Articles | Volume 13, issue 14
Atmos. Chem. Phys., 13, 6993–7005, 2013

Special issue: Firn air: archive of the recent atmosphere

Atmos. Chem. Phys., 13, 6993–7005, 2013

Research article 24 Jul 2013

Research article | 24 Jul 2013

Can the carbon isotopic composition of methane be reconstructed from multi-site firn air measurements?

C. J. Sapart1, P. Martinerie2, E. Witrant3, J. Chappellaz2, R. S. W. van de Wal1, P. Sperlich4,8, C. van der Veen1, S. Bernard2, W. T. Sturges5, T. Blunier4, J. Schwander6, D. Etheridge7, and T. Röckmann1 C. J. Sapart et al.
  • 1Institute for Marine and Atmospheric research Utrecht (IMAU), Utrecht University, Utrecht, the Netherlands
  • 2UJF – Grenoble1/CNRS, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE), UMR5183, Grenoble, 38041, France
  • 3UJF – Grenoble1/CNRS, Grenoble Image Parole Signal Automatique (GIPSA-lab), UMR5216, B.P. 46, 38402 St Martin d'Hères, France
  • 4Centre for Ice and Climate (CIC), Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
  • 5School of Environmental Sciences, University of East Anglia (UEA), Norwich, NR15 1RL, UK
  • 6Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
  • 7Centre for Australian Weather and Climate Research/CSIRO Marine and Atmospheric Research, Private Bag 1, Aspendale VIC 3195, Australia
  • 8Max-Planck-Institute for Biogeochemistry, 07745 Jena, Germany

Abstract. Methane is a strong greenhouse gas and large uncertainties exist concerning the future evolution of its atmospheric abundance. Analyzing methane atmospheric mixing and stable isotope ratios in air trapped in polar ice sheets helps in reconstructing the evolution of its sources and sinks in the past. This is important to improve predictions of atmospheric CH4 mixing ratios in the future under the influence of a changing climate. The aim of this study is to assess whether past atmospheric δ13C(CH4) variations can be reliably reconstructed from firn air measurements. Isotope reconstructions obtained with a state of the art firn model from different individual sites show unexpectedly large discrepancies and are mutually inconsistent. We show that small changes in the diffusivity profiles at individual sites lead to strong differences in the firn fractionation, which can explain a large part of these discrepancies. Using slightly modified diffusivities for some sites, and neglecting samples for which the firn fractionation signals are strongest, a combined multi-site inversion can be performed, which returns an isotope reconstruction that is consistent with firn data. However, the isotope trends are lower than what has been concluded from Southern Hemisphere (SH) archived air samples and high-accumulation ice core data. We conclude that with the current datasets and understanding of firn air transport, a high precision reconstruction of δ13C of CH4 from firn air samples is not possible, because reconstructed atmospheric trends over the last 50 yr of 0.3–1.5 ‰ are of the same magnitude as inherent uncertainties in the method, which are the firn fractionation correction (up to ~2 ‰ at individual sites), the Kr isobaric interference (up to ~0.8 ‰, system dependent), inter-laboratory calibration offsets (~0.2 ‰) and uncertainties in past CH4 levels (~0.5 ‰).

Final-revised paper