Articles | Volume 25, issue 12
https://doi.org/10.5194/acp-25-6299-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-6299-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimation of seasonal methane fluxes over a Mediterranean rice paddy area using the Radon Tracer Method (RTM)
Institute of Energy Technologies, Universitat Politècnica de Catalunya, Barcelona, 08028, Spain
Alba Àgueda
CERTEC, Chemical Engineering Department, Universitat Politècnica de Catalunya, Barcelona, 08019, Spain
Josep-Anton Morguí
Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Barcelona, 08028, Spain
Lídia Cañas
Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Barcelona, 08028, Spain
Sílvia Borràs
AIRLAB, Climate and Health Group, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
Arturo Vargas
Institute of Energy Technologies, Universitat Politècnica de Catalunya, Barcelona, 08028, Spain
Claudia Grossi
Institute of Energy Technologies, Universitat Politècnica de Catalunya, Barcelona, 08028, Spain
Physics Department, Universitat Politècnica de Catalunya, Barcelona, 08028, Spain
Related authors
Camille Yver-Kwok, Michel Ramonet, Léonard Rivier, Jinghui Lian, Claudia Grossi, Roger Curcoll, Dafina Kikaj, Edward Chung, and Ute Karstens
EGUsphere, https://doi.org/10.5194/egusphere-2024-3107, https://doi.org/10.5194/egusphere-2024-3107, 2024
Short summary
Short summary
Here, we use greenhouse gas and radon data from a tall tower in France to estimate their fluxes within the station footprint from January 2017 to December 2022 using the Radon Tracer Method. Using the latest radon exhalation maps and standardized radon measurements, we found the greenhouse gas fluxes to be in agreement with the literature. Compared to inventories, there is a general agreement except for carbon dioxide where we show that the biogenic fluxes are not well represented in the model.
Roger Curcoll, Claudia Grossi, Stefan Röttger, and Arturo Vargas
Atmos. Meas. Tech., 17, 3047–3065, https://doi.org/10.5194/amt-17-3047-2024, https://doi.org/10.5194/amt-17-3047-2024, 2024
Short summary
Short summary
This paper presents a new user-friendly version of the Atmospheric Radon MONitor (ARMON). The efficiency of the instrument is of 0.0057 s-1, obtained using different techniques at Spanish and German chambers. The total calculated uncertainty of the ARMON for hourly radon concentrations above 5 Bq m-3 is lower than 10 % (k = 1). Results confirm that the ARMON is suitable to measure low-level radon activity concentrations and to be used as a transfer standard to calibrate in situ radon monitors.
Alba Badia, Veronica Vidal, Sergi Ventura, Roger Curcoll, Ricard Segura, and Gara Villalba
Atmos. Chem. Phys., 23, 10751–10774, https://doi.org/10.5194/acp-23-10751-2023, https://doi.org/10.5194/acp-23-10751-2023, 2023
Short summary
Short summary
Improving air quality is a top priority in urban areas. In this study, we used an air quality model to analyse the air quality changes occurring over the metropolitan area of Barcelona and other rural areas affected by transport of the atmospheric plume from the city during mobility restrictions. Our results show that mitigation strategies intended to reduce O3 should be designed according to the local meteorology, air transport, and particular ozone chemistry of the urban area.
Claudia Grossi, Daniel Rabago, Scott Chambers, Carlos Sáinz, Roger Curcoll, Peter P. S. Otáhal, Eliška Fialová, Luis Quindos, and Arturo Vargas
Atmos. Meas. Tech., 16, 2655–2672, https://doi.org/10.5194/amt-16-2655-2023, https://doi.org/10.5194/amt-16-2655-2023, 2023
Short summary
Short summary
The automatic and low-maintenance radon flux system Autoflux, completed with environmental soil and atmosphere sensors, has been theoretically and experimentally characterized and calibrated under laboratory conditions to be used as transfer standard for in situ measurements. It will offer for the first time long-term measurements to validate radon flux maps used by the climate and the radiation protection communities for assessing the radon gas emissions in the atmosphere.
Roger Curcoll, Josep-Anton Morguí, Armand Kamnang, Lídia Cañas, Arturo Vargas, and Claudia Grossi
Atmos. Meas. Tech., 15, 2807–2818, https://doi.org/10.5194/amt-15-2807-2022, https://doi.org/10.5194/amt-15-2807-2022, 2022
Short summary
Short summary
Low-cost air enquirer kits, including CO2 and environmental parameter sensors, have been designed, built, and tested in a new steady-state through-flow chamber for simultaneous measurements of CO2 fluxes in soil and CO2 concentrations in air. A CO2 calibration and multiparametric fitting reduced the total uncertainty of CO2 concentration by 90 %. This system allows continuous measurement of CO2 fluxes and CO2 ambient air, with low cost (EUR 1200), low energy demand (<5 W), and low maintenance.
Alejandro Fontal, Sílvia Borràs, Lídia Cañas, Sofya Pozdniakova, and Xavier Rodó
EGUsphere, https://doi.org/10.5194/egusphere-2025-2484, https://doi.org/10.5194/egusphere-2025-2484, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Monitoring airborne microbes is crucial for health and ecosystems, but often slow and expensive. We adapted an existing instrument, using Laser-Induced Fluorescence and machine learning, for rapid, field-deployable bacterial identification. Our system successfully detected bacteria and showed promise in distinguishing various types. This faster approach improves environmental monitoring and helps safeguard public health by quickly spotting potential microbial threats in the air.
Camille Yver-Kwok, Michel Ramonet, Léonard Rivier, Jinghui Lian, Claudia Grossi, Roger Curcoll, Dafina Kikaj, Edward Chung, and Ute Karstens
EGUsphere, https://doi.org/10.5194/egusphere-2024-3107, https://doi.org/10.5194/egusphere-2024-3107, 2024
Short summary
Short summary
Here, we use greenhouse gas and radon data from a tall tower in France to estimate their fluxes within the station footprint from January 2017 to December 2022 using the Radon Tracer Method. Using the latest radon exhalation maps and standardized radon measurements, we found the greenhouse gas fluxes to be in agreement with the literature. Compared to inventories, there is a general agreement except for carbon dioxide where we show that the biogenic fluxes are not well represented in the model.
Roger Curcoll, Claudia Grossi, Stefan Röttger, and Arturo Vargas
Atmos. Meas. Tech., 17, 3047–3065, https://doi.org/10.5194/amt-17-3047-2024, https://doi.org/10.5194/amt-17-3047-2024, 2024
Short summary
Short summary
This paper presents a new user-friendly version of the Atmospheric Radon MONitor (ARMON). The efficiency of the instrument is of 0.0057 s-1, obtained using different techniques at Spanish and German chambers. The total calculated uncertainty of the ARMON for hourly radon concentrations above 5 Bq m-3 is lower than 10 % (k = 1). Results confirm that the ARMON is suitable to measure low-level radon activity concentrations and to be used as a transfer standard to calibrate in situ radon monitors.
Alba Badia, Veronica Vidal, Sergi Ventura, Roger Curcoll, Ricard Segura, and Gara Villalba
Atmos. Chem. Phys., 23, 10751–10774, https://doi.org/10.5194/acp-23-10751-2023, https://doi.org/10.5194/acp-23-10751-2023, 2023
Short summary
Short summary
Improving air quality is a top priority in urban areas. In this study, we used an air quality model to analyse the air quality changes occurring over the metropolitan area of Barcelona and other rural areas affected by transport of the atmospheric plume from the city during mobility restrictions. Our results show that mitigation strategies intended to reduce O3 should be designed according to the local meteorology, air transport, and particular ozone chemistry of the urban area.
Claudia Grossi, Daniel Rabago, Scott Chambers, Carlos Sáinz, Roger Curcoll, Peter P. S. Otáhal, Eliška Fialová, Luis Quindos, and Arturo Vargas
Atmos. Meas. Tech., 16, 2655–2672, https://doi.org/10.5194/amt-16-2655-2023, https://doi.org/10.5194/amt-16-2655-2023, 2023
Short summary
Short summary
The automatic and low-maintenance radon flux system Autoflux, completed with environmental soil and atmosphere sensors, has been theoretically and experimentally characterized and calibrated under laboratory conditions to be used as transfer standard for in situ measurements. It will offer for the first time long-term measurements to validate radon flux maps used by the climate and the radiation protection communities for assessing the radon gas emissions in the atmosphere.
Roger Curcoll, Josep-Anton Morguí, Armand Kamnang, Lídia Cañas, Arturo Vargas, and Claudia Grossi
Atmos. Meas. Tech., 15, 2807–2818, https://doi.org/10.5194/amt-15-2807-2022, https://doi.org/10.5194/amt-15-2807-2022, 2022
Short summary
Short summary
Low-cost air enquirer kits, including CO2 and environmental parameter sensors, have been designed, built, and tested in a new steady-state through-flow chamber for simultaneous measurements of CO2 fluxes in soil and CO2 concentrations in air. A CO2 calibration and multiparametric fitting reduced the total uncertainty of CO2 concentration by 90 %. This system allows continuous measurement of CO2 fluxes and CO2 ambient air, with low cost (EUR 1200), low energy demand (<5 W), and low maintenance.
Stefan Röttger, Annette Röttger, Claudia Grossi, Arturo Vargas, Ute Karstens, Giorgia Cinelli, Edward Chung, Dafina Kikaj, Chris Rennick, Florian Mertes, and Ileana Radulescu
Adv. Geosci., 57, 37–47, https://doi.org/10.5194/adgeo-57-37-2022, https://doi.org/10.5194/adgeo-57-37-2022, 2022
Short summary
Short summary
Radon gas is the largest source of public exposure to naturally occurring radioactivity. Radon can also be used, as a tracer to improve indirectly the estimates of greenhouse gases important for supporting successful GHG mitigation strategies.
Both climate and radiation protection research communities need improved traceable low-level atmospheric radon measurements. The EMPIR project 19ENV01 traceRadon started to provide the necessary measurement infrastructure and transfer standards.
Qiansi Tu, Frank Hase, Matthias Schneider, Omaira García, Thomas Blumenstock, Tobias Borsdorff, Matthias Frey, Farahnaz Khosrawi, Alba Lorente, Carlos Alberti, Juan J. Bustos, André Butz, Virgilio Carreño, Emilio Cuevas, Roger Curcoll, Christopher J. Diekmann, Darko Dubravica, Benjamin Ertl, Carme Estruch, Sergio Fabián León-Luis, Carlos Marrero, Josep-Anton Morgui, Ramón Ramos, Christian Scharun, Carsten Schneider, Eliezer Sepúlveda, Carlos Toledano, and Carlos Torres
Atmos. Chem. Phys., 22, 295–317, https://doi.org/10.5194/acp-22-295-2022, https://doi.org/10.5194/acp-22-295-2022, 2022
Short summary
Short summary
We use different methane ground- and space-based remote sensing data sets for investigating the emission strength of three waste disposal sites close to Madrid. We present a method that uses wind-assigned anomalies for deriving emission strengths from satellite data and estimate their uncertainty to 9–14 %. The emission strengths estimated from the remote sensing data sets are significantly larger than the values published in the official register.
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
Tao Zheng, Sha Feng, Kenneth J. Davis, Sandip Pal, and Josep-Anton Morguí
Geosci. Model Dev., 14, 3037–3066, https://doi.org/10.5194/gmd-14-3037-2021, https://doi.org/10.5194/gmd-14-3037-2021, 2021
Short summary
Short summary
Carbon dioxide is the most important greenhouse gas. We develop the numerical model that represents carbon dioxide transport in the atmosphere. This model development is based on the MPAS model, which has a variable-resolution capability. The purpose of developing carbon dioxide transport in MPAS is to allow for high-resolution transport model simulation that is not limited by the lateral boundaries. It will also form the base for a future development of MPAS-based carbon inversion system.
Cited articles
Àgueda, A., Grossi, C., Pastor, E., Rioja, E., Sánchez-García, L., Batet, Ò., Curcoll, R., Ealo, M., Nofuentes, M., Occhipinti, P., Rodó, X., and Morguí, J.-A.: Temporal and spatial variability of ground level atmospheric methane concentrations in the Ebro River Delta, Atmos. Pollut. Res., 8, 741–753, https://doi.org/10.1016/j.apr.2017.01.009, 2017.
Ahmadov, R., Gerbig, C., Kretschmer, R., Körner, S., Rödenbeck, C., Bousquet, P., and Ramonet, M.: Comparing high resolution WRF-VPRM simulations and two global CO2 transport models with coastal tower measurements of CO2, Biogeosciences, 6, 807–817, https://doi.org/10.5194/bg-6-807-2009, 2009.
Alberto, M. C. R., Wassmann, R., Buresh, R. J., Quilty, J. R., Correa, T. Q., Sandro, J. M., and Centeno, C. A. R.: Measuring methane flux from irrigated rice fields by eddy covariance method using open-path gas analyzer, F. Crop. Res., 160, 12–21, https://doi.org/10.1016/j.fcr.2014.02.008, 2014.
Alberto, M. C. R., Wassmann, R., Gummert, M., Buresh, R. J., Quilty, J. R., Correa, T. Q., Centeno, C. A. R., and Oca, G. M.: Straw incorporated after mechanized harvesting of irrigated rice affects net emissions of CH4 and CO2 based on eddy covariance measurements, F. Crop. Res., 184, 162–175, https://doi.org/10.1016/j.fcr.2015.10.004, 2015.
Aliaga, D., Sinclair, V. A., Andrade, M., Artaxo, P., Carbone, S., Kadantsev, E., Laj, P., Wiedensohler, A., Krejci, R., and Bianchi, F.: Identifying source regions of air masses sampled at the tropical high-altitude site of Chacaltaya using WRF-FLEXPART and cluster analysis, Atmos. Chem. Phys., 21, 16453–16477, https://doi.org/10.5194/acp-21-16453-2021, 2021.
Alvarado-Aguilar, D., Jiménez, J. A., and Nicholls, R. J.: Flood hazard and damage assessment in the Ebro Delta (NW Mediterranean) to relative sea level rise, Nat. Hazards, 62, 1301–1321, https://doi.org/10.1007/s11069-012-0149-x, 2012.
Arnold, D.: Study of the atmospheric radon concentration dynamics at the Spanish readiological surveillance stations and its application to air mass movements, Ph.D. Thesis, Universitat Politècnica de Catalunya (UPC), 2009.
Arnold, D., Vargas, A., Vermeulen, A. T., Verheggen, B., and Seibert, P.: Analysis of radon origin by backward atmospheric transport modelling, Atmos. Environ., 44, 494–502, https://doi.org/10.1016/j.atmosenv.2009.11.003, 2010.
Belenguer-Manzanedo, M., Alcaraz, C., Camacho, A., Ibáñez, C., Català-Forner, M., and Martínez-Eixarch, M.: Effect of post-harvest practices on greenhouse gas emissions in rice paddies: flooding regime and straw management, Plant Soil, 474, 77–98, https://doi.org/10.1007/s11104-021-05234-y, 2022.
Biraud, S., Ciais, P., Ramonet, M., Simmonds, P., Kazan, V., Monfray, P., O'Doherty, S., Spain, T. G., and Jennings, S. G.: European greenhouse gas emissions estimated from continuous atmospheric measurements and radon 222 at Mace Head, Ireland, J. Geophys. Res.-Atmos., 105, 1351–1366, https://doi.org/10.1029/1999JD900821, 2000.
Brioude, J., Arnold, D., Stohl, A., Cassiani, M., Morton, D., Seibert, P., Angevine, W., Evan, S., Dingwell, A., Fast, J. D., Easter, R. C., Pisso, I., Burkhart, J., and Wotawa, G.: The Lagrangian particle dispersion model FLEXPART-WRF version 3.1, Geosci. Model Dev., 6, 1889–1904, https://doi.org/10.5194/gmd-6-1889-2013, 2013.
Casanova, D.: Quantifying the effects of land conditions on rice growth: a case study in the Ebro Delta (Spain) using remote sensing, Ph.D. thesis, Wageningen Agricultural University, ISBN 90-5485-867-2, 1998.
Cerralbo, P., Grifoll, M., Moré, J., Bravo, M., Sairouní Afif, A., and Espino, M.: Wind variability in a coastal area (Alfacs Bay, Ebro River delta), Adv. Sci. Res., 12, 11–21, https://doi.org/10.5194/asr-12-11-2015, 2015.
Cheewaphongphan, P., Chatani, S., and Saigusa, N.: Exploring Gaps between Bottom-Up and Top-Down Emission Estimates Based on Uncertainties in Multiple Emission Inventories: A Case Study on CH4 Emissions in China, Sustainability, 11, 2054, https://doi.org/10.3390/su11072054, 2019.
Chen, Z., Jacob, D. J., Nesser, H., Sulprizio, M. P., Lorente, A., Varon, D. J., Lu, X., Shen, L., Qu, Z., Penn, E., and Yu, X.: Methane emissions from China: a high-resolution inversion of TROPOMI satellite observations, Atmos. Chem. Phys., 22, 10809–10826, https://doi.org/10.5194/acp-22-10809-2022, 2022.
Cinelli, G., Tollefsen, T., Bossew, P., Gruber, V., Bogucarskis, K., De Felice, L., and De Cort, M.: Digital version of the European Atlas of natural radiation, J. Environ. Radioact., 196, 240–252, https://doi.org/10.1016/j.jenvrad.2018.02.008, 2019.
Crosson, E. R.: A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor, Appl. Phys. B, 92, 403–408, https://doi.org/10.1007/s00340-008-3135-y, 2008.
Curcoll, R., Grossi, C., Röttger, S., and Vargas, A.: Full characterization and calibration of a transfer standard monitor for atmospheric radon measurements, Atmos. Meas. Tech., 17, 3047–3065, https://doi.org/10.5194/amt-17-3047-2024, 2024.
Curcoll, R.: Replication Data for: Estimation of seasonal methane fluxes over a Mediterranean rice paddy area using the Radon Tracer Method (RTM), CORA.Repositori de Dades de Recerca, V1 [code and data set], https://doi.org/10.34810/data1332, 2024.
Dai, S., Ju, W., Zhang, Y., He, Q., Song, L., and Li, J.: Variations and drivers of methane fluxes from a rice-wheat rotation agroecosystem in eastern China at seasonal and diurnal scales, Sci. Total Environ., 690, 973–990, https://doi.org/10.1016/j.scitotenv.2019.07.012, 2019.
Desjardins, R. L., Worth, D. E., Pattey, E., VanderZaag, A., Srinivasan, R., Mauder, M., Worthy, D., Sweeney, C., and Metzger, S.: The challenge of reconciling bottom-up agricultural methane emissions inventories with top-down measurements, Agric. For. Meteorol., 248, 48–59, https://doi.org/10.1016/j.agrformet.2017.09.003, 2018.
Díaz-Isaac, L. I., Lauvaux, T., and Davis, K. J.: Impact of physical parameterizations and initial conditions on simulated atmospheric transport and CO2 mole fractions in the US Midwest, Atmos. Chem. Phys., 18, 14813–14835, https://doi.org/10.5194/acp-18-14813-2018, 2018.
Dlugokencky, E. J.: Conversion of NOAA atmospheric dry air CH4 mole fractions to a gravimetrically prepared standard scale, J. Geophys. Res., 110, D18306, https://doi.org/10.1029/2005JD006035, 2005.
Drinkwater, A., Palmer, P. I., Feng, L., Arnold, T., Lan, X., Michel, S. E., Parker, R., and Boesch, H.: Atmospheric data support a multi-decadal shift in the global methane budget towards natural tropical emissions, Atmos. Chem. Phys., 23, 8429–8452, https://doi.org/10.5194/acp-23-8429-2023, 2023.
Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., and Tanabe, K.: IPCC Guidelines for National Greenhouse Gas Inventories, Intergovernmental Panel on Climate Change, ISBN 4-88788-032-4, 2006.
European Commission: EDGAR (Emissions Database for Global Atmospheric Research) Community GHG Database, https://edgar.jrc.ec.europa.eu/report_2023 (last access: 27 November 2023), 2023.
European Union: Copernicus Land Monitoring Service 2018, European Environment Agency (EEA), https://doi.org/10.2909/960998c1-1870-4e82-8051-6485205ebbac, 2018.
Fitzgerald, G. J., Scow, K. M., and Hill, J. E.: Fallow season straw and water management effects on methane emissions in California rice, Global Biogeochem. Cycles, 14, 767–776, https://doi.org/10.1029/2000GB001259, 2000.
Gangoiti, G., Alonso, L., Navazo, M., Albizuri, A., Perez-Landa, G., Matabuena, M., Valdenebro, V., Maruri, M., Antonio García, J., and Millán, M. M.: Regional transport of pollutants over the Bay of Biscay: Analysis of an ozone episode under a blocking anticyclone in west-central Europe, Atmos. Environ., 36, 1349–1361, https://doi.org/10.1016/S1352-2310(01)00536-2, 2002.
García-Díez, M., Fernández, J., Fita, L., and Yagüe, C.: Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe, Q. J. Roy. Meteor. Soc., 139, 501–514, https://doi.org/10.1002/qj.1976, 2013.
Generalitat de Catalunya: Plec de condicions de la denominació d'origen protegida “Arròs del Delta de l'Ebre”, http://agricultura.gencat.cat/web/.content/al_alimentacio/al02_qualitat_alimentaria/al02_04_dop/documents/fitxers_estatics/pliego_condiciones_inf_pub_castellano_dop_arroz_delta_ebro.pdf (last access: 23 March 2025), 2022.
Gerbig, C., Körner, S., and Lin, J. C.: Vertical mixing in atmospheric tracer transport models: error characterization and propagation, Atmos. Chem. Phys., 8, 591–602, https://doi.org/10.5194/acp-8-591-2008, 2008.
Griffiths, A. D., Parkes, S. D., Chambers, S. D., McCabe, M. F., and Williams, A. G.: Improved mixing height monitoring through a combination of lidar and radon measurements, Atmos. Meas. Tech., 6, 207–218, https://doi.org/10.5194/amt-6-207-2013, 2013.
Grossi, C., Arnold, D., Adame, J. A., López-Coto, I., Bolívar, J. P., De La Morena, B. A., and Vargas, A.: Atmospheric 222Rn concentration and source term at El Arenosillo 100 m meteorological tower in southwest Spain, Radiat. Meas., 47, 149–162, https://doi.org/10.1016/j.radmeas.2011.11.006, 2012.
Grossi, C., Àgueda, A., Vogel, F. R., Vargas, A., Zimnoch, M., Wach, P., Martín, J. E., López-Coto, I., Bolívar, J. P., Morguí, J. A., and Rodó, X.: Analysis of ground-based 222Rn measurements over Spain: Filling the gap in southwestern Europe, J. Geophys. Res.-Atmos., 121, 11021–11037, https://doi.org/10.1002/2016JD025196, 2016.
Grossi, C., Vogel, F. R., Curcoll, R., Àgueda, A., Vargas, A., Rodó, X., and Morguí, J.-A.: Study of the daily and seasonal atmospheric CH4 mixing ratio variability in a rural Spanish region using 222Rn tracer, Atmos. Chem. Phys., 18, 5847–5860, https://doi.org/10.5194/acp-18-5847-2018, 2018.
Grossi, C., Chambers, S. D., Llido, O., Vogel, F. R., Kazan, V., Capuana, A., Werczynski, S., Curcoll, R., Delmotte, M., Vargas, A., Morguí, J.-A., Levin, I., and Ramonet, M.: Intercomparison study of atmospheric 222Rn and 222Rn progeny monitors, Atmos. Meas. Tech., 13, 2241–2255, https://doi.org/10.5194/amt-13-2241-2020, 2020.
Hall, B. D., Crotwell, A. M., Kitzis, D. R., Mefford, T., Miller, B. R., Schibig, M. F., and Tans, P. P.: Revision of the World Meteorological Organization Global Atmosphere Watch (WMO/GAW) CO2 calibration scale, Atmos. Meas. Tech., 14, 3015–3032, https://doi.org/10.5194/amt-14-3015-2021, 2021.
Hatala, J. A., Detto, M., and Baldocchi, D. D.: Gross ecosystem photosynthesis causes a diurnal pattern in methane emission from rice, Geophys. Res. Lett., 39, 1–5, https://doi.org/10.1029/2012GL051303, 2012.
Hegarty, J., Draxler, R. R., Stein, A. F., Brioude, J., Mountain, M., Eluszkiewicz, J., Nehrkorn, T., Ngan, F., Andrews, A., Division, C. S., and Division, G. M.: Evaluation of lagrangian particle dispersion models with measurements from controlled tracer releases, J. Appl. Meteorol. Climatol., 52, 2623–2637, https://doi.org/10.1175/JAMC-D-13-0125.1, 2013.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hiederer, R.: Mapping soil properties for Europe – spatial representation of soil database attributes, (No. EUR26082EN), Sci. Tech. Res. Ser., 47, 1831–9424, 2013.
Hüser, I., Harder, H., Heil, A., and Kaiser, J. W.: Assumptions about footprint layer heights influence the quantification of emission sources: a case study for Cyprus, Atmos. Chem. Phys., 17, 10955–10967, https://doi.org/10.5194/acp-17-10955-2017, 2017.
Iwata, H., Mano, M., Ono, K., Tokida, T., Kawazoe, T., Kosugi, Y., Sakabe, A., Takahashi, K., and Miyata, A.: Exploring sub-daily to seasonal variations in methane exchange in a single-crop rice paddy in central Japan, Atmos. Environ., 179, 156–165, https://doi.org/10.1016/j.atmosenv.2018.02.015, 2018.
Karstens, U. and Levin, I.: traceRadon monthly radon flux map for Europe 2006-2022 (based on GLDAS-Noah v2.1 soil moisture), https://hdl.handle.net/11676/YLHSb9HhpYbqzMpd4yPmfm3s (last access: 23 March 2025), 2023.
Karstens, U., Schwingshackl, C., Schmithüsen, D., and Levin, I.: A process-based 222radon flux map for Europe and its comparison to long-term observations, Atmos. Chem. Phys., 15, 12845–12865, https://doi.org/10.5194/acp-15-12845-2015, 2015.
Lan, X., Thoning, K. W., Dlugockencky, E. J., Lan, X., Thoning, K. W., Dlugokencky, E. J., Lan, X., Thoning, K. W., and Dlugockencky, E. J.: Trends in globally-averaged CH4, N2O, and SF6 determined from NOAA Global Monitoring Laboratory measurements, Global Monitoring Laboratory, https://doi.org/10.15138/P8XG-AA10, 2024.
Levin, I., Glatzel-Mattheier, H., Marik, T., Cuntz, M., Schmidt, M., and Worthy, D. E.: Verification of German methane emission inventories and their recent changes based on atmospheric observations, J. Geophys. Res.-Atmos., 104, 3447–3456, https://doi.org/10.1029/1998JD100064, 1999.
Levin, I., Hammer, S., Eichelmann, E., and Vogel, F. R.: Verification of greenhouse gas emission reductions: the prospect of atmospheric monitoring in polluted areas, Philos. T. Roy. Soc. A, 369, 1906–1924, https://doi.org/10.1098/rsta.2010.0249, 2011.
Levin, I., Karstens, U., Hammer, S., DellaColetta, J., Maier, F., and Gachkivskyi, M.: Limitations of the radon tracer method (RTM) to estimate regional greenhouse gas (GHG) emissions – a case study for methane in Heidelberg, Atmos. Chem. Phys., 21, 17907–17926, https://doi.org/10.5194/acp-21-17907-2021, 2021.
Madala, S., Hari Prasad, K. B. R. R., Srinivas, C. V., and Satyanarayana, A. N. V.: Air quality simulation of NOx over the tropical coastal city Chennai in southern India with FLEXPART-WRF, Atmos. Environ., 128, 65–81, https://doi.org/10.1016/j.atmosenv.2015.12.052, 2016.
Martín, M., Plaza, J., Andrés, M. D., Bezares, J. C., and Millán, M. M.: Comparative study of seasonal air pollutant behavior in a Mediterranean coastal site: Castellón (Spain), Atmos. Environ. A, 25, 1523–1535, https://doi.org/10.1016/0960-1686(91)90012-V, 1991.
Martínez-Eixarch, M., Alcaraz, C., Viñas, M., Noguerol, J., Aranda, X., Prenafeta-Boldu, F. X., Saldaña-De la Vega, J. A., del Mar Catala, M., and Ibáñez, C.: Neglecting the fallow season can significantly underestimate annual methane emissions in Mediterranean rice fields, PLoS One, 13, e0198081, https://doi.org/10.1371/journal.pone.0198081, 2018.
Martínez-Eixarch, M., Alcaraz, C., Viñas, M., Noguerol, J., Aranda, X., Prenafeta-Boldú, F. X., Català-Forner, M., Fennessy, M. S., and Ibáñez, C.: The main drivers of methane emissions differ in the growing and flooded fallow seasons in Mediterranean rice fields, Plant Soil, 460, 211–227, https://doi.org/10.1007/s11104-020-04809-5, 2021.
Meijide, A., Manca, G., Goded, I., Magliulo, V., di Tommasi, P., Seufert, G., and Cescatti, A.: Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy, Biogeosciences, 8, 3809–3821, https://doi.org/10.5194/bg-8-3809-2011, 2011.
Minamikawa, K., Yagi, K., Tokida, T., Sander, B. O., and Wassmann, R.: Appropriate frequency and time of day to measure methane emissions from an irrigated rice paddy in Japan using the manual closed chamber method, Greenh. Gas Meas. Manag., 2, 118–128, https://doi.org/10.1080/20430779.2012.729988, 2012.
Mohan, M. and Gupta, M.: Sensitivity of PBL parameterizations on PM10 and ozone simulation using chemical transport model WRF-Chem over a sub-tropical urban airshed in India, Atmos. Environ., 185, 53–63, https://doi.org/10.1016/j.atmosenv.2018.04.054, 2018.
Morgui, J. A., Agueda, A., Batet, O., Curcoll, R., Ealo, M., and Grossi, C.: ClimaDat: A long-term network to study at different scales climatic processes and interactions between climatic compartments, EGU General Assembly 2013, held 7–12 April 2013 in Vienna, Austria, id. EGU2013-10265, EGU Gen. Assem. Conf. Abstr., 15, https://ui.adsabs.harvard.edu/abs/2013EGUGA..1510265M (last access: 23 March 2025), 2013.
Muñoz Sabater, J.: ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.e2161bac, 2019.
National Inventory Report of Spain: National Inventory of Emissions of Greenhous Gases 1990–2015, https://unfccc.int/documents/627815 (last access: 21 November 2017), 2023.
Nazaroff, W. W.: Radon transport from soil to air, Rev. Geophys., 30, 137, https://doi.org/10.1029/92RG00055, 1992.
Oo, A. Z., Win, K. T., and Bellingrath-Kimura, S. D.: Within field spatial variation in methane emissions from lowland rice in Myanmar, Springerplus, 4, 145, https://doi.org/10.1186/s40064-015-0901-2, 2015.
Peischl, J., Ryerson, T. B., Holloway, J. S., Trainer, M., Andrews, A. E., Atlas, E. L., Blake, D. R., Daube, B. C., Dlugokencky, E. J., Fischer, M. L., Goldstein, A. H., Guha, A., Karl, T., Kofler, J., Kosciuch, E., Misztal, P. K., Perring, A. E., Pollack, I. B., Santoni, G. W., Schwarz, J. P., Spackman, J. R., Wofsy, S. C., and Parrish, D. D.: Airborne observations of methane emissions from rice cultivation in the Sacramento Valley of California, J. Geophys. Res.-Atmos., 117, 1–13, https://doi.org/10.1029/2012JD017994, 2012.
Pereira, J., Figueiredo, N., Goufo, P., Carneiro, J., Morais, R., Carranca, C., Coutinho, J., and Trindade, H.: Effects of elevated temperature and atmospheric carbon dioxide concentration on the emissions of methane and nitrous oxide from Portuguese flooded rice fields, Atmos. Environ., 80, 464–471, https://doi.org/10.1016/j.atmosenv.2013.08.045, 2013.
Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink, C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. F., Fouilloux, A., Brioude, J., Philipp, A., Seibert, P., and Stohl, A.: The Lagrangian particle dispersion model FLEXPART version 10.4, Geosci. Model Dev., 12, 4955–4997, https://doi.org/10.5194/gmd-12-4955-2019, 2019.
Rella, C. W., Chen, H., Andrews, A. E., Filges, A., Gerbig, C., Hatakka, J., Karion, A., Miles, N. L., Richardson, S. J., Steinbacher, M., Sweeney, C., Wastine, B., and Zellweger, C.: High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air, Atmos. Meas. Tech., 6, 837–860, https://doi.org/10.5194/amt-6-837-2013, 2013.
Reum, F., Gerbig, C., Lavric, J. V., Rella, C. W., and Göckede, M.: An improved water correction function for Picarro greenhouse gas analyzers, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2017-174, 2017.
Röttger, A., Röttger, S., Grossi, C., Vargas, A., Curcoll, R., Otáhal, P., Hernández-Ceballos, M. Á., Cinelli, G., Chambers, S., Barbosa, S. A., Ioan, M., Radulescu, I., Kikaj, D., Chung, E., Arnold, T., Yver-Kwok, C., Fuente, M., Mertes, F., and Morosh, V.: New metrology for radon at the environmental level, Meas. Sci. Technol., 32, 124008, https://doi.org/10.1088/1361-6501/ac298d, 2021.
Röttger, S., Röttger, A., Mertes, F., Chambers, S., Griffiths, A., Curcoll, R., and Grossi, C.: Traceable low activity concentration calibration of radon detectors for climate change observation networks, Measurement: Sensors, 101708, https://doi.org/10.1016/j.measen.2024.101708, 2025.
Runkle, B. R. K., Suvoèarev, K., Reba, M. L., Reavis, C. W., Smith, S. F., Chiu, Y.-L., and Fong, B.: Methane Emission Reductions from the Alternate Wetting and Drying of Rice Fields Detected Using the Eddy Covariance Method, Environ. Sci. Technol., 53, 671–681, https://doi.org/10.1021/acs.est.8b05535, 2019.
Sass, R. L., Fisher, F. M., Turner, F. T., and Jund, M. F.: Methane emission from rice fields as influenced by solar radiation, temperature, and straw incorporation, Global Biogeochem. Cycles, 5, 335–350, https://doi.org/10.1029/91GB02586, 1991.
Schleussner, C. F., Rogelj, J., Schaeffer, M., Lissner, T., Licker, R., Fischer, E. M., Knutti, R., Levermann, A., Frieler, K., and Hare, W.: Science and policy characteristics of the Paris Agreement temperature goal, Nat. Clim. Chang., 6, 827–835, https://doi.org/10.1038/nclimate3096, 2016.
Schmidt, M., Graul, R., Sartorius, H., and Levin, I.: Carbon dioxide and methane in continental Europe: a climatology, and 222 Radon-based emission estimates, Tellus B, 48, 457–473, https://doi.org/10.3402/tellusb.v48i4.15926, 1996.
Schmidt, M., Glatzel‐Mattheier, H., Sartorius, H., Worthy, D. E., and Levin, I.: Western European N2O emissions: A top‐down approach based on atmospheric observations, J. Geophys. Res.-Atmos., 106, 5507–5516, https://doi.org/10.1029/2000JD900701, 2001.
Seibert, P. and Frank, A.: Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode, Atmos. Chem. Phys., 4, 51–63, https://doi.org/10.5194/acp-4-51-2004, 2004.
Seiler, W., Holzapfel-Pschorn, A., Conrad, R., and Scharffe, D.: Methane emission from rice paddies, J. Atmos. Chem., 1, 241–268, https://doi.org/10.1007/BF00058731, 1983.
Shapiro, S. S. and Wilk, M. B.: An Analysis of Variance Test for Normality (Complete Samples), Biometrika, 52, 591, https://doi.org/10.2307/2333709, 1965.
Simpson, I. J., Thurtell, G. W., Kidd, G. E., Lin, M., Demetriades-Shah, T. H., Flitcroft, I. D., Kanemasu, E. T., Nie, D., Bronson, K. F., and Neue, H. U.: Tunable diode laser measurements of methane fluxes from an irrigated rice paddy field in the Philippines, J. Geophys. Res.-Atmos., 100, 7283–7290, https://doi.org/10.1029/94JD03326, 1995.
Skamarock, W. C., Klemp, J. B., Dudhia, J. B., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A description of the Advanced Research WRF Model Version 4, NCAR Tech. Note, June, 113, https://doi.org/10.5065/1dfh-6p97, 2021.
Skeie, R. B., Hodnebrog, Ø., and Myhre, G.: Trends in atmospheric methane concentrations since 1990 were driven and modified by anthropogenic emissions, Commun. Earth Environ., 4, 1–14, https://doi.org/10.1038/s43247-023-00969-1, 2023.
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005.
Thompson, R. L., Stohl, A., Zhou, L. X., Dlugokencky, E., Fukuyama, Y., Tohjima, Y., Kim, S. -Y., Lee, H., Nisbet, E. G., Fisher, R. E., Lowry, D., Weiss, R. F., Prinn, R. G., O'Doherty, S., Young, D., and White, J. W. C.: Methane emissions in East Asia for 2000–2011 estimated using an atmospheric Bayesian inversion, J. Geophys. Res.-Atmos., 120, 4352–4369, https://doi.org/10.1002/2014JD022394, 2015.
Valdenebro, V., Gangoiti, G., Albizuri, A., Alonso, L., Navazo, M., García, J. A., Iza, J., and Millán, M. M.: Build-up and decay of two ozone episodes through northern Iberia and southern France – An inter-regional transport analysis, Atmos. Environ., 45, 1591–1603, https://doi.org/10.1016/j.atmosenv.2010.12.031, 2011.
Vargas, A., Arnold, D., Adame, J. A., Grossi, C., Hernández-Ceballos, M. A., and Bolivar, J. P.: Analysis of the vertical radon structure at the spanish “El arenosillo” tower station, J. Environ. Radioact., 139, 1–17, https://doi.org/10.1016/j.jenvrad.2014.09.018, 2015.
Vogel, F. R., Ishizawa, M., Chan, E., Chan, D., Hammer, S., Levin, I., and Worthy, D. E. J.: Regional non-CO2 greenhouse gas fluxes inferred from atmospheric measurements in Ontario, Canada, J. Integr. Environ. Sci., 9, 41–55, https://doi.org/10.1080/1943815X.2012.691884, 2012.
Wang, J., Akiyama, H., Yagi, K., and Yan, X.: Controlling variables and emission factors of methane from global rice fields, Atmos. Chem. Phys., 18, 10419–10431, https://doi.org/10.5194/acp-18-10419-2018, 2018.
Wassmann, R., Neueu, H.-U., Lantin, R. S., Buendia, L. V., and Rennenberg, H.: Characterization of methane emissions from rice fields in Asia. I. Comparison among field sites in five countries, Methane Emiss. from Major Rice Ecosyst. Asia, 4, 1–12, https://doi.org/10.1007/978-94-010-0898-3_1, 2000.
Wassmann, R., Alberto, M. C., Tirol-Padre, A., Hoang, N. T., Romasanta, R., Centeno, C. A., and Sander, B. O.: Increasing sensitivity of methane emission measurements in rice through deployment of `closed chambers' at nighttime, PLoS One, 13, e0191352, https://doi.org/10.1371/journal.pone.0191352, 2018.
Weber, T., Wiseman, N. A., and Kock, A.: Global ocean methane emissions dominated by shallow coastal waters, Nat. Commun., 10, 1–10, https://doi.org/10.1038/s41467-019-12541-7, 2019.
Weller, S., Kraus, D., Butterbach-Bahl, K., Wassmann, R., Tirol-Padre, A., and Kiese, R.: Diurnal patterns of methane emissions from paddy rice fields in the Philippines, J. Plant Nutr. Soil Sci., 178, 755–767, https://doi.org/10.1002/jpln.201500092, 2015.
Wilkening, M. H. and Clements, W. E.: Radon 222 from the ocean surface, J. Geophys. Res., 80, 3828–3830, https://doi.org/10.1029/JC080i027p03828, 1975.
Williams, I. N., Riley, W. J., Torn, M. S., Berry, J. A., and Biraud, S. C.: Using boundary layer equilibrium to reduce uncertainties in transport models and CO2 flux inversions, Atmos. Chem. Phys., 11, 9631–9641, https://doi.org/10.5194/acp-11-9631-2011, 2011.
Wuebbles, D. J. and Hayhoe, K.: Atmospheric methane and global change, Earth-Sci. Rev., 57, 177–210, https://doi.org/10.1016/S0012-8252(01)00062-9, 2002.
Yan, X., Yagi, K., Akiyama, H., and Akimoto, H.: Statistical analysis of the major variables controlling methane emission from rice fields, Glob. Chang. Biol., 11, 1131–1141, https://doi.org/10.1111/j.1365-2486.2005.00976.x, 2005.
Yan, X., Akiyama, H., Yagi, K., and Akimoto, H.: Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change guidelines, Global Biogeochem. Cycles, 23, 2, https://doi.org/10.1029/2008GB003299, 2009.
Yver-Kwok, C., Ramonet, M., Rivier, L., Lian, J., Grossi, C., Curcoll, R., Kikaj, D., Chung, E., and Karstens, U.: Six years of greenhouse gas fluxes at Saclay, France, estimated with the Radon Tracer Method, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-3107, 2024.
Zahorowski, W., Griffiths, A. D., Chambers, S. D., Williams, A. G., Law, R. M., Crawford, J., and Werczynski, S.: Constraining annual and seasonal radon-222 flux density from the Southern Ocean using radon-222 concentrations in the boundary layer at Cape Grim, Tellus B, 65, 19622, https://doi.org/10.3402/tellusb.v65i0.19622, 2013.
Zhang, B., Tian, H., Ren, W., Tao, B., Lu, C., Yang, J., Banger, K., and Pan, S.: Methane emissions from global rice fields: Magnitude, spatiotemporal patterns, and environmental controls, Global Biogeochem. Cycles, 30, 1246–1263, https://doi.org/10.1002/2016GB005381, 2016.
Short summary
In this work, the methane emissions from the rice crops of the Ebro Delta were estimated with the Radon Tracer Method, using back trajectories and radon and methane observations. Estimated fluxes show a strong seasonality with maximums in October, corresponding with the period of harvest and straw incorporation. The estimated annual methane emission was about 262.8 kg CH4 ha‑1. Results were compared with fluxes obtained with static chambers showing strong agreement between both methodologies.
In this work, the methane emissions from the rice crops of the Ebro Delta were estimated with...
Altmetrics
Final-revised paper
Preprint