Articles | Volume 14, issue 17
Atmos. Chem. Phys., 14, 9379–9402, 2014
Atmos. Chem. Phys., 14, 9379–9402, 2014

Research article 10 Sep 2014

Research article | 10 Sep 2014

Will the role of intercontinental transport change in a changing climate?

T. Glotfelty1, Y. Zhang1, P. Karamchandani2, and D. G. Streets3 T. Glotfelty et al.
  • 1Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA
  • 2ENVIRON International Corporation, Novato, CA, USA
  • 3Decision and Information Sciences Division, Argonne National Laboratory, Argonne, IL, USA

Abstract. Intercontinental transport of atmospheric pollution (ITAP) can offset the impact of local emission control efforts, impact human and ecosystem health, and play a role in climate forcing. This study aims to determine the role of ITAP caused by East Asian anthropogenic emissions (EAAEs) under current and future emission and climate scenarios. The contribution from EAAEs is determined using a "brute force method" in which results from simulations with and without EAAEs are compared. ITAP from East Asia is enhanced in the future due to faster wind speeds aloft and a stronger low pressure center near eastern Russia that facilitate enhanced westerly export in the free troposphere and stronger southerly transport near the surface, increased gaseous precursor emissions, and increased temperatures. As a result, the contribution of ozone (O3) generated by EAAEs to the global average O3 mixing ratio increases by ~0.8 ppb from 1.2 ppb in 2001 to 2.0 ppb in 2050. The contribution of PM2.5 generated by EAAEs to the global PM2.5 level increases by ~0.07 μg m−3 from 0.32 μg m−3 in 2001 to 0.39 μg m−3 in 2050, despite a non-homogenous response in PM2.5 resulting from cloud and radiative feedbacks. EAAEs can increase East Asian biogenic secondary organic aerosol by 10–81%, indicating that it is largely controllable. EAAEs also increase the deposition of nitrogen, black carbon, and mercury both locally and downwind, implying that they may play a role in climate feedbacks and ecosystem health of these regions. These results show that EAAEs have a large impact on global air quality and climate, especially on downwind regions. Such impacts may be enhanced under future climate and emission scenarios, demonstrating a need to synergize global pollution control and climate mitigation efforts.

Final-revised paper