
Atmos. Chem. Phys., 13, 6993–7005, 2013
www.atmos-chem-phys.net/13/6993/2013/
doi:10.5194/acp-13-6993-2013
© Author(s) 2013. CC Attribution 3.0 License.

EGU Journal Logos (RGB)

Advances in 
Geosciences

O
pen A

ccess

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Annales  
Geophysicae

O
pen A

ccess
Nonlinear Processes 

in Geophysics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics
O

pen A
ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Discussions

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Discussions

Biogeosciences

O
pen A

ccess

O
pen A

ccess

Biogeosciences
Discussions

Climate 
of the Past

O
pen A

ccess

O
pen A

ccess

Climate 
of the Past

Discussions

Earth System 
Dynamics

O
pen A

ccess

O
pen A

ccess

Earth System 
Dynamics

Discussions

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Discussions

Geoscientific
Model Development

O
pen A

ccess

O
pen A

ccess

Geoscientific
Model Development

Discussions

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Discussions

Ocean Science

O
pen A

ccess

O
pen A

ccess

Ocean Science
Discussions

Solid Earth

O
pen A

ccess

O
pen A

ccess

Solid Earth
Discussions

The Cryosphere

O
pen A

ccess

O
pen A

ccess

The Cryosphere
Discussions

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Discussions

Can the carbon isotopic composition of methane be reconstructed
from multi-site firn air measurements?
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Abstract. Methane is a strong greenhouse gas and large un-
certainties exist concerning the future evolution of its atmo-
spheric abundance. Analyzing methane atmospheric mixing
and stable isotope ratios in air trapped in polar ice sheets
helps in reconstructing the evolution of its sources and sinks
in the past. This is important to improve predictions of at-
mospheric CH4 mixing ratios in the future under the influ-
ence of a changing climate. The aim of this study is to as-
sess whether past atmosphericδ13C(CH4) variations can be
reliably reconstructed from firn air measurements. Isotope
reconstructions obtained with a state of the art firn model
from different individual sites show unexpectedly large dis-
crepancies and are mutually inconsistent. We show that small
changes in the diffusivity profiles at individual sites lead to
strong differences in the firn fractionation, which can explain
a large part of these discrepancies. Using slightly modified
diffusivities for some sites, and neglecting samples for which
the firn fractionation signals are strongest, a combined multi-
site inversion can be performed, which returns an isotope re-
construction that is consistent with firn data. However, the
isotope trends are lower than what has been concluded from

Southern Hemisphere (SH) archived air samples and high-
accumulation ice core data. We conclude that with the current
datasets and understanding of firn air transport, a high preci-
sion reconstruction ofδ13C of CH4 from firn air samples is
not possible, because reconstructed atmospheric trends over
the last 50 yr of 0.3–1.5 ‰ are of the same magnitude as in-
herent uncertainties in the method, which are the firn frac-
tionation correction (up to∼ 2 ‰ at individual sites), the
Kr isobaric interference (up to∼ 0.8 ‰, system dependent),
inter-laboratory calibration offsets (∼ 0.2 ‰) and uncertain-
ties in past CH4 levels (∼ 0.5 ‰).

1 Introduction

Methane (CH4) is a strong greenhouse gas and plays an
important role in atmospheric chemistry. Its atmospheric
mixing ratio has rapidly increased since 1800 in response
to anthropogenic emissions (e.g. MacFarling Meure et al.,
2006; IPCC, 2007). Understanding the factors responsi-
ble for changes in atmospheric CH4 is not straightforward,
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because the CH4 mixing ratio depends on the strength of
its numerous sources (e.g. wetlands, ruminants, rice paddies,
biomass burning, natural gas) and on the rate at which it is re-
moved from the atmosphere by its different sinks (oxidation
by tropospheric OH, stratospheric loss and soil uptake).

Stable isotope analysis represents an excellent tool to in-
vestigate changes of individual CH4 sources and sinks in
the atmosphere, because each type of emission/removal pro-
cess is associated with a characteristic isotope signature (e.g.
Quay et al., 1999; Houweling et al., 2000, 2006, 2008; Miller
et al., 2002; Mikaloff Fletcher et al., 2004a, b; Tyler et al.,
2007; Monteil et al., 2011; Sapart et al., 2012).

Air enclosed in polar firn and ice represents an archive of
past atmospheric composition (e.g. Craig and Chou, 1982;
Schwander et al., 1993; Sowers et al., 2005). The snow ac-
cumulates at the surface of the ice sheets and gradually den-
sifies which leads to a slow trapping of the air in bubbles in
the interstitial spaces. Firn represents the porous layer from
the ice sheet surface down to the bubble close-off depth (40–
120 m), where all the air is occluded in the ice, i.e. totally
isolated from the atmosphere above. Trace gases moving
downward with air in the firn column are affected by sev-
eral processes: molecular diffusion and gravitational settling
(Craig et al., 1988; Schwander et al., 1989; Sowers et al.,
1989; Spahni et al., 2003), thermal diffusion and turbulent
transport (Severinghaus et al., 2001), convection in the up-
per firn (Sowers et al., 1992) and advection caused by the
firn sinking and the air being trapped in bubbles (Stauffer et
al., 1985; Schwander et al., 1993). Firn transport models in-
cluding some, but not all of these processes (e.g. Schwander
et al., 1993; Rommelaere et al., 1997; Buizert et al., 2012;
Witrant et al., 2012 and references therein) can be used to re-
construct the evolution of trace gas concentrations in the at-
mosphere based on depth-dependent physical parameters of
the firn (density, porosity, and tortuosity), vertical trace gas
profiles in firn and site-dependent surface conditions (tem-
perature, precipitation and pressure).

Previous studies have shown the potential of reconstruct-
ing past variations in the CH4 budget using mixing and sta-
ble isotope ratio measurements from firn air (Etheridge et al.,
1998; Francey et al., 1999; Bräunlich et al., 2001; Sowers et
al., 2005). These studies reported CH4 stable isotope data of
firn air from Antarctica and suggested a rise in the stable car-
bon isotope of atmospheric CH4δ

13C(CH4) during the 20th
century, which was ascribed to an increase of anthropogenic
13C-enriched (fossil and pyrogenic) CH4 sources during this
period.

Here we combine previously published firn airδ13C(CH4)

data from 5 sites and new data from 6 sites from both Green-
land and Antarctica. Our goal is to reconstruct theδ13C(CH4)

atmospheric history of both hemispheres using a multi-site
inversion. To this end, we first reconstruct the atmospheric
isotope histories from measurements at individual sites, us-
ing the new LGGE-GIPSA firn model (Rommelaere et al.,
1997; Witrant et al., 2012; Wang et al., 2012). Considering

the relatively long lifetime of CH4 compared to the inter-
hemispheric exchange time and the fact that both hemi-
spheres are well mixed on multi-annual timescales, we as-
sume that in each hemisphere all reconstructions from the
polar sites should agree. We discuss the differences among
the 11 firn records and the possible processes responsible.
We then perform a multi-site inversion to reconstruct the
δ13C(CH4) history from firn air over the last 50 yr. Finally,
the consistency of these firn air results with atmospheric data
and ice core results as well as the uncertainties related to the
multi-site reconstruction are discussed.

2 Firn air sampling and isotope analysis

Firn air samples discussed in this paper come from 11 bore-
holes from both Greenland and Antarctica and were extracted
between 1993 and 2009 (Table 1). The air extraction was
carried out using different set-ups based on the principle de-
scribed by Schwander et al. (1993). Air was pumped out of
the firn after a stepwise drilling of the borehole in intervals
of a few metres. At each depth, the hole was sealed by an in-
flatable rubber bladder through which a tube was introduced
to pump out firn air to the surface into stainless steel, glass
or aluminum containers.

The containers were analyzed forδ13C(CH4) in 4 differ-
ent laboratories: Institute for Atmospheric and Marine re-
search Utrecht (IMAU), Laboratoire de Glaciologie et Géo-
physique de l’Environnement (LGGE), the Commonwealth
Scientific and Industrial Research Organisation (CSIRO) and
the Centre for Ice and Climate in Copenhagen (CIC) (Table
1). The different analytical systems are described in Francey
et al. (1999); Bräunlich et al. (2001), Sowers et al. (2005),
Brass and Röckmann (2011), Sapart et al. (2011). The offsets
between measurements carried out in the different laborato-
ries are discussed in Sect. 7 and in the Supplement.

The error bars assigned to individual data points in this
paper generally represent the standard deviation of several
measurements on the same firn air sample. Measurements
of other trace gases on similar samples as those measured
for δ13C(CH4) lead to the conclusion that possible sampling
artefacts such as fractionation during the firn extraction or
leaks of the bladders are negligible at the investigated sites.

3 Data

The δ13C(CH4) firn air results are separately presented for
the Northern Hemisphere (NH) sites and the Southern Hemi-
sphere (SH) sites in Fig. 1. At each location,δ13C(CH4)

shows a stable or slowly decreasing trend with depth in
the upper firn and stronger isotope depletions in the bubble
close-off zone (deeper firn). The firn structure and thickness
depend on the snow accumulation rate and on temperature at
each site (Table 1) hence these parameters cause differences
in the depth profiles observed among the sites (Fig. 1). For
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Table 1.Information on the eleven firn air pumping sites used in this paper. The NH sites are Devon Island (DI), North GRIP (NGR), NEEM-
2009 (NM-09), NEEM-EU hole (NM-EU-08). The SH sites are DE08-2 (DE08), Berkner Island (BI), Vostok (VOS), Dronning Maud Land
(DML) and Dome Concordia (DC) (Bräunlich et al., 2001), South Pole 1995 (SPO-95) and South Pole 2001 (SPO-01) (Sowers et al., 2005).
(1) Institute where the measurements used in this study were performed. (2) Date of the firn sampling campaigns. (3) Snow accumulation
rate. (4) Annual mean temperature. (5)Zlowest is the depth of the lowest measurement forδ13C. (6) Estimated length of theδ13C scenario.

SITES DI NGR NM-EU-08 NM-09 DE08 BI VOS DML DC SPO-95 SPO-01

1) INSTITUTE LGGE LGGE IMAU/CIC IMAU CSIRO LGGE LGGE LGGE LGGE LGGE LGGE
2) DATE (M yr−1) 4/98 5/01 7/08 7/09 1/93 1/03 12/95 1/98 12/98 1/95 1/01
3) ACCUM. (m yr−1) 0.30 0.17 0.20 0.20 1.20 0.13 0.022 0.07 0.036 0.074 0.074
4) TEMP. (◦C) −23.0 −31.5 −28.9 −28.9 −19.0 −26.0 −56.0 −38.0 −53.0 −49.3 −49.3
5) Zlowest (m) 57.0 77.6 76.0 73.6 80.0 57.0 100.0 72.8 99.4 122.0 121.4
6) L_δ13C (yr) 42.6 50.7 60.7 51.9 13.5 32.6 20.2 39.6 25.1 60.2 73.0
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Fig. 1. Vertical profiles ofδ13C(CH4) in firn air. (a) The NH sites
are Devon Island (DI), North GRIP (NGR), NEEM 2009 (NM-
09), NEEM-EU 2008 (NM-EU-08) measured by IMAU and CIC.
(b) The SH sites are DE08-2 (DE08), Berkner Island (BI), Vostok
(VOS), Dronning Maud Land (DML) and Dome Concordia (DC)
(Bräunlich et al., 2001), South Pole 1995 (SPO-95) and South Pole
2001 (SPO-01) (Sowers et al., 2005). The numbers associated with
the names on the legend are the dates (year) of the firn sampling for
each site.

the NH sites, the differences are small between the Green-
land sites (NEEM and NGR), because the surface conditions
(temperature, snow accumulation, etc.) are rather similar at
these sites. The Devon Island (DI) dataset shows a differ-
ent pattern, as surface conditions differ significantly from the
Greenland sites. Numerous melt layers have been detected
in the DI firn column (e.g. Clark et al., 2007; Martinerie et

al., 2009), which strongly reduce molecular diffusivity with
depth. The SH data show larger differences between the sites,
because the meteorological/glaciological variables (tempera-
ture, snow accumulation, snow morphology, etc.) in Antarc-
tica differ strongly from site to site.

Firn air was sampled in different years (Table 1), but the
upper firn data, corrected for seasonality (see Supplement)
for the NH sites, do not show a systematic trend as a func-
tion of the sampling date. The similarity of near-surface
δ13C(CH4) values at all sites (Fig. 1) already suggests no
large time trend inδ13C(CH4) between the oldest (1993) and
youngest (2009) sampling campaigns, in qualitative agree-
ment with direct atmospheric measurements (Levin et al.,
2012; Monteil et al., 2011).

4 Modeling trace gas transport in firn

To convert verticalδ13C(CH4) depth profiles in the firn into
temporal atmospheric isotope scenarios, we use a modelling
approach based on the mathematical framework described
in Rommelaere et al. (1997) and Witrant et al. (2012). The
physical model uses a historic evolution of CH4 atmospheric
concentrations to calculate vertical profiles of concentrations
in firn. In the case of isotopic ratios, two simulations are per-
formed for the major and minor isotopologues,12CH4 and
13CH4, respectively. Besides atmospheric scenarios, the site
temperature, accumulation rate, depth of the convective layer
in the upper firn, and the close-off depth are used to constrain
the model together with profiles of firn density and effective
diffusivity. The effective diffusivity is determined as a func-
tion of depth for each firn drilling site by modeling the con-
centrations in firn for trace gases with well-known recent his-
tories (Rommelaere et al., 1997; Trudinger et al., 1997). Here
we used a multi-gas constrained inverse method (Witrant et
al., 2012) to optimise the effective firn diffusivity profile at
each site. It is important to note that the diffusivity is not con-
strained equally well at all sites. This is firstly due to the fact
that a different number of species has been used for diffu-
sivity reconstruction for each site, and secondly because firn
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data were obtained with different depth resolutions (less than
1 m to∼ 10 m sampling intervals).

Once the diffusivity is obtained, another version of the
model based on the forward model physics was used to re-
construct atmospheric time trend scenarios from firn con-
centration data. We use the Green’s function approach intro-
duced in firn modeling by Rommelaere et al. (1997), which
has been recently extended to isotopic ratios (Wang et al.,
2012) to calculate the probability of having air of a certain
age at a certain depth.

5 Model results

5.1 Single-siteδ13C scenarios

In order to investigate the consistency among the different
sites, the inverse model is first applied to the isotope data
from each site individually and single siteδ13C(CH4) atmo-
spheric trends are shown in Fig. 2a and d. A regularization
term is used to control the smoothness of the scenario and
find a unique solution (see Wang et al., 2012 and Supple-
ment). Figure 2b and e show the comparison of the mea-
surements with modeledδ13C(CH4) firn profiles using the
scenarios shown in panels a and d. The differences between
the modeled and measured firn air datasets (panels c and f)
are in the majority of the cases similar to or smaller than the
assigned measurement uncertainties. This shows that mathe-
matically the inversion set-up performs well, i.e. the recon-
structed atmosphericδ13C(CH4) scenarios produce firn air
isotope profiles, which are in agreement with the measure-
ments.

Strong deviations are observed for two data points only,
the DI value at 54 m depth, and the SPO-01 value at 53 m
depth. We consider the anomalous data point at SPO-01 as an
outlier, because it occurs in the upper firn, where fast diffu-
sion combined with the long timescales of isotope variations
is inconsistent with strong isotope variability. Removing this
point does not significantly affect the reconstructed scenario.
The numerous melt layers (up to 7 cm of thickness) identified
in the DI firn column may imply that horizontal diffusion is
important, because gases may have to travel laterally around
the impermeable layers to reach the deeper firn. Low perme-
ability layers and horizontal transport cannot be represented
in our 1-D firn model and the use of a 3-D model goes be-
yond the state of the art of firn modeling, because to date too
few constraints exist to describe 3-D transport in firn. In addi-
tion, the model assumes the steady state of the firn structure,
whereas at DI the diffusivity/depth profile probably changed
with time due to the unequal distribution of melt layers with
depth. DI will thus not be used in the final multi-site scenario
reconstruction.

Whereas the inversion technically adequately fits the mea-
surements at individual sites, an important result of these
single site inversions is that the atmospheric histories re-

constructed from individual sites differ strongly among each
other, as seen in Fig. 2a and d. Small differences could oc-
cur between theδ13C(CH4) trends at NH and SH high lat-
itudes, due to the longer time required for isotopic ratios
than mixing ratios to adapt to a new source configuration
(Tans, 1997) or due to changes in the location of the dif-
ferent CH4 sources. On the other hand, the scenario recon-
structed with the SPO-01 data shows very large discrepan-
cies (more than 2 ‰) compared to other SH sites. The DC
and SPO-95 based scenarios are flatter than the previously
published scenarios for these sites (Bräunlich et al., 2001;
Sowers et al., 2005), whereas our DML based scenario is
consistent with the steepest slope scenarios in Bräunlich et
al. (2001). Moreover, our SPO-01 scenario is steeper than
the scenario range in Sowers et al. (2005). These two stud-
ies used the Rommelaere et al. (1997) model with single-
species-based diffusivity tuning, and a Monte-Carlo tech-
nique for scenario reconstruction. Here we used the Witrant
et al. (2012) model, which uses similar firn physics, but
has a more accurate multi-species-based diffusivity tuning.
The differences between ourδ13C(CH4) single-site scenar-
ios and the published scenarios forδ13C(CH4) probably re-
sult from the use of different diffusivity profiles and model-
ing approach. Indeed in a recent firn model intercomparison
study, Buizert et al. (2012), conclude that diffusive fraction-
ation of isotopes is insufficiently constrained by firn models
and that using different firn air models can result in signif-
icantly different reconstructions. We further investigate this
issue in Sects. 5.3 and 5.4.

5.2 Effect of firn fractionation

The presence of a trend in CH4 atmospheric mixing ratio im-
plies a transport of the gas within the firn column which al-
ters the isotopic signature of this gas. This is due to the fact
that the difference of the molecular diffusion coefficient in air
between the two isotopologues12CH4 and13CH4 produces
large signals ofδ13C(CH4) in the firn column, even in the ab-
sence of aδ13C(CH4) trend in the atmosphere. Therefore it is
important to evaluate the amplitude of the combined effects
of isotopic fractionation in firn due to molecular diffusion
and gravitational settling using a firn model run in a forward
mode (Trudinger et al., 1997). An atmospheric CH4 scenario
was built based on the NOAA-ESRL atmospheric network
and ice core data (Etheridge et al., 1998; MacFarling Meure
et al., 2006). To assess the role of firn fractionation only, this
scenario was used as input, assuming a constant atmospheric
δ13C(CH4) history, to model12CH4 (Buizert et al., 2012 for
the NH and Witrant et al., 2012 for the SH), and13CH4 in the
firn column. The calculated12CH4 and13CH4 mixing ratios
in firn air are then recombined to yield aδ13C(CH4) depth
profile which is only due to isotopic fractionation in firn and
not to changes in theδ13C(CH4) atmospheric history.

Results are shown in Fig. 3 as the difference between
modeledδ13C(CH4) at the surface and at each model depth
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Fig. 2. Single siteδ13C(CH4) trend scenarios(a, d), the fit to the firn data(b, e)and model-data differences(c, f). NH sites (a, b andc). SH
sites(d, e, f). The site names and colour codes are as given in the legend of Fig. 1. The grey curve (a andd) represents air-archive data from
Cape Grim (Francey et al., 1998) and continuous atmospheric monitoring data from the NOAA-ESRL network.
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Figure	
   3:	
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Fig. 3. Effect of diffusional and gravitational fractionations on
δ13C(CH4). (a) NH and (b) SH. The forward model assumed
δ13C(CH4) to be constant. The model output is shown as solid
lines in comparison with the measured values (symbols). The re-
sults are shown as the difference betweenδ13C(CH4) at the surface
andδ13C(CH4) at each depth. The site names and color codes are
as given in the legend of Fig. 1.

level, and compared with the same difference in the firn data
(δ13C(CH4) − δ13C(CH4)surface). Gravitational fractionation
produces a slight upward trend inδ13C(CH4) in the diffusive
part of the firn column (see Supplement, Fig. S1), whereas
molecular diffusion in combination with the CH4 mixing ra-
tio gradient along the firn profile produces a clear trend in
δ13C(CH4) towards more depleted values in the deep firn,
the amplitude being site-dependent (Fig. 3).

At most sites, isotopic fractionation in firn alone can al-
ready explain a large fraction of the trends in the observed
δ13C(CH4) depth profiles. This implies that only a small pos-
itive trend in atmosphericδ13C(CH4) is needed to fit the
measurements (Fig. 3). For DI, DML, and SPO-01, however,
the difference between the constantδ13C(CH4) scenario and
the data is large. Therefore, the scenarios reconstructed from
these sites show large atmospheric trends in comparison with
the other sites as shown in Fig. 2.

Although firn data do not suggest strong differences in the
firn physical properties between the two drill holes at the
South Pole (1995 and 2001), the model produces very differ-
ent estimates of isotopic fractionation in firn and the possible
reason for this is discussed in the next section.

5.3 Sensitivity to small changes in diffusivity

The discrepancy between the reconstructed histories at the
South Pole from the two firn air campaigns in 1995 and 2001
is puzzling and we investigated possible causes. An impor-
tant input parameter in firn models is the effective diffusivity
profile (e.g. Buizert et al., 2012), which is constructed for
each site and drilling operation from an inversion approach
using trace gas mixing ratios with relatively well-known
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Fig. 4. δ13C(CH4) firn fractionation calculated with regular (full
lines) and modified diffusivities (dashed lines).(a) NH sites, NM-
EU-08 (purple dots) run with regular diffusivity (full line), with
NM-09 diffusivity (short-dashed lines) and with NM-US-08 (long-
dashed lines) diffusivity.(b) SH sites, SPO-01 (light blue), DML
(black) and DEO8 (orange) run with regular diffusivities (full lines)
and with modified diffusivity: DEO8 run with DEO8 “slightly mod-
ified” diffusivity (see text, orange dashed-line), DML run with
δ13C(CH4) constrained diffusivity (black dashed-line) and SPO-01
run with SPO-95 (light blue dashed-line).

atmospheric histories, as explained in Sect. 4. For SPO-95,
the diffusivity is constrained by a combination of 6 species
(CO2, CH4, SF6, CH3CCl3, CFC-11, CFC-12) whereas data
for only 3 species (CO2, CH4, SF6,) are available for SPO-
01, hence these diffusivities are not equally well constrained
(Witrant et al., 2012). In their analysis Sowers et al. (2005)
only used one species, CO2, to deduce the diffusivity profile
used for both SPO-95 and SPO-01. The CH4 depth profile
only provided an a posteriori test of the diffusivities derived
from CO2.

To investigate the sensitivity ofδ13C(CH4) to small differ-
ences in the diffusivity profile, firn fractionation was sim-
ulated for SPO-01 using the better constrained diffusivity
profile of SPO-95 (Fig. 4b). The rationale behind this ap-
proach is that the diffusivity profiles at nearby drilling loca-
tions (with density profiles and close-off depths nearly sim-
ilar) are expected to be comparable even if the firn core is
drilled in a different year. A diffusivity profile from a nearby
firn drilling site where more trace gas profiles are available
may then be more realistic than the profile from a certain lo-

cation where only few species are available. Figure 4b shows
that this slight change in diffusivity apparently has a large
effect on theδ13C(CH4) firn fractionation. This change also
removes much of the discrepancy that was apparent between
SPO-01 and SPO-95. It is important to note that the model
runs with the modified diffusivity still produce acceptable
agreement with the CO2, CH4 and SF6 mixing ratios (the
tracers used for determining the diffusivity profile) measured
at SPO-01 (Witrant et al., 2012).

A similar comparison was made for the two different
NEEM boreholes drilled in 2008 and 2009. Although the
single site isotope reconstructions from these sites are not
as different as for SPO (Fig. 2), we calculated firn fraction-
ation of the 2009 borehole with the diffusivity profile recon-
structed from the 2008 hole. Diffusivity for the NM-09 bore-
hole was constrained by 2 species (CO2 and CH4) and dif-
fusivity for NM-08 by 9 species (CO2, CH4, SF6, CH3CCl3,
CFC-11, CFC-12, CFC-13, HFC-134a,14CO2). As an ad-
ditional test we used the diffusivity of NM-US-08, but con-
strained by three species (CO2, CH4, SF6) to estimate the
isotopic fractionation in firn of NM-EU-08. This leads to a
smaller fractionation below∼ 60 m than using the NM-09
diffusivity (Fig. 4a: purple long-dashed line). This means
that even though the diffusivity profiles of NM-US-08 and
NM-09 were constrained by almost the same species, they
do show significant differences. These diffusivity differences
might be due to lateral inhomogeneities in the firn. Due to
the high sensitivity ofδ13(CH4) to diffusivity, the uncertain-
ties on diffusivity profiles constrained with only a few gases
(Trudinger et al., 2012) may play a major role.

Additionally, we compared the effect of diffusivity for two
Antarctic sites with high (DE08) and low (DML) snow ac-
cumulation rates (Table 1). High accumulation sites are ex-
pected to be less affected by isotopic fractionation in firn due
to a stronger advection and faster gas trapping in bubbles.
For DEO8, we used two different diffusivity profiles (con-
strained with/without the CO2 outlier at 80 m depth, Witrant
et al., 2012) and this leads to a small difference inδ13C(CH4)

(∼ 0.2 ‰) in the calculated isotopic fractionation at 80 m
depth (Fig. 4b: yellow full and dashed lines). This indicates
that for high accumulation sites, changing the diffusivity has
a limited effect on isotopic fractionation.

A very small firn fractionation estimate is obtained at
DML, despite the fact that it belongs to the low accumu-
lation rate category. This results in a very strong change in
atmosphericδ13C(CH4) with time in the single-site (DML)
reconstruction, which is not in agreement with the isotope
histories at most other sites (Fig. 2). Here, we do not have
an alternative diffusivity profile from a similar site. We thus
attempted to use a data basedδ13C(CH4) atmospheric trend
as an additional constraint in the construction of the diffu-
sivity profile. We used aδ13C(CH4) scenario based on our
multi-site reconstruction and ice core data from Ferretti et
al. (2005), in addition to six other gases species (CO2, CH4,
SF6, CH3CCl3, CFC-12, CFC-113) to re-tune the diffusivity
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at DML. As expected, the simulations with this modified dif-
fusivity profile lead to a considerably stronger isotopic frac-
tionation along the DML firn column (Fig. 4b: black dashed
line). It is important to note that all other gases are still fit-
ted well with this modified diffusivity profile (not shown).
The large uncertainty of the isotopic fractionation in the deep
DML firn may be due to an insufficient sampling resolution
below 70 m depth (2 depth levels), where steep concentration
gradients are observed for all species.

This example of usingδ13C(CH4) as a constraint confirms
the strong sensitivity ofδ13C(CH4) to the firn diffusivity pro-
files. This implies that – once a reliable isotope history has
been established –δ13C(CH4) may be a valuable constraint
to obtain realistic firn diffusivity profiles. In this case, the
“weakness” ofδ13C(CH4), namely that the isotopic fraction-
ation in firn is of the same order of magnitude or even larger
than the atmospheric changes, would turn into an advantage.

In summary, these results show that model estimates of
isotopic fractionation in firn are strongly dependent on the
diffusivity profile used, similar to the findings of Buizert et
al. (2012). Although constrained in our case with multiple
gas histories, the firn diffusivity is not always sufficiently
constrained for an accurate estimate of the firn fractionation
for δ13C(CH4), at least in the deep firn, and thus for atmo-
spheric reconstruction ofδ13C(CH4) from a single site.

5.4 Multi-site δ13C reconstruction

We have shown that trying to reconstruct atmospheric sce-
narios ofδ13C(CH4) from single sites leads to inconsistent
solutions. In the following we carry out a multi-site recon-
struction by performing two inversions for all sites from the
SH and NH, respectively (Fig. 5). In the NH multi-site in-
version, the DI data are excluded as the firn column at this
site is affected by melt layers, which likely caused the incon-
sistency with other sites as shown by the single site recon-
structions (Fig. 2). In the SH multi-site inversion, the SPO-
95 diffusivity, constrained with 6 species instead of only 3
for SPO-01 (see Sect. 5.3), is used for the SPO-01 firn. The
deepest firn data points provide constraints further back in
time than shallower data points in the bubble close-off zone,
thus potentially extending the historical reconstruction of at-
mosphericδ13C(CH4) back to the early 20th century (Sow-
ers et al., 2005). However, the correction for isotopic frac-
tionation in firn is most uncertain for the deepest samples,
where strong differences between individual firn air models
have been reported (Buizert et al., 2012). Therefore the deep
firn data points showing strong deviations with the modeled
isotopic fractionation (Fig. 3) were excluded. As the NM-
09 diffusivity is constrained by only two gases (CO2 and
CH4) instead of nine gases for NM-EU, a larger number of
data are eliminated for NM-09. The excluded data points are
shown in grey in Fig. 5. As this data elimination procedure
is somewhat subjective, an alternative method was also used
where all data below the lock-in depth (LIDgas in Table 2

of Witrant et al., 2012) were eliminated. The two methods
lead to very similar results (see Supplement, Fig. S4). The
exclusion of the oldest firn air samples restricts the length of
the scenario constrained by the remaining firn data to the last
∼ 50 yr (mean ages at the last depth levels used are provided
in Table 1), but it provides a more robust scenario.

In the preferred multi-site inversion, each firn profile is
given equal weight (red lines in Fig. 5a and d). In a second in-
version (green lines in Fig. 5a and d), the contribution of each
site is weighted according to the inverse of the RMS (root
mean squared) difference of the model results from single
site inversions (Fig. 2) and the measurements. This weight-
ing reduces the relative weight of sites that are affected by
larger experimental uncertainties. It leads to slightly flat-
ter δ13C(CH4) scenarios in the latter multi-site inversion,
but the results in Fig. 5 show that the differences are well
within the uncertainty envelopes of the original multi-site in-
version. The fact that the green and red reconstructions are
similar indicates that the multi-site reconstructions are not
affected by individual sites with obviously poor data qual-
ity. Due to the difficulty to precisely evaluate overall uncer-
tainties, the equal-weight approach is the preferred multi-site
reconstruction. Figure 5b and e show how the modeled firn
air δ13C(CH4) profiles, based on the multi-site atmospheric
reconstructions, agree with the experimental data. The right
hand panels show the model-measurement differences. Over-
all, the differences are of the order of the analytical uncer-
tainty of 0.05–0.3 ‰.

The multi-site δ13C(CH4) reconstructions (Fig. 5a, d)
show an increase inδ13C(CH4) over the last decades, but the
magnitude of the increase (0.7± 0.4 ‰ over 50 yr) is smaller
than reported previously (Francey et al., 1999; Bräunlich et
al., 2001; Sowers et al., 2005; Ferretti et al., 2005).

As a further consistency check of the individual firn air
measurements with the multi-siteδ13C(CH4) scenario, we
place isotope measurements in firn on a timescale, using the
mean age of the samples and taking into account the isotopic
fractionation in firn. This simplified approach compared to
inverse methods was also used in, for example, Francey et
al. (1999) and Ferretti et al. (2005). It is less accurate in terms
of gas age and trend determination than inverse scenario re-
construction but does not require a regularization term to en-
sure the uniqueness of the solution. Figure 6 shows that the
data converted with this simplified approach fall within the
uncertainty range of the inverse reconstruction, thus the two
methods are overall consistent. Note that for the readabil-
ity of the figure, the age spread is not represented in Fig. 6,
but that no discrete age exists for a given firn air sample.
The lower panel shows that the data from DE08 and SPO-01
are near the lower envelope of the multi-site reconstruction,
whereas the data from VOS are for a large part of the record
near the higher end. This reflects the results from the sin-
gle site reconstructions, where the VOS data required only
a weakδ13C(CH4) atmospheric trend, whereas DE08 and
SPO-01 required a strongδ13C(CH4) atmospheric trend.
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Figure	
  5:	
  Multi-­‐site	
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  trend	
  reconstructions	
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  and	
  d),	
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  data	
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and	
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  sites	
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  sites	
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  f).	
  
Two	
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  shown	
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  weight	
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Fig. 5. Multi-site δ13C(CH4) trend reconstructions (a andd), the model fit of the firn data (b ande) and the difference between model and
data (c andf). NH sites (a, b andc) and SH sites (d, eandf). Two multi-site inversions are shown in(a) and(d), one giving equal weight to
each site (red lines) and one weighting each site by the RMS difference of the single site reconstruction (Fig. 2) to the data (green lines). The
light grey line (left panel) represents air-archive results from Cape Grim (Francey et al., 1998) and continuous atmospheric monitoring data
from the NOAA-ESRL network.

The multi-site reconstructions are constrained by
δ13C(CH4) data from 10 sites presented in Table 1 (i.e.
excluding DI). For the NH sites, the multi-site scenario
is constrained by only a few data points before 1990.
Furthermore, the firn profiles at the three sites that enter
the multi-site inversion (NGR, NM-EU-08 and NM-09) are
alike, as shown by the similar vertical profiles in Fig. 1.
Therefore, the NH scenario is less constrained than the
SH scenario, where data from sites with very different firn
characteristics and sampling dates are available. The lack of
independent constraints and the relatively small number of
data points may explain the higher uncertainty range of the
NH δ13C(CH4) reconstruction.

Due to its high snow accumulation rate, DE08 is less af-
fected by firn fractionation than other sites (see Fig. 3). An
atmospheric trend scenario, based on DE08 firn and ice data,
was built and compared to firn data from the SH (see Sect. 6
of the Supplement and Fig. S5). For the two sites that were
sampled relatively close in time to DE08, namely SPO-95
and VOS, the model results show clear differences to the
measurements, also well above the LID (see also Fig. S5b).
This suggests that firn fractionation may not be the only ex-
planation for the discrepancies between our firn drilling sites
(see Sect. 7).

Although the multi-site scenarios for the SH and NH agree
within the uncertainty envelopes when we shift the SH data
by a constant IPG of 0.5 ‰ (Fig. 7a), the shape of the best es-
timate scenario is slightly different for the two hemispheres.
Due to the fact that the main anthropogenic CH4 sources are
in the NH, it cannot be excluded that the inter-polar gradi-
ent (IPG) ofδ13C(CH4) changed, but given the short inter-

hemispheric mixing time of 1 yr, large variations on short
timescales are unlikely. In any case, given the large uncer-
tainty envelopes on the multi-site reconstructions it is not
possible to extract robust information about the IPG.

6 Comparison of our firn reconstructions with
atmospheric and ice core data

In Fig. 7, we compare our firn air reconstructions with di-
rect and archive atmospheric measurements, and ice core
data. Continuous atmospheric measurements ofδ13C(CH4)

have been carried out over the last ten years in both hemi-
spheres (Levin et al., 2012; Monteil et al., 2011). For the NH,
no direct atmospheric data are available before 2000. For
the SH,δ13C(CH4) was determined from archived air sam-
ples collected at Cape Grim, Australia from the late 1970s
(Francey et al., 1999). Moreover, ice core data from Law
Dome, Antarctica (Ferretti et al., 2005) overlap in time with
the period of our multi-site reconstruction. For the NH, no
δ13C(CH4) ice core data are available for the reconstructed
period, and we show in Fig. 7a a comparison with five data
points from EUROCORE (Sapart et al., 2012) covering the
period 1800–1950.

Figure 7 shows that the direct measurements over the last
decade (light grey lines) fall within the uncertainty envelopes
of the δ13C(CH4) reconstruction from the firn air samples.
The Cape Grim archive data from the SH, which are not af-
fected by firn air fractionation (dashed grey line in Fig. 7b),
show a steeper temporal trend than our reconstruction. Inter-
laboratory calibration offsets can considerably hamper direct
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Figure	
   6:	
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   (purple),	
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   (red),	
   NGR	
  
(green).	
  b:	
  SH	
  sites,	
  DE08	
  (orange),	
  BI	
  (purple),	
  SPO-­‐95	
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  SPO-­‐01	
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  (black),	
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   and	
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Fig. 6. Firn air δ13C(CH4) datasets corrected for isotopic fraction-
ation in firn (diffusion and gravitational settling) as a function of
age.(A) NH sites, NM-EU-08 (purple), NM-09 (red), NGR (green).
(B) SH sites, DE08 (orange), BI (purple), SPO-95 (dark blue),
SPO-01 (light blue), DML (black), DC (green), VOS (brown). The
dashed grey line in(B) represents air-archive data from Cape Grim
(Francey et al., 1998) and the solid grey lines represent continuous
atmospheric monitoring data from the NOAA-ESRL network. Note
that the age spread of each data point is not presented here in order
to keep the figure readable.

comparison of the datasets and an absolute offset could
potentially be attributed to uncertainties in the calibration
scales. However, the Cape Grim data also show a somewhat
strongerδ13C(CH4) trend than the multi-site firn air scenario.
Experimental uncertainties are further discussed in the next
section. One other possible parameter that can influence the
model results is the uncertainty in the best-guess CH4 input
scenario. A sensitivity test (Supplement, Fig. S2) shows that
using atmospheric CH4 values at the upper end of their un-
certainty envelope may lead to a slope nearly consistent with
the one from the Cape Grim air archive.

The same interpretation holds for the firn and ice core data
from Ferretti et al. (2005) from Law Dome (Fig. 7b). The
Law Dome data suggest an isotope change of 1.5 ‰ over the
past 50 yr, about twice as large as derived from our multi-site
firn reconstruction, which is in agreement with the single site
scenario reconstruction based on DE08 firn data only shown
in Fig. 2. Ice core data are also affected by isotopic fraction-
ation effects in the overlying firn, and the data published in
Ferretti et al. (2005) were corrected for these effects using the
CSIRO firn air model (Fig. 7: orange dots). To be consistent
with our own reconstructions, the corresponding corrections
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Figure	
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Fig. 7.Multi-site δ13C(CH4) scenarios compared with direct atmo-
spheric measurements (solid grey lines), atmospheric archive data
from Cape Grim (dashed grey line) and ice core data (dots). The red
continuous lines are the “best-estimate” scenarios for each hemi-
sphere with uncertainties (short-dashed lines). The red long-dashed
line is the SH scenario shifted by 0.5 ‰(a) NH rawδ13C(CH4) data
(light blue dots) andδ13C(CH4) data corrected for firn fractionation
from the EUROCORE ice core (Sapart et al., 2012).(b) SH raw
δ13C(CH4) firn and ice data at DEO8 (yellow dots) and the same
data corrected for firn fractionation with the CSIRO model (orange
dots) (Francey et al., 1999; Ferretti et al., 2005), with the LGGE-
GIPSA model using regular diffusivity (black stars) and with the
LGGE-GIPSA model but with “slightly modified diffusivity” as in
Fig. 4 (red stars). The grey lines represent continuous atmospheric
monitoring data from the NOAA-ESRL network (NH and SH).

were also calculated with the LGGE-GIPSA model using
regular diffusivity (Fig. 7: black stars) and “slightly modified
diffusivity” as explained in Sect. 5.3. (Fig. 7: red stars). The
corrected firn air data with the CSIRO model (orange dots)
and with the LGGE-GIPSA model with modified diffusivity
(red stars) show similar results which suggests that the differ-
ence in firn air models is not responsible for the differences
between the Law Dome records and our SH firn reconstruc-
tion. The differences between the raw and firn fractionation-
correctedδ13C(CH4) shown in Fig. 7 demonstrate that the
DE08 young ice core data are also significantly affected by
isotopic fractionation in the firn. This is expected since these
samples contain air from a period when CH4 mixing ratios in
the atmosphere strongly increased.

The same is true for the only available ice core data
from the NH site EUROCORE (Fig. 7a). However, here the
δ13C(CH4) data corrected for isotopic fractionation are rather
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Fig. 8. NH Multi-site δ13C(CH4) trend scenarios based on Kr corrected firn data.(a) Note that here NGR data are data measured at IMAU
with lower depth resolution than previously shown, because the NGRIP data from LGGE could not be corrected for the Kr interference.(b)
the fit to the firn data and(c) model-data differences. The continuous grey curve(a) represents continuous atmospheric monitoring data from
the NOAA-ESRL network. The dashed grey curve shows the preferred multi-site scenario based on non Kr-corrected data (red continuous
line in Fig. 5a).

at the high end of the firn air reconstruction. The firn/ice data
comparison for the Northern Hemisphere is limited by the
absence of overlapping period but the large difference be-
tween the EUROCORE and Law Dome data at 1950 addi-
tionally implies a possible unidentified interlaboratory offset
between these datasets.

7 Additional model and measurement uncertainties

As discussed above, the discrepancies between the different
trend reconstructions may be due to calibration issues, uncer-
tainties of the CH4 scenario and/or insufficiently constrained
diffusivity, but also to other features.

A major drawback while working with multiple datasets
measured at different times and in different laboratories is
the uncertainty associated with intercalibration differences
between measurement systems, but also reference gas drifts
over time which may affect datasets measured in the same
laboratory. Sapart et al. (2011) suggested that the intercali-
bration should be carried out using at least 3 reference data-
points with differentδ13C(CH4) values to identify and quan-
tify possible system offsets and scale contractions. This ex-
ercise could not be carried out here, because most of the
datasets presented were measured long ago and some sys-
tems have been dismounted. The available information about
intercalibration is presented in Table S1.

It has been discovered recently that Krypton (Kr) pro-
duces a strong interference for CH4 isotope measurements
in many of the currently used analytical systems (Schmitt
et al., 2013). When the Kr/CH4 ratio of the sample differs
from the Kr/CH4 of the reference air, which is generally the
case for firn air over the last century and for ice air sam-
ples, this introduces a strong bias in theδ13C(CH4) measure-
ments. This system specific interference introduces a strong
bias dependent on both the concentration of the air sample
and the analytical set-up. Considering the CH4 concentration
trend (about 800 ppb) between the lock-in zone and the firn

surface, the bias induced by the Kr interference could reach
−0.8± 0.2 ‰ (Schmitt et al., 2013).

For the IMAU system, it was possible to correct for the Kr-
interference (Schmitt et al., 2013). Using this correction, we
carried out aδ13C(CH4) reconstruction for the NM-EU-08,
NM-09 and NGR datasets with Kr correction (Fig. 8). The
temporal trend of the Kr-corrected scenario is about 0.5 ‰
larger than the non-Kr corrected scenario showing the signif-
icance of the Kr-correction onδ13C(CH4) trend reconstruc-
tion. Unfortunately, the Kr-correction is not possible for the
SH datasets, which limits the interpretation of our SH recon-
struction in term of atmospheric trends.

Buizert et al. (2012) showed that different firn air mod-
els produce isotopic fractionation effects of different mag-
nitude. Forδ13C(CO2), the LGGE-GIPSA model produces
the largest diffusive fractionation below 65 m depth at NM-
EU-08, because a dispersive mixing term is not considered
in the lock-in zone. Sensitivity tests (Sect. 7 of the Supple-
ment) show as expected that including a dispersive mixing
term reduces the firn fractionation and thus requires larger
atmospheric trends. The effect of dispersive mixing for the
Greenland sites is consistent with the estimate of Buizert
et al. (2012). However, the discrepancies between the SH
sites (see Sect. 5.4) cannot be easily reduced because they do
not only affect the lock-in zone but also the diffusive zone.
Adding one common dispersive parameter in the diffusivity
profiles thus cannot solve the discrepancies between sites.
Dispersive mixing tends to reduce firn fractionation; how-
ever, as detailed in Sect. 5.3, we suspect isotope fractiona-
tion to be underestimated at three sites (DI, DML, SPO-01)
where the diffusivity profiles are less constrained than at the
other sites. At the better constrained DE08 site, isotopic frac-
tionation along the firn column and in ice bubbles from our
model is consistent with the former CSIRO model and yields
the same trend inδ13C(CH4).

To our knowledge, the LGGE-GIPSA model is the only
model available that allows multi-site inversions including a
large number of sites. It remains to be investigated whether
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models with different representation of firn physics would
yield more consistent results between available firn and
young ice core data, but the experiment above indicates that
this may not be the case. Experimental issues such as the
Kr interference and inter-laboratory offsets, and the sensi-
tivity of the isotope signals to small changes in diffusivity
are presently limiting factors that lead to rather large uncer-
tainties in reconstructing an atmosphericδ13C(CH4) scenario
from firn air samples.

8 Conclusion and perspectives

We reconstructedδ13C(CH4) atmospheric scenarios over the
last 50 yr for both northern and southern high latitudes using
a firn transport model and taking as inputδ13C(CH4) firn air
measurements from 10 firn sampling campaigns. Our calcu-
lations reveal discrepancies between sites and show that the
modeled isotopic fractionation between12CH4 and 13CH4
along the firn column is highly sensitive to slight variations
in the diffusivity profiles at each site.

After plausible adjustments of diffusivity profiles at in-
dividual sites, and neglecting the deepest firn air samples
(where the isotopic fractionation is strongest), it is possible
to reconstruct an estimate ofδ13C(CH4) for each hemisphere
from a multi-site inversion, which fits the selected measure-
ments within reasonable uncertainties; however, discrepan-
cies between the different datasets and with previously pub-
lished results remain. At present, it is difficult to discrimi-
nate between different sources of uncertainty such as scale
differences between laboratories, the recently discovered Kr-
interference affecting theδ13C(CH4) trends, the representa-
tion of fractionation effects in the lock-in zone and the uncer-
tainty of the12CH4 scenario used. After the recent discovery
of a Kr interference, analytical systems will need to be re-
vised. This could eliminate an important source of discrep-
ancies between datasets in the future.

Our analysis showed that results of firn air models for
δ13C(CH4) strongly depend on accurate determination of the
diffusivity profiles. Sampling at high-accumulation rate sites,
such as DEO8 is an advantage, because firn fractionation is
less strong at such sites, hence theδ13C(CH4) reconstruction
will be more robust. Once a reliable isotope history has been
constructed,δ13C(CH4) data themselves may be used in the
future to construct diffusivity profiles better than what can be
achieved with currently used species.

Supplementary material related to this article is
available online at:http://www.atmos-chem-phys.net/13/
6993/2013/acp-13-6993-2013-supplement.pdf.
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