception of a marked cooling at 1 hPa of ⇠3 K

between 2001-2003, which is opposite to what is seen in NMC/NCEP. This cooling in MERRA-1

leads the decline in solar forcing during the downward phase of solar cycle 23 by around a year,375

and is also larger in amplitude than typical solar signals in temperature at this level (Mitchell et al.,
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2015a). However, the sign is at least consistent with the expected tendency of upper stratospheric

temperatures during the declining phase of the solar cycle.

A valid question is which representation of past stratospheric temperatures is likely to be most re-

alistic? Mitchell et al. (2015a) compared MERRA-1 to Stratospheric Sounding Unit (SSU) satellite380

data and found considerable differences in upper stratospheric temperature variability between the

two records. However, the NMC/NCEP data show a long-term warming trend in the upper strato-

sphere, which is opposite to the cooling expected from increasing atmospheric CO2 and declining

ozone abundances over this period. Both records therefore appear to exhibit differences compared to

observed stratospheric temperature changes.385

The evolution of atmospheric temperatures will affect the geometric altitude of a given pressure

surface, as well as the conversion from number density to mixing ratio. It is well known that cooling

will lower the altitude of pressure surfaces, a so-called ‘atmospheric shrinking’ effect. Therefore the

presence of cooling near the stratopause in MERRA-1 would tend to lead to a greater atmospheric

shrinking than for the NMC/NCEP temperatures. Furthermore, the conversion from number den-390

sity to mixing ratio is proportional to temperature, so a positive correlation between number density

and temperature over the solar cycle would tend to increase the magnitude of the SOR on a given

pressure surface. Figure 7 shows the annual mean solar cycle signals in stratospheric temperatures

derived for the NMC/NCEP and MERRA-1 datasets over the period 1985-2003. Although the sign

of the temperature signals are consistent in most regions, the maximum warming in the tropics at395

solar maximum occurs at 4 hPa in MERRA-1 as compared to 2 hPa in NMC/NCEP. The peak mag-

nitude of the solar cycle temperature response is also around 25% smaller in MERRA-1 compared to

NMC/NCEP. The impact of these differences on the SOR in SAGE II mixing ratio data are explored

in the next section.

4.1.2 Dependence of SOR in SAGE II mixing ratios on temperature record400

To test the impact of the differences between NMC/NCEP and MERRA-1 temperatures on the SOR

in SAGE II, we perform our own conversion of the SAGE II v6.2 data from number densities to

mixing ratios. Each monthly and zonal mean ozone profile is first converted to number densities on

pressure levels using the hydrostatic equation, and then to mixing ratios on pressure levels using the

ideal gas law. The MLR in Equation 1 is then applied to the converted ozone mixing ratios to derive405

a SOR that can be compared to the published SAGE II mixing ratio datasets discussed above and

shown in Figure 4.

As a first test, we convert SAGE II v6.2 number densities to mixing ratios using the full time-

series of temperatures from NMC/NCEP and MERRA-1 in turn. The SORs diagnosed from these

‘post-hoc’ converted datasets are shown in Figures 8(a) and 8(b) for NMC/NCEP and MERRA-1, re-410

spectively, with the difference between them shown in Figure 8(c). These can be compared to Figures

4(c)-4(e). We stress that differences in the SORs are to be expected, since in the published SAGE II

12



datasets each ozone profile is converted separately before averaging is performed, whereas here we

have converted the monthly, zonally and latitudinally averaged ozone number density profiles.

The SOR in the post-hoc converted data using NMC/NCEP temperatures (Figure 8(a)) shows a415

qualitatively similar structure to Figure 4(c), but the peak magnitude is underestimated by ⇠2%

in the tropical upper stratosphere. The SOR in the data converted using MERRA-1 temperatures

(Figure 8(b)) compares more closely with the original SAGE II v7.0 vmr dataset (Figure 4(d)). In

particular, the reduced magnitude of the SOR in the tropical upper stratosphere is captured, which

allows us to explore how differences in linear trends and solar cycle signals in temperature between420

NMC/NCEP and MERRA-1 impact on the diagnosed SOR.

Figures 8(d) and 8(e) show the SOR for the SAGE II v6.2 data converted to mixing ratios us-

ing a monthly temperature climatology from MERRA-1 added to a latitude-height-time dependent

linear trend and solar cycle term (see Figure 7) extracted from either NMC/NCEP (Figure 8(d)) or

MERRA-1 (Figure 8(e)). The difference between Figures 8(d) and 8(e) is shown in Figure 8(f) for425

reference. Figures 8(d-f) are very similar to Figures 8(a-c) indicating that the majority of the dif-

ference in SOR in Figure 8(c) can be intepreted as due to differences in long-term trends and solar

cycle variability in temperatures between NMC/NCEP and MERRA-1. Further tests (not shown)

show that the diagnosed SORs are not affected by the choice of base temperature climatology (i.e.

MERRA-1 or NMC/NCEP).430

The remaining panels Figures 8(g-i) and 8(j-l) show equivalent results to Figures 8(d-f), but with

the conversion to mixing ratios performed with the temperature climatology added to either the

linear trend (Figures 8(g-i)) or solar cycle (Figures 8(j-l)) components of temperature variability

from the two datasets. In both of these further tests, the SOR in the tropical upper stratosphere is

larger for the SAGE II data converted using NMC/NCEP data (Figures 8(g,j)). This indicates that435

both components of the temperature variability contribute to the differences in SOR in Figure 8(c).

In conclusion, the SORs in SAGE II v6.2 and v7.0 are much more consistent in terms of number

densities on altitude surfaces than they are for mixing ratios on pressure surfaces. The differences

in SORs in the latter occur particularly in the upper stratosphere, and these have been shown to be

sensitive to the details of the temperature records used for conversion. The long-term warming trend440

in the upper stratosphere in NMC/NCEP data is at odds with the understanding of recent changes

in stratospheric composition and its impact on temperatures (Randel et al., 2009); however, the

peak of the solar cycle signal in stratospheric temperatures in MERRA-1 is at lower altitude than

predicted from theory and models. Recent analysis suggests that the relationship between ozone and

temperature in the upper stratosphere that is anticipated from photochemical theory is more realistic445

for the SAGE II v7.0 mixing ratio data than for v6.2 (Dhomse et al., 2015). Nevertheless, there

remain questions around which of the SAGE II mixing ratio datasets is likely to be most credible

for diagnosing the SOR. These results raise issues for the representation of the SOR in the CMIP5
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ozone database, which was largely based on SAGE II v6.2 mixing ratios (Cionni et al. (2011); see

also Maycock et al., in prep.).450

4.2 The SOR in extended SAGE II datasets

Given the uncertainties in the SOR for the SAGE II mixing ratio datasets discussed above, we focus

our analysis of the extended SAGE II records on the three SI2N datasets that are currently available

as number densities (see Section 2.1): SAGE-GOMOS 1, SAGE-GOMOS 2, and SAGE-OSIRIS.

Extending SAGE II using these more recent measurements increases the number of data points in-455

cluded in the MLR model by almost a factor of 2 in the tropics and by ⇠50% in the subtropics

(see Supplementary Material Figures S1 and S2). Figure 9 shows timeseries of monthly tropical

percent ozone anomalies at select altitudes for the three SI2N datasets. The datasets do not agree

perfectly over the SAGE II era (1984-2004) because the anomalies are defined relative to the entire

timeseries, but overall they show similar behaviour to SAGE II v7.0 number densities (green line) in460

Figure 3, as expected. In the post-2004 period, where either GOMOS or OSIRIS data are included,

the datasets show generally consistent behaviour in the mid-stratosphere during the overlap period

up to 2011. QBO-like variations in ozone are visible in the timeseries at 24 and 31 km. At 36 km,

there is a decline in ozone from 2004-09 in all three datasets, with increases subsequent to this. How-

ever, in the upper stratosphere (48 km) there are more substantial differences between the datasets,465

particularly between the SAGE-GOMOS and SAGE-OSIRIS records. SAGE-OSIRIS shows mean

positive anomalies from 2004-13, particularly in the latter part of the record, whereas the two SAGE-

GOMOS datasets show negative anomalies between 2007-10, which coincide with the minimum of

solar cycle 23. These differences in ozone variability during the post-SAGE II period may affect the

SORs diagnosed in the extended datasets, as compared to that found for the SAGE II v7.0 data alone470

(Figure 4(b)).

Figures 10(a-c) show the SORs in the three extended SAGE II datasets and Figures 10(d-f) show

their associated 95% confidence intervals in terms of percent ozone. An indication of the importance

of how the satellite records are merged for the SOR can be seen by comparing Figures 10(a) and

10(b), which show the SOR in SAGE-GOMOS 1 and SAGE-GOMOS 2, respectively. The SOR in475

SAGE-GOMOS 1 shows a generally smoother spatial structure as compared to SAGE-GOMOS 2,

although the magnitudes are not distinguishable from one another given the estimated confidence

intervals (Figures 10(d-e)). Nevertheless, since statistical uncertainties in the SOR are not typically

accounted for in solar-climate studies (e.g Gray et al. (2009)) or in climate model ozone datasets

(e.g. Cionni et al. (2011)), differences in the ‘best estimate’ of the SOR between the datasets remain480

important to characterise. The differences in SOR between SAGE-GOMOS 1 and 2 must arise from

differences in the data merging procedures, which are summarised by Tummon et al. (2015), and are

described in detail by Kyrölä et al. (2015) and Penckwitt et al. (2015). Analysis of the SOR in the

two SAGE-GOMOS datasets over the SAGE II period alone (1984-2004) reveals similar differences
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in magnitude and structure (not shown), which suggests that the use of SAGE II or GOMOS as485

a reference to which the other record is adjusted is a key factor for the differences in SOR. The

uncertainties in the SOR in SAGE-GOMOS 2 (Figure 10(e)) are similar to those found in the SAGE

II v7.0 number density dataset (Figure 5(b)), whereas the magnitude of the uncertainties in the SOR

in SAGE-GOMOS 1 (Figure 10(d)) are reduced compared to SAGE II v7.0, particularly in the upper

stratosphere.490

The SOR in the SAGE-OSIRIS dataset (Figure 10(c)) shows significant positive values in the

subtropics between ⇠30-40 km. This is consistent with the results of Bourassa et al. (2014) who

conducted a similar MLR analysis to assess long-term ozone trends in SAGE-OSIRIS (see also

Tummon et al. (2015)). However, the SOR is smaller and less significant in the tropical upper strato-

sphere and northern extratropics as compared to the two SAGE-GOMOS datasets and the SAGE II495

v7.0 data. Hubert et al. (2015) identified a significant positive drift of 5-8 % decade�1 in OSIRIS

data above 35 km compared to ozonesondes and lidar measurements, which may contribute to the

differences in SOR in the upper stratosphere.

Although there are broad similarities in the SOR between the three extended SAGE II datasets

there are also some differences. This is despite the fact that all of the datasets use SAGE II v7.0500

number densities as a basis. There is therefore a trade-off between generating the longest climate

data record possible, which is desirable for analysing quasi-decadal signals, and the introduction

of additional sources of uncertainty from combining multiple satellite records with different sam-

pling properties and drifts. There appear to be variations in ozone in the OSIRIS record that reduce

the magnitude of the SOR in the extended SAGE-OSIRIS record compared to the SAGE II pe-505

riod alone. When the SAGE-GOMOS datasets are analysed over the SAGE II period (1984-2004),

SAGE-GOMOS 1 shows the greatest resemblance to the original SAGE II v7.0 data in Figure 4(b)

(not shown) and we therefore conclude that this record is likely the most reliable estimate of the

SOR from the datasets considered.

4.3 The SOR in SBUV records510

Figure 11 shows timeseries of monthly percent ozone anomalies at select stratospheric levels (as in

Figure 3) for the SBUVMOD VN8.0 (black line), SBUVMOD VN8.6 (red line), and SBUV Merged

Cohesive VN8.6 (blue line) datasets. At 1 hPa, the ozone anomalies in the different datasets are

in good agreement between 1979-1994. After 1994, the main differences are found between the

SBUMOV VN8.0 and the two SBUV VN8.6 datasets, the latter being largely consistent with one515

another. In particular, SBUVMOD VN8.0 shows a larger positive trend in ozone from the mid-1990s

to the mid-2000s than in the SBUV VN8.6 records; this partly coincides with the ascending phase

of solar cycle 23. At 3 hPa, a comparison of the three SBUV records reveals somewhat different

behaviour. Here, the SBUVMOD VN8.0 and SBUV Merged Cohesive VN8.6 datasets show more

similar ozone variations, and instead the SBUVMOD VN8.6 is an outlier exhibiting a larger decline520
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in ozone compared to the other two records of ⇠7-8% over 1979-2012. At 5 hPa, the three SBUV

datasets generally show similar temporal variations in ozone in the early and latter parts of the

records, with some differences in offsets linked to different behaviours in the late 1990s and early

2000s when data come from the NOAA-11, 14, 16 and 17 satellites. At 30 hPa, the three SBUV

records are largely consistent with one another in their short and long-term variations, with some525

exceptions during the 1990s when the data come mainly from the NOAA-11 and NOAA-14 satellites

(see e.g. Tummon et al. (2015)).

Figures 12(a-c) show the annual mean SORs in the (a) SBUVMOD VN8.0, (b) SBUVMOD

VN8.6, and (c) SBUV Merged Cohesive VN8.6 datasets. Figures 12(d-f) show the associated 95%

confidence intervals in terms of percent ozone. All three SBUV records show a significant positive530

SOR in some parts of the upper stratosphere of up to 2-3%. The SOR in the tropical upper strato-

sphere is smaller and not highly statistically significant in SBUVMOD VN8.6, which is in contrast to

the two other records and somewhat resembles the SOR in SAGE II v7.0 mixing ratios (Figure 4(d)).

The modifications to the data processing algorithm between SBUVMOD VN8.0 and SBUVMOD

VN8.6 are documented by Bhartia et al. (2013); these include the use of new ozone absorption535

cross-sections, a new a priori ozone climatology, and a new cloud-height climatology. In addition,

changes were also made to the inter-instrument calibration, which is now achieved at the radiance

level during periods of overlap between the SBUV instruments (DeLand et al., 2012; Bhartia et al.,

2013). It seems plausible that calibration changes could impact on the diagnosis of quasi-decadal

variability in ozone, and it seems possible that the new processing procedure may have smoothed540

out part of the SOR in the upper stratosphere in SBUVMOD VN8.6. Note that the difference in SOR

in the tropical upper stratosphere between the two SBUV VN8.6 records remains when SBUVMOD

VN8.6 is analysed over the shorter 1978-2012 period (not shown), so this does not result from the

inclusion of the early BUV measurements in SBUVMOD VN8.6.

The SORs in the three SBUV records show further differences between 10-50 hPa, with SBU-545

VMOD VN8.6 showing a larger and more significant SOR, particularly in the northern extratropics,

while SBUV Merged Cohesive VN8.6 shows a weaker SOR. However, we note that the poor vertical

resolution (⇠10 km) of the SBUV instruments at pressures greater than ⇠15 hPa makes it challeng-

ing to resolve features in the mid and lower stratosphere. Note that the confidence intervals for all the

SBUV records are smaller than those for SAGE II based records (see Figure 5 and Figures 10(d-f)).550

This is likely to be because the number of data points included in the MLR analysis is around 2-3

times higher for the SBUV datasets than for the SAGE records (see Supplementary Material Figures

S1 and S3).

It is desirable for the purposes of e.g. chemistry-climate model evaluation to determine which

SBUV dataset might be most reliable for estimating the annual mean SOR. Lean (2014) analysed555

total column ozone measurements from SBUVMOD VN8.0 and SBUVMOD VN8.6 and found a

smaller SOR in SBUVMOD VN8.6 near-global column ozone, which appeared to be related to in-
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strument effects around the 1996 time frame. However, Hood (1997) analysed the SOR in total

column ozone data and found that most of the signal is associated with ozone changes in the lower

stratosphere that are linked to dynamical processes. Column ozone measurements are therefore un-560

likely to be particularly helpful for constraining the SOR in the upper stratosphere where differences

are found amongst many of the datasets analysed here and where the SOR is strongly determined by

photochemical processes.

Tummon et al. (2015) analysed vertical profiles of long-term ozone trends in satellite datasets and

found that SBUV Merged Cohesive VN8.6 showed negligible ozone trends at 2 hPa over 1984-1997,565

whereas almost all other datasets analysed, including SBUVMOD VN8.6, showed a significant de-

cline of several percent per decade over this period. Instead, SBUV Merged Cohesive VN8.6 showed

larger negative ozone trends that the other datasets between 5-10 hPa. Wild and Long (2015) and

Tummon et al. (2015) explain how the adjustments used to combine data from the ascending node

of NOAA-11 with NOAA-9 and NOAA-14 in SBUV Merged Cohesive VN8.6 were determined570

from the overlap of the descending node of NOAA-11 with NOAA-16 because of known issues with

the quality of data from NOAA-9 and NOAA-14 (Kramavora et al., 2013). Since the NOAA-9 and

NOAA-14 data coincide with the end of the trend analysis period used by Tummon et al. (2015),

this could have had a particularly pronounced impact on their linear trend calculations, but may not

be as important for diagnosing the SOR.575

From the timeseries of 1 hPa ozone anomalies shown in Figure 11, it would appear that differences

between the two SBUV VN8.6 datasets in the early 2000s may be more important for determining the

differences in SOR in the tropical upper stratosphere. During this period, which coincides with the

maximum of solar cycle 22, SBUVMOD VN8.6 shows persistently more negative ozone anomalies

than SBUV Merged Cohesive VN8.6. Further analysis of the SOR for the period up to the year580

2000 (not shown) does produce a slightly larger and more significant SOR in the tropical upper

stratosphere in SBUVMOD VN8.6, but the magnitude is still ⇠1% smaller than in SBUV Merged

Cohesive VN8.6 indicating that the post-2000 period alone does not explain all differences between

Figures 12(b) and 12(c). Based on the above factors, it is difficult to assert which of the SBUV VN8.6

datasets is likely to be most reliable for estimating the SOR. However, in practice the differences585

between the SORs in the tropical upper stratosphere in the SBUV records are small compared to the

associated statistical uncertainties (Figures 12(d-f)) and small compared to the differences in SOR

between the two SAGE II mixing ratio datasets in this region. We therefore conclude that using

the longest climate data record is most favourable for diagnosing the SOR, particularly on seasonal

timescales (see Section 4.4), and in this case that is SBUVMOD VN8.6.590

4.4 Seasonality in the solar-ozone response

The analysis thus far has described the annual mean SOR in satellite ozone datasets. However, the

SOR is expected to exhibit a seasonal dependence; for example, in regions close to photochemical
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steady-state the annual cycle in solar zenith angle would be expected to produce a larger SOR in the

summer hemisphere (Haigh, 1994). Furthermore, given the hypothesis that solar variability modifies595

the strength of the stratospheric polar vortex (Kuroda and Kodera, 2002), there may also be seasonal

signatures in the SOR arising from dynamical processes, particularly in the winter hemispheres. Sea-

sonal variations in the SOR could potentially influence the overall climate response to solar forcing

through coupling to radiation (e.g. Hood et al. (2015)), and it is therefore important to characterise

these in observations and chemistry-climate models.600

Constraining the SOR on seasonal timescales requires high spatial and temporal data coverage;

this is to ensure that any seasonal component of the signal can be resolved, but also to increase the

number of degrees of freedom (i.e. the number of data points) available for the regression. Such

coverage is not adequately provided by limb-viewing instruments, such as SAGE II, which have

relatively sparse and infrequent sampling. The coverage is considerably better for nadir-viewing605

instruments like SBUV; however, as described above their vertical resolution is much poorer in the

middle and lower stratosphere. There is therefore a trade-off between the information that can be

usefully extracted from different data sources.

Given the denser sampling of SBUV compared to SAGE II, we focus here on the SBUVMOD

VN8.6 dataset to examine the seasonality of the SOR. Figure 13 shows the monthly SOR in SBU-610

VMOD VN8.6 for the period 1970-2012. These values are calculated by applying the MLR model

to timeseries for individual months, and therefore no autocorrelation term has been included, since

separate months are approximately uncorrelated from year-to-year. We note that the detailed magni-

tudes and structure of the monthly SORs are more sensitive to the choice of analysis epoch than for

the annual mean SOR (not shown), but the broad features are generally consistent. The key point to615

take from Figure 13 is that there are substantially enhanced meridional and vertical gradients in the

monthly SORs as compared to the annual mean SOR for SBUVMOD VN8.6 in Figure 12(b). This

is similar to the conclusion reached by Hood et al. (2015).

Although much of the localised variations in the SOR are driven by dynamical processes, it is

also possible that they could feedback onto circulation through the radiative impacts of ozone on620

stratospheric heating rates and temperatures. Hood et al. (2015) concluded that the three chemistry-

climate models from CMIP5 that simulate strong gradients in ozone in the winter upper stratosphere,

which most closely resemble observations, tend to have high latitude dynamical responses that are

most similar to reanalysis data. Seasonal variations in the SOR may therefore play a role in the

ability of a model to simulate the climate response to solar variability. However, given the tight625

coupling between ozone and dynamics, attribution of the importance of such radiative feedbacks is

particularly challenging. To our knowledge, the importance of this two-way coupling for the climate

response to solar variability has not been explicitly tested. This is important to clarify because it

is not known whether it is sufficient to simply prescribe a seasonally-varying SOR, or whether a

fully interactive chemistry-climate model is required to capture the coupling and feedbacks between630
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composition, radiation and dynamics over the solar cycle. The representation of the SOR in global

climate models is discussed in more detail in Part II of this study (Maycock et al., in prep.).

5 Conclusions

The solar-ozone response (SOR) forms an important part of the climate response to 11-year solar

cycle variability through its impact on stratospheric temperatures (e.g. Shibata and Kodera (2005);635

Gray et al. (2009)). This papers forms the first of a two-part study that aims to quantify the SOR

in current satellite observations and chemistry-climate models. Part I has focused on comparing the

SOR in recently updated and/or extended versions of long-term satellite ozone datasets (e.g. SAGE

II, SBUV) with their previous counterparts (e.g. Soukharev and Hood (2006); Austin et al. (2008)).

The SAGE II dataset has been widely used for ozone studies because of its long-term stability.640

SAGE II ozone data are available as number densities on altitude levels and post-processed to mixing

ratios on pressure levels. The SAGE II version 6.2 (v6.2) mixing ratio dataset shows a positive

annual mean SOR with a peak magnitude of ⇠5% near the tropical stratopause. However, the more

recent SAGE II v7.0 dataset shows a substantially smaller SOR at the tropical stratopause of ⇠1%.

Conversely, the SORs in the equivalent SAGE II number density datasets are much more consistent645

for v6.2 and v7.0, and show a three peaked structure in the tropics/subtropics with a magnitude of

up to 3-4%.

By applying a post-hoc method to convert SAGE II number densities to mixing ratios, we have

shown that the differences in SOR mostly arise from the change in independent temperature record

used by the SAGE II team to convert number densities to mixing ratios: v6.2 uses NMC/NCEP650

and v7.0 uses MERRA-1 temperatures. Differences between these temperature records in both long-

term trends and solar cycle variations contribute to the changes in SOR described above. Since both

temperature records contain known issues (e.g. Damadeo et al. (2013); Mitchell et al. (2015a)),

we conclude that the latest SAGE II v7.0 ozone number densities are likely to be most reliable

for estimating the SOR at the present time. This is an important conclusion because several of the655

existing ozone datasets developed for use in global climate models have been based on SAGE II v6.2

mixing ratio data, including the dataset developed for CMIP5 simulations (Cionni et al., 2011).

We further analysed the annual mean SOR in three extended SAGE II datasets that have merged

more recent GOMOS (2002-11) or OSIRIS (2002-13) data with SAGE II v7.0 number densities. Two

SAGE-GOMOS datasets were analysed that adopt different methods for merging the satellite records660

(Kyrölä et al., 2015; Penckwitt et al., 2015). These records show broadly similar SORs, but the

dataset that uses SAGE II as a reference and adjusts GOMOS using seasonally-varying offsets at each

latitude and altitude (Penckwitt et al., 2015) was found to have a SOR with a noisier spatial structure.

The SAGE-OSIRIS dataset (Bourassa et al., 2014) shows a significant positive SOR of ⇠2% between

30-40 km, but a weaker and less significant SOR in the tropical upper stratosphere than is found in665
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the SAGE-GOMOS datasets. Thus the inclusion of OSIRIS data results in a markedly different SOR

to that found in the SAGE II v7.0 number densities that underpin the first part of the record. Given

these various issues, we conclude that the SAGE-GOMOS 1 dataset (Kyrölä et al., 2015) is likely to

be the most reliable extended SAGE II dataset for estimating the SOR at the present time.

Analysis of the recently released SBUVMOD VN8.6 data produced by NASA show a smaller670

SOR in the tropical upper stratosphere by ⇠1% compared to the previous SBUVMOD VN8.0 data

(Soukharev and Hood, 2006). However, the SBUV Merged Cohesive VN8.6 dataset from NOAA,

which takes a different approach for combining the individual SBUV VN8.6 records, shows a SOR

that more closely matches SBUVMOD VN8.0. Nevertheless, the differences in the magnitude of

the SOR between the various SBUV records are generally smaller than those between the SAGE II675

v6.2 and v7.0 mixing ratio datasets and are not highly statistically significant given the estimated

uncertainties in the SOR from the regression model. We therefore suggest that the SBUVMOD

VN8.6 dataset is most appropriate for analysing the SOR since it is the longest of the currently

available SBUV records (1970-2012).

Analysis of the SOR on monthly timescales in the SBUVMOD VN8.6 dataset reveals larger hor-680

izontal and vertical gradients in the SOR, particularly in the winter extratropics. Hood et al. (2015)

analysed CMIP5 models with interactive chemistry and concluded that the models with seasonal

variations in the SOR that best matched observations simulated changes in high latitude zonal winds

that more closely resemble reanalysis data. Seasonal variations in the SOR may therefore be impor-

tant for the climate response to solar variability, but the quantitative importance of this feedback for685

stratospheric dynamics remains to be tested.

To allow for a realistic representation of the climate impacts of solar variability in models, simula-

tions should include the effects of both the SOR and variations in spectral solar irradiance (Matthes

et al., 2016). Our results raise issues for how to best represent the SOR in ‘non-interactive’ climate

models for which the SOR much be externally prescribed. For example, ozone databases for climate690

models are usually created using a variety of ozone measurements, and therefore implicitly include

a representation of the SOR that emerges from whichever combinations of data are included (e.g.

Cionni et al. (2011); Bodeker et al. (2013)). However, the differences in the magnitude and structure

of the ‘best estimate’ SOR between the various satellite datasets presented here would likely result

in different climate responses to solar forcing. There is therefore a need for new studies to explore695

the effects of uncertainties in the SOR for climate simulation, particularly in light of the substantial,

but largely unexplained, spread in climate responses to the 11 year solar cycle across CMIP5 models

(Mitchell et al., 2015b; Hood et al., 2015).
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Figure 1. Timeseries of the six basis functions used in the MLR analysis. (a) Solar forcing based on F10.7cm

solar radio flux; (b) a trend term based on the monthly CO2 concentration at Mauna Loa; (c) Equivalent effective

stratospheric chlorine; (d) the Nino 3.4 index for ENSO; (e, f) two QBO indices based on tropical zonal winds

at 50 and 30 hPa. The timeseries are in units of standard deviation and the time period is 1970-2015. A volcanic

term is not included because the 2 year periods following the two major tropical eruptions in this epoch (El

Chićhon and Mt Pinatubo) are excluded from the regression analysis.
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Figure 2. Timeseries of the fraction of sunrise to total (sunrise + sunset) profiles used to generate monthly mean

ozone values in the tropics (30�S-30�N) at 1 hPa for the SAGE II v7.0 vmr dataset.
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Figure 3. Timeseries of percent tropical mean (30�S-30�N) ozone anomalies for 1984-2004 at (a) 1 hPa

(48 km), (b) 3 hPa (40 km), (c) 5 hPa (36 km), (d) 10 hPa (31 km), and (e) 30 hPa (24 km). Data are shown for

SAGE II v6.2 volume mixing ratios (vmr) (black), SAGE II v7.0 vmr (red), SAGE II v6.2 number densities (nd)

(blue), and SAGE II v7.0 nd (green). The thick red lines denote the periods excluded from the MLR analysis

following major tropical volcanic eruptions. The bottom panel shows the F10.7cm solar flux for reference.
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Figure 4. The percent (%) annual solar-ozone response (SOR) (per 130 SFU) for the (a, d) SAGE II v6.2 data

and (b, e) SAGE II v7.0 data in terms of (a, b) number density-altitude units and (d, e) volume mixing ratio-

pressure units. Panel (c) shows (b) minus (a), and panel (f) shows (e) minus (d). The contour interval is 1%. The

hatching denotes regions where the SOR is not statistically distinguishable from zero at the 95% confidence

level.
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Figure 5. The 95% confidence intervals (CI95%) on the SORs (SOR±CI95%) shown in Figure 4 for the (a,

c) SAGE II v6.2 data and (b, d) SAGE II v7.0 data in terms of (a, b) number density-altitude units and (c, d)

volume mixing ratio-pressure units. The contour interval is 0.5%. The hatching is as in Figure 4.
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Figure 6. Timeseries of tropical mean temperature anomalies (K) from the NMC/NCEP (dashed) and MERRA-

1 (solid) datasets for (top-to-bottom) 1, 2, 5, 10, 30 hPa, respectively. The time period is 1979-2013. The thick

red lines denote the periods excluded from the MLR analysis following major volcanic eruptions. The bottom

panel shows the F10.7cm solar flux for reference.
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Figure 7. 11 year solar cycle signals in temperature (K) from the (a) MERRA-1 and (b) NMC/NCEP datasets.

Shading as in Figure 4. The contour interval is 0.25 K. These temperature fields are used in the ‘post-hoc’

conversion of SAGE II v6.2 number densities to mixing ratios (see Section 4.1.2 for details).
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Figure 8. The percent (%) annual solar-ozone response (SOR) (per 130 SFU) in SAGE II v6.2 data converted

from number densities to mixing ratios for the period 1985-2003 using the method described in Section 4.1.2.

The conversion is first conducted using full timeseries of monthly (a) NMC/NCEP and (b) MERRA-1 temper-

atures. Panel (c) (b) minus (a). A comparison of panels (a-c) with Figures 4(a-c) demonstrates the performance

of the ‘post-hoc’ conversion. (d-f) As in (a-c) but with the number density to mixing ratio conversion per-

formed using a monthly temperature climatology from MERRA-1 added to a linear trend and solar signal in

stratospheric temperatures extracted from (d) NMC/NCEP and (e) MERRA-1. The remaining rows show the

same as (d-f) but with the conversion performed with the (g-i) linear trend or (j-l) solar cycle temperature terms

alone. The shading is as is Figure 4. The contour interval is 1% in the left and middle columns and 0.5% in the

right-hand column. 34



Figure 9. As in Figure 3, but for the three extended SAGE II number density datasets: SAGE-GOMOS 1

(black), SAGE-GOMOS 2 (orange), and SAGE-OSIRIS (green). The time period is 1984-2013.

35



Figure 10. (a-c) As in Figure 4, but for the extended SAGE II number density datasets: (a) SAGE-GOMOS 1,

(b) SAGE-GOMOS 2, (c) SAGE-OSIRIS. SORs are derived for different periods as stated in the headers. The

contour interval is 1%. (d-f) As in Figure 5, but for the datasets as shown in (a-c). The contour interval is 0.5%.
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Figure 11. As in Figure 3, but for the SBUVMOD VN8.0 (black), SBUVMOD VN8.6 (red), and SBUV Merged

Cohesive VN8.6 (blue) datasets. The time period is 1970-2015.
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Figure 12. As in Figure 10 for the (a,d) SBUVMOD VN8.0, (b,e) SBUVMOD VN8.6, and (c,f) SBUV Merged

Cohesive VN8.6 datasets. SORs are derived for different periods as stated in the headers. The contour interval

in (a-c) is 1% and in (d-f) is 0.5%.
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Figure 13. The percent (%) monthly solar-ozone response (SOR) (per 130 SFU) in the SBUVMOD VN8.6

dataset for the period 1970-2012. The contour interval is 1%. The grey shading denotes regions where the SOR

is not statistically distinguishable from zero at the 95% confidence level.
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Dataset Type Time period Units Reference

SAGE II v6.2
Raw satellite product: solar oc-

cultation instrument
1984 - 2004 ppmv/cm�3 Wang et al. (2002)

SAGE II v7.0
Raw satellite product: solar oc-

cultation instrument
1984 - 2004 ppmv/cm�3 Damadeo et al. (2013)

SAGE-GOMOS 1
Combined satellite product, in-

cluding SAGE II v7.0
1984 - 2011 cm�3 Penckwitt et al. (2015)

SAGE-GOMOS 2
Combined satellite product, in-

cluding SAGE II v7.0
1984 - 2011 cm�3 Kyrölä et al. (2015)

SAGE-OSIRIS
Combined satellite product, in-

cluding SAGE II v7.0
1984 - 2013 cm�3 Bourassa et al. (2014)

SBUVMOD VN8.0
Raw satellite product: nadir-

viewing instrument
1970 - 2009 ppmv

SBUVMOD VN8.6
Raw satellite product: nadir-

viewing instrument
1970 - 2012 ppmv

McPeters et al. (2013);

Frith et al. (2014)

SBUV Merged Co-

hesive VN8.6

Raw satellite product: nadir-

viewing instrument
1978 - 2012 ppmv Wild and Long (2015)

Table 1. Overview of the satellite ozone datasets used in this study.
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!!!!!!!!!!!!!! !
Figure! S1:! The! number! of! data! points! as! a! function! of! latitude! and!
pressure/altitude! used! in! the! multiple! linear! regression! (MLR)! model! to!
diagnose! the!annual!mean!solarSozone!response! (SOR)! for! (a)!SAGE! II!v6.2!nd;!
(b)!SAGE!II!v7.0!nd;!(c)!SAGE!II!v6.2!vmr;!and!(d)!SAGE!II!v7.0!vmr.!



!
Figure!S2:!As! in!Figure!S1,!but! for! (a)! SAGESGOMOS!1;! (b)!SAGESGOMOS!2;! (c)!
SAGESOSIRIS.!
!
!
!
!
!

!
Figure!S3:!As!in!Figure!S1,!but!for!(a)!SBUVMOD!VN8.0;!(b)!SBUVMOD!VN8.6;!(c)!
SBUV!Merged!Cohesive!VN8.6.!
!


