Articles | Volume 25, issue 12
https://doi.org/10.5194/acp-25-6197-2025
https://doi.org/10.5194/acp-25-6197-2025
Research article
 | 
25 Jun 2025
Research article |  | 25 Jun 2025

Toward a learnable Artificial Intelligence Model for Aerosol Chemistry and Interactions (AIMACI) based on the Multi-Head Self-Attention algorithm

Zihan Xia, Chun Zhao, Zining Yang, Qiuyan Du, Jiawang Feng, Chen Jin, Jun Shi, and Hong An

Related authors

Comprehensive evaluation of iAMAS (v1.0) in simulating Antarctic meteorological fields with observations and reanalysis
Qike Yang, Chun Zhao, Jiawang Feng, Gudongze Li, Jun Gu, Zihan Xia, Mingyue Xu, and Zining Yang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-229,https://doi.org/10.5194/gmd-2024-229, 2025
Revised manuscript accepted for GMD
Short summary
Modeling urban pollutant transport at multi-resolutions: Impacts of turbulent mixing
Zining Yang, Qiuyan Du, Qike Yang, Chun Zhao, Gudongze Li, Zihan Xia, Mingyue Xu, Renmin Yuan, Yubin Li, Kaihui Xia, Jun Gu, and Jiawang Feng
EGUsphere, https://doi.org/10.5194/egusphere-2024-3890,https://doi.org/10.5194/egusphere-2024-3890, 2025
Short summary

Related subject area

Subject: Aerosols | Research Activity: Machine Learning | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Explainable ensemble machine learning revealing enhanced anthropogenic emissions of particulate nitro-aromatic compounds in eastern China
Min Li, Xinfeng Wang, Tianshuai Li, Yujia Wang, Yueru Jiang, Yujiao Zhu, Wei Nie, Rui Li, Jian Gao, Likun Xue, Qingzhu Zhang, and Wenxing Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-165,https://doi.org/10.5194/egusphere-2025-165, 2025
Short summary
Data-driven modeling of environmental factors influencing Arctic methanesulfonic acid aerosol concentrations
Jakob Pernov, William Aeberhard, Michele Volpi, Eliza Harris, Benjamin Hohermuth, Sakiko Ishino, Ragnhild Bieltvedt Skeie, Stephan Henne, Ulas Im, Patricia Quinn, Lucia Upchurch, and Julia Schmale
EGUsphere, https://doi.org/10.5194/egusphere-2024-3379,https://doi.org/10.5194/egusphere-2024-3379, 2024
Short summary
Reduction in vehicular emissions attributable to the Covid-19 lockdown in Shanghai: insights from 5 years of monitoring-based machine learning
Meng Wang, Yusen Duan, Zhuozhi Zhang, Qi Yuan, Xinwei Li, Shuwen Han, Juntao Huo, Jia Chen, Yanfen Lin, Qingyan Fu, Tao Wang, Junji Cao, and Shun-cheng Lee
Atmos. Chem. Phys., 23, 10313–10324, https://doi.org/10.5194/acp-23-10313-2023,https://doi.org/10.5194/acp-23-10313-2023, 2023
Short summary
Capturing synoptic-scale variations in surface aerosol pollution using deep learning with meteorological data
Jin Feng, Yanjie Li, Yulu Qiu, and Fuxin Zhu
Atmos. Chem. Phys., 23, 375–388, https://doi.org/10.5194/acp-23-375-2023,https://doi.org/10.5194/acp-23-375-2023, 2023
Short summary
Decoupling impacts of weather conditions on interannual variations in concentrations of criteria air pollutants in South China – constraining analysis uncertainties by using multiple analysis tools
Yu Lin, Leiming Zhang, Qinchu Fan, He Meng, Yang Gao, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 22, 16073–16090, https://doi.org/10.5194/acp-22-16073-2022,https://doi.org/10.5194/acp-22-16073-2022, 2022
Short summary

Cited articles

Arfin, T., Pillai, A. M., Mathew, N., Tirpude, A., Bang, R., and Mondal, P.: An overview of atmospheric aerosol and their effects on human health, Environ. Sci. Pollut. Res., 30, 125347–125369, https://doi.org/10.1007/s11356-023-29652-w, 2023.  
Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q.: Accurate medium-range global weather forecasting with 3D neural networks, Nature, 619, 533–538, https://doi.org/10.1038/s41586-023-06185-3, 2023. 
Calvert, J. G., Lazrus, A., Kok, G. L., Heikes, B. G., Walega, J. G., Lind, J., and Cantrell, C. A.: Chemical mechanisms of acid generation in the troposphere, Nature, 317, 27–35, https://doi.org/10.1038/317027a0, 1985. 
Carmichael, G. R., Sandu, A., Song, C. H., He, S., Phandis, M. J., Daescu, D., Damian-Iordache, V., and Potra, F. A.: Computational Challenges of Modeling Interactions Between Aerosol and Gas Phase Processes in Large Scale Air Pollution Models, in: Large Scale Computations in Air Pollution Modelling, edited by: Zlatev, Z., Brandt, J., Builtjes, P. J. H., Carmichael, G., Dimov, I., Dongarra, J., van Dop, H., Georgiev, K., Hass, H., and Jose, R. S., Springer Netherlands, Dordrecht, 99–136, https://doi.org/10.1007/978-94-011-4570-1_10, 1999. 
Download
Short summary
Traditional numerical schemes of aerosol chemistry and interactions (ACI) in atmospheric models are computationally costly and are often simplified or omitted, introducing uncertainties. We use an AI scheme to achieve fast, accurate, and stable end-to-end simulation for full ACI within an atmospheric model, replacing numerical schemes. This innovation is expected to enhance the accuracy and efficiency of ACI simulations in climate models that would otherwise neglect or simplify ACI processes.
Share
Altmetrics
Final-revised paper
Preprint