Fabre, D., Jacquin, L., and Loof, A.: Optimal perturbations in a four-vortex aircraft wake in counter-rotating configuration, Journal of Fluid Mechanics, 451, 319–328,
https://doi.org/10.2514/6.2023-3889, 2002.
a,
b
Garnier, F., Baudoin, C., Woods, P., and Louisnard, N.: Engine emission alteration in the near field of an aircraft, Atmospheric Environment, 31, 1767–1781, 1997. a
Gerz, T., Dürbeck, T., and Konopka, P.: Transport and effective diffusion of aircraft emissions, Journal of Geophysical Research: Atmospheres, 103, 25905–25913,
https://doi.org/10.1029/98JD02282, 1998.
a
Grise, K. M., Thompson, D. W., and Birner, T.: A global survey of static stability in the stratosphere and upper troposphere, Journal of Climate, 23, 2275–2292,
https://doi.org/10.1029/2007JD009022, 2010.
a
Holzäpfel, F., Gerz, T., and Baumann, R.: The turbulent decay of trailing vortex pairs in stably stratified environments, Aerospace Science and Technology, 5, 95–108,
https://doi.org/10.1016/S1270-9638(00)01090-7, 2001.
a,
b,
c,
d,
e,
f,
g
Jacquin, L. and Garnier, F.: On the dynamics of engine jets behind a transport aircraft, Report No. AGARD CP-584 (NATO, Brussels),
https://apps.dtic.mil/sti/tr/pdf/ADA320134.pdf#page=394 (last access: 19 January 2026), 1996.
a,
b,
c
Kärcher, B.: Physicochemistry of Aircraft Generated Liquid Aerosols, Soot, and Ice Particles: Model Description, J. Geophys. Res., 103,
https://doi.org/10.1029/98JD01044, 1998.
a,
b
Khou, J.-C.: Modélisation des traînées de condensation par interaction entre l'aérodynamique, la cinétique chimique et la microphysique, PhD thesis, Université Pierre et Marie Curie-Paris VI,
https://theses.hal.science/tel-01403100 (last access: 19 January 2026), 2016.
a,
b,
c
Khou, J.-C., Ghedhaifi, W., Vancassel, X., and Garnier, F.: Spatial simulation of contrail formation in near-field of commercial aircraft, Journal of Aircraft, 52, 1927–1938,
https://doi.org/10.2514/1.C033101, 2015.
a,
b,
c,
d
Lee, D. S., Fahey, D. W., Skowron, A., Allen, M. R., Burkhardt, U., Chen, Q., Doherty, S. J., Freeman, S., Forster, P. M., Fuglestvedt, J., Gettelman, A., De León, R. R., Lim, L. L., Lund, M. T., Millar, R. J., Owen, B., Penner, J. E., Pitari, G., Prather, M. J., Sausen, R., and Wilcox, L. J.: The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018, Atmospheric Environment, 244, 117834,
https://doi.org/10.1016/j.atmosenv.2020.117834, 2021.
a
Loseille, A. and Alauzet, F.: Continuous mesh framework part I: well-posed continuous interpolation error, SIAM Journal on Numerical Analysis, 49, 38–60,
https://doi.org/10.1137/090754078, 2011a.
a
Loseille, A. and Alauzet, F.: Continuous mesh framework part II: validations and applications, SIAM Journal on Numerical Analysis, 49, 61–86,
https://doi.org/10.1137/10078654X, 2011b.
a
Lottermoser, A. and Unterstrasser, S.: High-resolution modeling of early contrail evolution from hydrogen-powered aircraft, Atmos. Chem. Phys., 25, 7903–7924,
https://doi.org/10.5194/acp-25-7903-2025, 2025.
a,
b,
c,
d,
e
Misaka, T., Holzäpfel, F., and Gerz, T.: Large-eddy simulation of aircraft wake evolution from roll-up until vortex decay, AIAA journal, 53, 2646–2670,
https://doi.org/10.2514/1.J053671, 2015.
a
Montreuil, E., Ghedhaifi, W., Chmielaski, V., Vuillot, F., Gand, F., and Loseille, A.: Numerical Simulation of contrail formation on the Common Research Model wing/body/engine configuration, in: 2018 Atmospheric and Space Environments Conference, 3189,
https://doi.org/10.2514/6.2018-3189, 2018.
a,
b
Murphy, D. M. and Koop, T.: Review of the vapour pressures of ice and supercooled water for atmospheric applications, Quarterly Journal of the Royal Meteorological Society, 131, 1539–1565, 2005. a
Ovarlez, J., van Velthoven, P., Sachse, G., Vay, S., Schlager, H., and Ovarlez, H.: Comparison of water vapor measurements from POLINAT 2 with ECMWF analyses in high-humidity conditions, Journal of Geophysical Research: Atmospheres, 105, 3737–3744,
https://doi.org/10.1029/1999JD900954, 2000.
a
Paoli, R., Nybelen, L., Picot, J., and Cariolle, D.: Effects of jet/vortex interaction on contrail formation in supersaturated conditions, Physics of Fluids, 25,
https://doi.org/10.1063/1.4807063, 2013.
a,
b,
c,
d,
e
Paoli, R., Thouron, O., Cariolle, D., García, M., and Escobar, J.: Three-dimensional large-eddy simulations of the early phase of contrail-to-cirrus transition: effects of atmospheric turbulence and radiative transfer, Meteorologische Zeitschrift, 26,
https://doi.org/10.1127/metz/2017/0764, 2017.
a,
b,
c
Petzold, A., Döpelheuer, A., Brock, C., and Schröder, F.: In situ observations and model calculations of black carbon emission by aircraft at cruise altitude, Journal of Geophysical Research: Atmospheres, 104, 22171–22181,
https://doi.org/10.1029/1999JD900460, 1999.
a
Picot, J., Paoli, R., Thouron, O., and Cariolle, D.: Large-eddy simulation of contrail evolution in the vortex phase and its interaction with atmospheric turbulence, Atmos. Chem. Phys., 15, 7369–7389,
https://doi.org/10.5194/acp-15-7369-2015, 2015.
a,
b,
c
Ramsay, J., Tristanto, I., Shahpar, S., and John, A.: Assessing the Environmental Impact of Aircraft/Engine Integration With Respect to Contrails, Journal of Engineering for Gas Turbines and Power, 146,
https://doi.org/10.1115/1.4066150, 2024.
a,
b,
c,
d,
e,
f
Refloch, A., Courbet, B., Murrone, A., Villedieu, P., Laurent, C., Gilbank, P., Troyes, J., Tessé, L., Chaineray, G., Dargaud, J., Quémerais, E., and Vuillot, F.: CEDRE software, Aerospace Lab,
https://aerospacelab.onera.fr/sites/default/files/2024-01/AL2-11.pdf (last access: 19 January 2026), 2011. a
Saulgeot, P., Brion, V., Bonne, N., Dormy, E., and Jacquin, L.: Effects of atmospheric stratification and jet position on the properties of early aircraft contrails, Physical Review Fluids,
https://doi.org/10.1103/PhysRevFluids.8.114702, 2023.
a,
b
Schumann, U., Baumann, R., Baumgardner, D., Bedka, S. T., Duda, D. P., Freudenthaler, V., Gayet, J.-F., Heymsfield, A. J., Minnis, P., Quante, M., Raschke, E., Schlager, H., Vázquez-Navarro, M., Voigt, C., and Wang, Z.: Properties of individual contrails: a compilation of observations and some comparisons, Atmos. Chem. Phys., 17, 403–438,
https://doi.org/10.5194/acp-17-403-2017, 2017.
a
Schwamborn, D. and Strelets, M.: ATAAC–An EU-project dedicated to hybrid RANS/LES methods, in: Progress in Hybrid RANS-LES Modelling: Papers Contributed to the 4th Symposium on Hybrid RANS-LES Methods, Beijing, China, September 2011, Springer, 59–75,
https://doi.org/10.1007/978-3-642-31818-4_5, 2012.
a
Tabazadeh, A., Martin, S. T., and Lin, J.-S.: The effect of particle size and nitric acid uptake on the homogeneous freezing of aqueous sulfuric acid particles, Geophysical Research Letters, 27, 1111–1114,
https://doi.org/10.1029/1999GL010966, 2000.
a
Tsai, C.-Y. and Widnall, S. E.: The stability of short waves on a straight vortex filament in a weak externally imposed strain field, Journal of Fluid Mechanics, 73, 721–733,
https://doi.org/10.1017/S0022112076001584, 1976.
a
Unterstrasser, S.: Large-eddy simulation study of contrail microphysics and geometry during the vortex phase and consequences on contrail-to-cirrus transition, Journal of Geophysical Research: Atmospheres, 119, 7537–7555,
https://doi.org/10.1002/2013JD021418, 2014.
a,
b,
c,
d,
e
Unterstrasser, S. and Gierens, K.: Numerical simulations of contrail-to-cirrus transition – Part 2: Impact of initial ice crystal number, radiation, stratification, secondary nucleation and layer depth, Atmos. Chem. Phys., 10, 2037–2051,
https://doi.org/10.5194/acp-10-2037-2010, 2010.
a,
b,
c
Unterstrasser, S. and Görsch, N.: Aircraft-type dependency of contrail evolution, Journal of Geophysical Research: Atmospheres, 119, 14015–14027,
https://doi.org/10.1002/2014JD022642, 2014.
a,
b,
c,
d,
e,
f,
g
Voigt, C., Kleine, J., Sauer, D., Moore, R. H., Bräuer, T., Le Clercq, P., Kaufmann, S., Scheibe, M., Jurkat-Witschas, T., Aigner, M., Bauder, U., Boose, Y., Borrmann, S., Crosbie, E., Diskin, G. S., DiGangi, J., Hahn, V., Heckl, C., Huber, F., Nowak, J. B., Rapp, M., Rauch, R., Robinson, C., Schripp, T., Shook, M., Winstead, E., Ziemba, L., Schlager, H., and Anderson, B. E.: Cleaner burning aviation fuels can reduce contrail cloudiness, Communications Earth & Environment, 2, 114,
https://doi.org/10.1038/s43247-021-00174-y, 2021.
a
Wilcox, D. C.: Turbulence modeling for CFD, vol. 2, DCW industries La Canada, CA, ISBN 978-0963605153, 1998. a
Yu, F., Karcher, B., and Anderson, B. E.: Revisiting contrail ice formation: Impact of primary soot particle sizes and contribution of volatile particles, Environmental Science & Technology, 58, 17650–17660,
https://doi.org/10.1021/acs.est.4c04340, 2024.
a