Articles | Volume 15, issue 18
https://doi.org/10.5194/acp-15-10857-2015
https://doi.org/10.5194/acp-15-10857-2015
Research article
 | 
30 Sep 2015
Research article |  | 30 Sep 2015

Spatiotemporal variations of air pollutants (O3, NO2, SO2, CO, PM10, and VOCs) with land-use types

J.-M. Yoo, M.-J. Jeong, D. Kim, W. R. Stockwell, J.-H. Yang, H.-W. Shin, M.-I. Lee, C.-K. Song, and S.-D. Lee

Related authors

Uncertainties of satellite-derived surface skin temperatures in the polar oceans: MODIS, AIRS/AMSU, and AIRS only
H.-J. Kang, J.-M. Yoo, M.-J. Jeong, and Y.-I. Won
Atmos. Meas. Tech., 8, 4025–4041, https://doi.org/10.5194/amt-8-4025-2015,https://doi.org/10.5194/amt-8-4025-2015, 2015
Short summary
Comparison between MODIS and AIRS/AMSU satellite-derived surface skin temperatures
Y.-R. Lee, J.-M. Yoo, M.-J. Jeong, Y.-I. Won, T. Hearty, and D.-B. Shin
Atmos. Meas. Tech., 6, 445–455, https://doi.org/10.5194/amt-6-445-2013,https://doi.org/10.5194/amt-6-445-2013, 2013

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Biomass-burning sources control ambient particulate matter, but traffic and industrial sources control volatile organic compound (VOC) emissions and secondary-pollutant formation during extreme pollution events in Delhi
Arpit Awasthi, Baerbel Sinha, Haseeb Hakkim, Sachin Mishra, Varkrishna Mummidivarapu, Gurmanjot Singh, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Vinayak Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 10279–10304, https://doi.org/10.5194/acp-24-10279-2024,https://doi.org/10.5194/acp-24-10279-2024, 2024
Short summary
Multi-year observations of variable incomplete combustion in the New York megacity
Luke D. Schiferl, Cong Cao, Bronte Dalton, Andrew Hallward-Driemeier, Ricardo Toledo-Crow, and Róisín Commane
Atmos. Chem. Phys., 24, 10129–10142, https://doi.org/10.5194/acp-24-10129-2024,https://doi.org/10.5194/acp-24-10129-2024, 2024
Short summary
Observations of the vertical distributions of summertime atmospheric pollutants in Nam Co: OH production and source analysis
Chengzhi Xing, Cheng Liu, Chunxiang Ye, Jingkai Xue, Hongyu Wu, Xiangguang Ji, Jinping Ou, and Qihou Hu
Atmos. Chem. Phys., 24, 10093–10112, https://doi.org/10.5194/acp-24-10093-2024,https://doi.org/10.5194/acp-24-10093-2024, 2024
Short summary
Measurement report: Elevated atmospheric ammonia may promote particle pH and HONO formation – insights from the COVID-19 pandemic
Xinyuan Zhang, Lingling Wang, Nan Wang, Shuangliang Ma, Shenbo Wang, Ruiqin Zhang, Dong Zhang, Mingkai Wang, and Hongyu Zhang
Atmos. Chem. Phys., 24, 9885–9898, https://doi.org/10.5194/acp-24-9885-2024,https://doi.org/10.5194/acp-24-9885-2024, 2024
Short summary
Measurement report: Vertical and temporal variability in the near-surface ozone production rate and sensitivity in an urban area in the Pearl River Delta region, China
Jun Zhou, Chunsheng Zhang, Aiming Liu, Bin Yuan, Yan Wang, Wenjie Wang, Jie-Ping Zhou, Yixin Hao, Xiao-Bing Li, Xianjun He, Xin Song, Yubin Chen, Suxia Yang, Shuchun Yang, Yanfeng Wu, Bin Jiang, Shan Huang, Junwen Liu, Yuwen Peng, Jipeng Qi, Minhui Deng, Bowen Zhong, Yibo Huangfu, and Min Shao
Atmos. Chem. Phys., 24, 9805–9826, https://doi.org/10.5194/acp-24-9805-2024,https://doi.org/10.5194/acp-24-9805-2024, 2024
Short summary

Cited articles

Ahrens, C. D.: Meteorology today; An Introduction to Weather, Climate, and the Environment, 8th ed., Thomson Brooks/Cole, Belmont, California, USA, 2007.
Anthwal, A., Park, C., Jung, K., Kim, M., and Kim, K.: The temporal and spatial distribution of volatile organic compounds (VOCs) in the urban residential atmosphere of Seoul, Korea, Asian J. Atmos. Environ., 4, 42–54, 2010.
Atkinson-Palombo, C. M., Miller, J. A., and Balling Jr., R. C.: Quantifying the ozone "weekend effect" at various locations in Phoenix, Arizona, Atmos. Environ., 40, 7644–7658, 2006.
Beirle, S., Platt, U., Wenig, M., and Wagner, T.: Weekly cycle of NO2 by GOME measurements: a signature of anthropogenic sources, Atmos. Chem. Phys., 3, 2225–2232, https://doi.org/10.5194/acp-3-2225-2003, 2003.
Bian, H., Han, S., Tie, X., Sun, M., and Liu, A.: Evidence of impact of aerosols on surface ozone concentration in Tianjin, China, Atmos. Environ., 41, 4672–4681, 2007.
Download
Short summary
Major air pollutants (O3, NO2, SO2, CO, PM10, and VOCs) with long-term records from a dense observation network over Korea were extensively analyzed with land-use types, classified by Korean government, consistent with satellite-observed land covers. The weekly cycles of the pollutant showed different behaviors with the types. Regardless of land-use types, ozone has an increasing trend, while the other pollutants have decreasing trends. Most areas in Korea were VOCs-limited for ozone chemistry.
Altmetrics
Final-revised paper
Preprint