Articles | Volume 25, issue 12
https://doi.org/10.5194/acp-25-6197-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-6197-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Toward a learnable Artificial Intelligence Model for Aerosol Chemistry and Interactions (AIMACI) based on the Multi-Head Self-Attention algorithm
Zihan Xia
Deep Space Exploration Laboratory/School of Earth and Space Sciences/CMA-USTC Laboratory of Fengyun Remote Sensing/State Key Laboratory of Fire Science/Institute of Advanced Interdisciplinary Research on High-Performance Computing Systems and Software, University of Science and Technology of China, Hefei, China
Chun Zhao
CORRESPONDING AUTHOR
Deep Space Exploration Laboratory/School of Earth and Space Sciences/CMA-USTC Laboratory of Fengyun Remote Sensing/State Key Laboratory of Fire Science/Institute of Advanced Interdisciplinary Research on High-Performance Computing Systems and Software, University of Science and Technology of China, Hefei, China
Laoshan Laboratory, Qingdao, China
CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, China
Zining Yang
Deep Space Exploration Laboratory/School of Earth and Space Sciences/CMA-USTC Laboratory of Fengyun Remote Sensing/State Key Laboratory of Fire Science/Institute of Advanced Interdisciplinary Research on High-Performance Computing Systems and Software, University of Science and Technology of China, Hefei, China
Qiuyan Du
Deep Space Exploration Laboratory/School of Earth and Space Sciences/CMA-USTC Laboratory of Fengyun Remote Sensing/State Key Laboratory of Fire Science/Institute of Advanced Interdisciplinary Research on High-Performance Computing Systems and Software, University of Science and Technology of China, Hefei, China
Jiawang Feng
Deep Space Exploration Laboratory/School of Earth and Space Sciences/CMA-USTC Laboratory of Fengyun Remote Sensing/State Key Laboratory of Fire Science/Institute of Advanced Interdisciplinary Research on High-Performance Computing Systems and Software, University of Science and Technology of China, Hefei, China
Chen Jin
Deep Space Exploration Laboratory/School of Earth and Space Sciences/CMA-USTC Laboratory of Fengyun Remote Sensing/State Key Laboratory of Fire Science/Institute of Advanced Interdisciplinary Research on High-Performance Computing Systems and Software, University of Science and Technology of China, Hefei, China
Jun Shi
School of Computer Science and Technology, University of Science and Technology of China, Hefei, 230026, China
Hong An
Laoshan Laboratory, Qingdao, China
School of Computer Science and Technology, University of Science and Technology of China, Hefei, 230026, China
Related authors
Qike Yang, Chun Zhao, Jiawang Feng, Gudongze Li, Jun Gu, Zihan Xia, Mingyue Xu, and Zining Yang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-229, https://doi.org/10.5194/gmd-2024-229, 2025
Revised manuscript accepted for GMD
Short summary
Short summary
This study presents the first comprehensive evaluation of unstructured meshes using the iAMAS model over Antarctica, encompassing both surface and upper-level meteorological fields. Comparison with ERA5 and observational data reveals that the iAMAS model performs well in simulating the Antarctic atmosphere; iAMAS demonstrates comparable, and in some cases superior, performance in simulating temperature and wind speed in East Antarctica when compared to ERA5.
Zining Yang, Qiuyan Du, Qike Yang, Chun Zhao, Gudongze Li, Zihan Xia, Mingyue Xu, Renmin Yuan, Yubin Li, Kaihui Xia, Jun Gu, and Jiawang Feng
EGUsphere, https://doi.org/10.5194/egusphere-2024-3890, https://doi.org/10.5194/egusphere-2024-3890, 2025
Short summary
Short summary
This study investigates the impact of turbulent mixing on black carbon (BC) concentrations in urban areas using WRF-Chem at 25, 5, and 1 km resolutions. Significant variations in BC and turbulent mixing occur mainly at night. Higher resolutions reduce BC overestimation due to enhanced PBL mixing coefficients and vertical wind fluxes. Small-scale eddies at higher resolutions increase BC lifetime and column concentrations. Land use and terrain variations across multi-resolutions affect PBL mixing.
Xia Wang, Tao Che, Xueyin Ruan, Shanna Yue, Jing Wang, Chun Zhao, and Lei Geng
Geosci. Model Dev., 18, 651–670, https://doi.org/10.5194/gmd-18-651-2025, https://doi.org/10.5194/gmd-18-651-2025, 2025
Short summary
Short summary
We employed the WRF-Chem model to parameterize atmospheric nitrate deposition in snow and evaluate its performance in simulating snow cover, snow depth, and concentrations of dust and nitrate using new observations from northern China. The results generally exhibit reasonable agreement with field observations in northern China, demonstrating the model's capability to simulate snow properties, including concentrations of reservoir species.
Jiawang Feng, Chun Zhao, Qiuyan Du, Zining Yang, and Chen Jin
Geosci. Model Dev., 18, 585–603, https://doi.org/10.5194/gmd-18-585-2025, https://doi.org/10.5194/gmd-18-585-2025, 2025
Short summary
Short summary
In this study, we improved the calculation of how aerosols in the air interact with radiation in WRF-Chem. The original model used a simplified method, but we developed a more accurate approach. We found that this method significantly changes the properties of the estimated aerosols and their effects on radiation, especially for dust aerosols. It also impacts the simulated weather conditions. Our work highlights the importance of correctly representing aerosol–radiation interactions in models.
Jiawang Feng, Chun Zhao, Jun Gu, Gudongze Li, Mingyue Xu, Shengfu Lin, and Jie Feng
EGUsphere, https://doi.org/10.5194/egusphere-2024-4037, https://doi.org/10.5194/egusphere-2024-4037, 2025
Short summary
Short summary
Climate models help study aerosol impacts on regional climate. However, the atmosphere's chaotic nature makes it hard to separate true aerosol impacts from chaotic effects. Our ensemble experiments show that while large-scale aerosol effects are consistent, regional aerosol impacts vary significantly among experiments. We give a formula showing the relationship between chaotic effects and ensemble sizes, emphasizing the necessity of adequate ensemble members to capture reliable aerosol impacts.
Qike Yang, Chun Zhao, Jiawang Feng, Gudongze Li, Jun Gu, Zihan Xia, Mingyue Xu, and Zining Yang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-229, https://doi.org/10.5194/gmd-2024-229, 2025
Revised manuscript accepted for GMD
Short summary
Short summary
This study presents the first comprehensive evaluation of unstructured meshes using the iAMAS model over Antarctica, encompassing both surface and upper-level meteorological fields. Comparison with ERA5 and observational data reveals that the iAMAS model performs well in simulating the Antarctic atmosphere; iAMAS demonstrates comparable, and in some cases superior, performance in simulating temperature and wind speed in East Antarctica when compared to ERA5.
Zining Yang, Qiuyan Du, Qike Yang, Chun Zhao, Gudongze Li, Zihan Xia, Mingyue Xu, Renmin Yuan, Yubin Li, Kaihui Xia, Jun Gu, and Jiawang Feng
EGUsphere, https://doi.org/10.5194/egusphere-2024-3890, https://doi.org/10.5194/egusphere-2024-3890, 2025
Short summary
Short summary
This study investigates the impact of turbulent mixing on black carbon (BC) concentrations in urban areas using WRF-Chem at 25, 5, and 1 km resolutions. Significant variations in BC and turbulent mixing occur mainly at night. Higher resolutions reduce BC overestimation due to enhanced PBL mixing coefficients and vertical wind fluxes. Small-scale eddies at higher resolutions increase BC lifetime and column concentrations. Land use and terrain variations across multi-resolutions affect PBL mixing.
Koichi Sakaguchi, L. Ruby Leung, Colin M. Zarzycki, Jihyeon Jang, Seth McGinnis, Bryce E. Harrop, William C. Skamarock, Andrew Gettelman, Chun Zhao, William J. Gutowski, Stephen Leak, and Linda Mearns
Geosci. Model Dev., 16, 3029–3081, https://doi.org/10.5194/gmd-16-3029-2023, https://doi.org/10.5194/gmd-16-3029-2023, 2023
Short summary
Short summary
We document details of the regional climate downscaling dataset produced by a global variable-resolution model. The experiment is unique in that it follows a standard protocol designed for coordinated experiments of regional models. We found negligible influence of post-processing on statistical analysis, importance of simulation quality outside of the target region, and computational challenges that our model code faced due to rapidly changing super computer systems.
Hongxia Zhu, Rui Li, Shuping Yang, Chun Zhao, Zhe Jiang, and Chen Huang
Atmos. Chem. Phys., 23, 2421–2437, https://doi.org/10.5194/acp-23-2421-2023, https://doi.org/10.5194/acp-23-2421-2023, 2023
Short summary
Short summary
The impacts of atmospheric dust aerosols and cloud dynamic conditions on precipitation vertical development in southeastern China were studied using multiple satellite observations. It was found that the precipitating drops under dusty conditions grow faster in the middle layer but slower in the upper and lower layers compared with their pristine counterparts. Quantitative estimation of the sensitivity of the precipitation top temperature to the dust aerosol optical depth is also provided.
Xueyin Ruan, Chun Zhao, Rahul A. Zaveri, Pengzhen He, Xinming Wang, Jingyuan Shao, and Lei Geng
Geosci. Model Dev., 15, 6143–6164, https://doi.org/10.5194/gmd-15-6143-2022, https://doi.org/10.5194/gmd-15-6143-2022, 2022
Short summary
Short summary
Accurate prediction of aerosol pH in chemical transport models is essential to aerosol modeling. This study examines the performance of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) on aerosol pH predictions and the sensitivities to emissions of nonvolatile cations and NH3, aerosol-phase state assumption, and heterogeneous sulfate production. Temporal evolution of aerosol pH during haze cycles in Beijing and the driving factors are also presented and discussed.
Xiaodong Wang, Chun Zhao, Mingyue Xu, Qiuyan Du, Jianqiu Zheng, Yun Bi, Shengfu Lin, and Yali Luo
Geosci. Model Dev., 15, 199–218, https://doi.org/10.5194/gmd-15-199-2022, https://doi.org/10.5194/gmd-15-199-2022, 2022
Short summary
Short summary
Regional models are widely used to investigate aerosol climatic impacts. However, there are few studies examining the sensitivities of modeling results to regional domain size. In this study, the regional model is used to study the aerosol impacts on the East Asian summer monsoon system and focus on the modeling sensitivities to domain size. This study highlights the important impacts of domain size on regional modeling results of aerosol climatic impacts, which may not be limited to East Asia.
Mingshuai Zhang, Chun Zhao, Yuhan Yang, Qiuyan Du, Yonglin Shen, Shengfu Lin, Dasa Gu, Wenjing Su, and Cheng Liu
Geosci. Model Dev., 14, 6155–6175, https://doi.org/10.5194/gmd-14-6155-2021, https://doi.org/10.5194/gmd-14-6155-2021, 2021
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) can influence atmospheric chemistry and secondary pollutant formation. This study examines the performance of different versions of the Model of Emissions of Gases and Aerosols from Nature (MEGAN) in modeling BVOCs and ozone and their sensitivities to vegetation distributions over eastern China. The results suggest more accurate vegetation distribution and measurements of BVOC emission fluxes are needed to reduce the uncertainties.
Zhuang Wang, Cheng Liu, Zhouqing Xie, Qihou Hu, Meinrat O. Andreae, Yunsheng Dong, Chun Zhao, Ting Liu, Yizhi Zhu, Haoran Liu, Chengzhi Xing, Wei Tan, Xiangguang Ji, Jinan Lin, and Jianguo Liu
Atmos. Chem. Phys., 20, 14917–14932, https://doi.org/10.5194/acp-20-14917-2020, https://doi.org/10.5194/acp-20-14917-2020, 2020
Short summary
Short summary
Significant stratification of aerosols was observed in North China. Polluted dust dominated above the PBL, and anthropogenic aerosols prevailed within the PBL, which is mainly driven by meteorological conditions. The key role of the elevated dust is to alter atmospheric thermodynamics and stability, causing the suppression of turbulence exchange and a decrease in PBL height, especially during the dissipation stage, thereby inhibiting dissipation of persistent heavy surface haze pollution.
Stefan Rahimi, Xiaohong Liu, Chun Zhao, Zheng Lu, and Zachary J. Lebo
Atmos. Chem. Phys., 20, 10911–10935, https://doi.org/10.5194/acp-20-10911-2020, https://doi.org/10.5194/acp-20-10911-2020, 2020
Short summary
Short summary
Dark particles emitted to the atmosphere can absorb sunlight and heat the air. As these particles settle, they may darken the surface, especially over snow-covered regions like the Rocky Mountains. This darkening of the surface may lead to changes in snowpack, affecting the local meteorology and hydrology. We seek to evaluate whether these light-absorbing particles more prominently affect this region through their atmospheric presence or their on-snow presence.
Meixin Zhang, Chun Zhao, Zhiyuan Cong, Qiuyan Du, Mingyue Xu, Yu Chen, Ming Chen, Rui Li, Yunfei Fu, Lei Zhong, Shichang Kang, Delong Zhao, and Yan Yang
Atmos. Chem. Phys., 20, 5923–5943, https://doi.org/10.5194/acp-20-5923-2020, https://doi.org/10.5194/acp-20-5923-2020, 2020
Short summary
Short summary
Analysis of multiple numerical experiments over the Himalayas and Tibetan Plateau (TP) shows that the complex topography results in 50 % stronger overall cross-Himalayan transport during the pre-monsoon season primarily due to the strengthened efficiency of near-surface meridional transport towards the TP, enhanced wind speed in some valleys and deeper valley channels associated with larger transported BC mass volume, which leads to 30–50 % stronger BC radiative heating over the TP.
Yi Zeng, Minghuai Wang, Chun Zhao, Siyu Chen, Zhoukun Liu, Xin Huang, and Yang Gao
Geosci. Model Dev., 13, 2125–2147, https://doi.org/10.5194/gmd-13-2125-2020, https://doi.org/10.5194/gmd-13-2125-2020, 2020
Short summary
Short summary
Dust aerosol can impact many processes of the Earth system, but large uncertainties still remain in dust simulations. In this study, we investigated dust simulation sensitivity to two dust emission schemes and three dry deposition schemes using WRF-Chem. An optimal combination of dry deposition scheme and dust emission scheme has been identified to best simulate the dust storm in comparison with observation. Our results highlight the importance of dry deposition schemes for dust simulation.
Qiuyan Du, Chun Zhao, Mingshuai Zhang, Xue Dong, Yu Chen, Zhen Liu, Zhiyuan Hu, Qiang Zhang, Yubin Li, Renmin Yuan, and Shiguang Miao
Atmos. Chem. Phys., 20, 2839–2863, https://doi.org/10.5194/acp-20-2839-2020, https://doi.org/10.5194/acp-20-2839-2020, 2020
Short summary
Short summary
Simulated diurnal PM2.5 with WRF-Chem is primarily controlled by planetary boundary layer (PBL) mixing and emission variations. Modeling bias is likely primarily due to inefficient PBL mixing of primary PM2.5 during the night. The increase in PBL mixing strength during the night can significantly reduce biases. This study underscores that more effort is needed to improve the boundary mixing processes of pollutants in models with observations of PBL structure and mixing fluxes besides PBL height.
Zhiyuan Hu, Jianping Huang, Chun Zhao, Qinjian Jin, Yuanyuan Ma, and Ben Yang
Atmos. Chem. Phys., 20, 1507–1529, https://doi.org/10.5194/acp-20-1507-2020, https://doi.org/10.5194/acp-20-1507-2020, 2020
Short summary
Short summary
This study investigates intercontinental transport of dust plums and distribution characteristics of dust at different altitudes over the Tibetan Plateau (TP). The results show that dust particles are emitted into atmosphere and then transport to the TP. The East Asian dust trasnports southward and is lifted up to the TP in northern slop, while the North Afican dust and Middle East dust transport eastward and concentrate in both northern and southern slops, then is lifted up to the TP.
Adeyemi A. Adebiyi, Jasper F. Kok, Yang Wang, Akinori Ito, David A. Ridley, Pierre Nabat, and Chun Zhao
Atmos. Chem. Phys., 20, 829–863, https://doi.org/10.5194/acp-20-829-2020, https://doi.org/10.5194/acp-20-829-2020, 2020
Short summary
Short summary
Although atmospheric dust particles produce significant impacts on the Earth system, most climate models still have difficulty representing the basic processes that affect these particles. In this study, we present new constraints on dust properties that consistently outperform the conventional climate models, when compared to independent measurements. As a result, our constraints can be used to improve climate models or serve as an alternative in constraining dust impacts on the Earth system.
Zhen Liu, Yi Ming, Chun Zhao, Ngar Cheung Lau, Jianping Guo, Massimo Bollasina, and Steve Hung Lam Yim
Atmos. Chem. Phys., 20, 223–241, https://doi.org/10.5194/acp-20-223-2020, https://doi.org/10.5194/acp-20-223-2020, 2020
Short summary
Short summary
OH and HO2 radicals are important trace constituents of the atmosphere that are closely coupled via several types of reaction. This paper describes a new laboratory method to simultaneously determine OH kinetics and HO2 yields from chemical processes. The instrument also provides some time resolution on HO2 detection allowing one to separate HO2 produced from the target reaction from HO2 arising from secondary chemistry. Examples of applications are presented.
Zhiyuan Hu, Jianping Huang, Chun Zhao, Yuanyuan Ma, Qinjian Jin, Yun Qian, L. Ruby Leung, Jianrong Bi, and Jianmin Ma
Atmos. Chem. Phys., 19, 12709–12730, https://doi.org/10.5194/acp-19-12709-2019, https://doi.org/10.5194/acp-19-12709-2019, 2019
Short summary
Short summary
This study investigates aerosol chemical compositions and relative contributions to total aerosols in the western US. The results show that trans-Pacific aerosols have a maximum concentration in the boreal spring, with the greatest contribution from dust. Over western North America, the trans-Pacific aerosols dominate the column-integrated aerosol mass and number concentration. However, near the surface, aerosols mainly originated from local emissions.
Chun Zhao, Mingyue Xu, Yu Wang, Meixin Zhang, Jianping Guo, Zhiyuan Hu, L. Ruby Leung, Michael Duda, and William Skamarock
Geosci. Model Dev., 12, 2707–2726, https://doi.org/10.5194/gmd-12-2707-2019, https://doi.org/10.5194/gmd-12-2707-2019, 2019
Short summary
Short summary
Simulations at global uniform and variable resolutions share similar characteristics of precipitation and wind in the refined region. The experiments reveal the significant impacts of resolution on simulating the distribution and intensity of precipitation and updrafts. This study provides evidence supporting the use of convection-permitting global variable-resolution simulations to study extreme precipitation.
Longtao Wu, Yu Gu, Jonathan H. Jiang, Hui Su, Nanpeng Yu, Chun Zhao, Yun Qian, Bin Zhao, Kuo-Nan Liou, and Yong-Sang Choi
Atmos. Chem. Phys., 18, 5529–5547, https://doi.org/10.5194/acp-18-5529-2018, https://doi.org/10.5194/acp-18-5529-2018, 2018
Longtao Wu, Hui Su, Olga V. Kalashnikova, Jonathan H. Jiang, Chun Zhao, Michael J. Garay, James R. Campbell, and Nanpeng Yu
Atmos. Chem. Phys., 17, 7291–7309, https://doi.org/10.5194/acp-17-7291-2017, https://doi.org/10.5194/acp-17-7291-2017, 2017
Short summary
Short summary
The WRF-Chem simulation successfully captures aerosol variations in the cold season in the San Joaquin Valley (SJV) but has poor performance in the warm season. High-resolution model simulation can better resolve nonhomogeneous distribution of anthropogenic emissions in urban areas, resulting in better simulation of aerosols in the cold season in the SJV. Poor performance of the WRF-Chem model in the warm season in the SJV is mainly due to misrepresentation of dust emission and vertical mixing.
Shi Zhong, Yun Qian, Chun Zhao, Ruby Leung, Hailong Wang, Ben Yang, Jiwen Fan, Huiping Yan, Xiu-Qun Yang, and Dongqing Liu
Atmos. Chem. Phys., 17, 5439–5457, https://doi.org/10.5194/acp-17-5439-2017, https://doi.org/10.5194/acp-17-5439-2017, 2017
Short summary
Short summary
An online climate–chemistry coupled model (WRF-Chem) is integrated for 5 years at cloud-permitting scale to quantify the impacts of urbanization-induced changes in land cover and pollutants emission on regional climate in the Yangtze River Delta region in eastern China. Urbanization over this region increases the frequency of extreme precipitation and heat wave in summer. The results could help China government in making policies in mitigating the environmental impact of urbanization.
Huan Yao, Yu Song, Mingxu Liu, Scott Archer-Nicholls, Douglas Lowe, Gordon McFiggans, Tingting Xu, Pin Du, Jianfeng Li, Yusheng Wu, Min Hu, Chun Zhao, and Tong Zhu
Atmos. Chem. Phys., 17, 5205–5219, https://doi.org/10.5194/acp-17-5205-2017, https://doi.org/10.5194/acp-17-5205-2017, 2017
David A. Ridley, Colette L. Heald, Jasper F. Kok, and Chun Zhao
Atmos. Chem. Phys., 16, 15097–15117, https://doi.org/10.5194/acp-16-15097-2016, https://doi.org/10.5194/acp-16-15097-2016, 2016
Short summary
Short summary
Mineral dust aerosol affects climate through interaction with radiation and clouds, human health through contribution to particulate matter, and ecosystem health through nutrient transport and deposition. In this study, we use satellite and in situ retrievals to derive an observational estimate of the global dust AOD with which evaluate modeled dust AOD. Differences in the seasonality and regional distribution of dust AOD between observations and models are highlighted.
Chun Zhao, Maoyi Huang, Jerome D. Fast, Larry K. Berg, Yun Qian, Alex Guenther, Dasa Gu, Manish Shrivastava, Ying Liu, Stacy Walters, Gabriele Pfister, Jiming Jin, John E. Shilling, and Carsten Warneke
Geosci. Model Dev., 9, 1959–1976, https://doi.org/10.5194/gmd-9-1959-2016, https://doi.org/10.5194/gmd-9-1959-2016, 2016
Short summary
Short summary
In this study, the latest version of MEGAN is coupled within CLM4 in WRF-Chem. In this implementation, MEGAN shares a consistent vegetation map with CLM4. This improved modeling framework is used to investigate the impact of two land surface schemes on BVOCs and examine the sensitivity of BVOCs to vegetation distributions in California. This study indicates that more effort is needed to obtain the most appropriate and accurate land cover data sets for climate and air quality models.
Zhiyuan Hu, Chun Zhao, Jianping Huang, L. Ruby Leung, Yun Qian, Hongbin Yu, Lei Huang, and Olga V. Kalashnikova
Geosci. Model Dev., 9, 1725–1746, https://doi.org/10.5194/gmd-9-1725-2016, https://doi.org/10.5194/gmd-9-1725-2016, 2016
Short summary
Short summary
This study conducts the simulation of WRF-Chem with the quasi-global configuration for 2010–2014, and evaluates the simulation with multiple observation datasets for the first time. This study demonstrates that the WRF-Chem quasi-global simulation can be used for investigating trans-Pacific transport of aerosols and providing reasonable inflow chemical boundaries for the western USA to further understand the impact of transported pollutants on the regional air quality and climate.
Kai Zhang, Chun Zhao, Hui Wan, Yun Qian, Richard C. Easter, Steven J. Ghan, Koichi Sakaguchi, and Xiaohong Liu
Geosci. Model Dev., 9, 607–632, https://doi.org/10.5194/gmd-9-607-2016, https://doi.org/10.5194/gmd-9-607-2016, 2016
Short summary
Short summary
A sub-grid treatment based on Weibull distribution is introduced to CAM5 to take into account the impact of unresolved variability of surface wind speed on sea salt and dust emissions. Simulations show that sub-grid wind variability has relatively small impacts on the global mean sea salt emissions, but considerable influence on dust emissions. Dry convective eddies and mesoscale flows associated with complex topography are the major causes of dust emission enhancement.
Y. Feng, V. R. Kotamarthi, R. Coulter, C. Zhao, and M. Cadeddu
Atmos. Chem. Phys., 16, 247–264, https://doi.org/10.5194/acp-16-247-2016, https://doi.org/10.5194/acp-16-247-2016, 2016
Short summary
Short summary
Aerosol radiative effects are of great importance for climate studies over South Asia, such as the weakening of the South Asian monsoon in the 20th century. This study reveals the altitude dependence of commonly underestimated aerosol radiative properties over this region. It further demonstrates the importance of constraining aerosol vertical distributions and partitioning of scattering vs absorbing aerosols in simulating the subsequent regional dynamical and hydrological responses to aerosols.
C. Zhao, Z. Hu, Y. Qian, L. Ruby Leung, J. Huang, M. Huang, J. Jin, M. G. Flanner, R. Zhang, H. Wang, H. Yan, Z. Lu, and D. G. Streets
Atmos. Chem. Phys., 14, 11475–11491, https://doi.org/10.5194/acp-14-11475-2014, https://doi.org/10.5194/acp-14-11475-2014, 2014
S. Yu, R. Mathur, J. Pleim, D. Wong, R. Gilliam, K. Alapaty, C. Zhao, and X. Liu
Atmos. Chem. Phys., 14, 11247–11285, https://doi.org/10.5194/acp-14-11247-2014, https://doi.org/10.5194/acp-14-11247-2014, 2014
H. Wan, P. J. Rasch, K. Zhang, Y. Qian, H. Yan, and C. Zhao
Geosci. Model Dev., 7, 1961–1977, https://doi.org/10.5194/gmd-7-1961-2014, https://doi.org/10.5194/gmd-7-1961-2014, 2014
C. Zhao, X. Liu, Y. Qian, J. Yoon, Z. Hou, G. Lin, S. McFarlane, H. Wang, B. Yang, P.-L. Ma, H. Yan, and J. Bao
Atmos. Chem. Phys., 13, 10969–10987, https://doi.org/10.5194/acp-13-10969-2013, https://doi.org/10.5194/acp-13-10969-2013, 2013
C. Zhao, S. Chen, L. R. Leung, Y. Qian, J. F. Kok, R. A. Zaveri, and J. Huang
Atmos. Chem. Phys., 13, 10733–10753, https://doi.org/10.5194/acp-13-10733-2013, https://doi.org/10.5194/acp-13-10733-2013, 2013
S. Kalenderski, G. Stenchikov, and C. Zhao
Atmos. Chem. Phys., 13, 1999–2014, https://doi.org/10.5194/acp-13-1999-2013, https://doi.org/10.5194/acp-13-1999-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Machine Learning | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Explainable ensemble machine learning revealing enhanced anthropogenic emissions of particulate nitro-aromatic compounds in eastern China
Data-driven modeling of environmental factors influencing Arctic methanesulfonic acid aerosol concentrations
Reduction in vehicular emissions attributable to the Covid-19 lockdown in Shanghai: insights from 5 years of monitoring-based machine learning
Capturing synoptic-scale variations in surface aerosol pollution using deep learning with meteorological data
Decoupling impacts of weather conditions on interannual variations in concentrations of criteria air pollutants in South China – constraining analysis uncertainties by using multiple analysis tools
Min Li, Xinfeng Wang, Tianshuai Li, Yujia Wang, Yueru Jiang, Yujiao Zhu, Wei Nie, Rui Li, Jian Gao, Likun Xue, Qingzhu Zhang, and Wenxing Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-165, https://doi.org/10.5194/egusphere-2025-165, 2025
Short summary
Short summary
By integrating field measurements with interpretable ensemble machine learning framework, we comprehensively identified key driving factors of nitro-aromatic compounds (NACs), demonstrated complex interrelationships, and quantified their contributions across different locations. This work provides a reliable modelling approach for recognizing causes of NACs pollution, enhances our understanding on variations of atmospheric NACs, and highlights the necessity of strengthening emission controls.
Jakob Pernov, William Aeberhard, Michele Volpi, Eliza Harris, Benjamin Hohermuth, Sakiko Ishino, Ragnhild Bieltvedt Skeie, Stephan Henne, Ulas Im, Patricia Quinn, Lucia Upchurch, and Julia Schmale
EGUsphere, https://doi.org/10.5194/egusphere-2024-3379, https://doi.org/10.5194/egusphere-2024-3379, 2024
Short summary
Short summary
MSAp is a vital part of the Arctic climate system. Numerical models struggle to reproduce the seasonal cycle of MSAp. We evaluate three numerical models and one reanalysis product’s ability to simulate MSAp. We develop data-driven models for MSAp at four High Arctic stations. The data-driven models outperform the numerical models and reanalysis product and identified precursor source, chemical processing, and removal-related features as being important for modeling MSAp.
Meng Wang, Yusen Duan, Zhuozhi Zhang, Qi Yuan, Xinwei Li, Shuwen Han, Juntao Huo, Jia Chen, Yanfen Lin, Qingyan Fu, Tao Wang, Junji Cao, and Shun-cheng Lee
Atmos. Chem. Phys., 23, 10313–10324, https://doi.org/10.5194/acp-23-10313-2023, https://doi.org/10.5194/acp-23-10313-2023, 2023
Short summary
Short summary
Hourly elemental carbon (EC) and NOx were continuously measured for 5 years (2016–2020) at a sampling site near a highway in western Shanghai. We use a machine learning model to rebuild the measured EC and NOx, and a business-as-usual (BAU) scenario was assumed in 2020 and compared with the measured EC and NOx.
Jin Feng, Yanjie Li, Yulu Qiu, and Fuxin Zhu
Atmos. Chem. Phys., 23, 375–388, https://doi.org/10.5194/acp-23-375-2023, https://doi.org/10.5194/acp-23-375-2023, 2023
Short summary
Short summary
It is important to use weather data to estimate aerosol concentrations. Here, a weather index for aerosol concentration based on deep learning was developed, linking weather and short-term variations in aerosol concentrations over China. The index provides better performance than chemical transport model simulation and other data-based estimation approaches. It can be used as a robust tool for estimating daily variations in aerosol concentrations.
Yu Lin, Leiming Zhang, Qinchu Fan, He Meng, Yang Gao, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 22, 16073–16090, https://doi.org/10.5194/acp-22-16073-2022, https://doi.org/10.5194/acp-22-16073-2022, 2022
Short summary
Short summary
In this study, we analyzed 7-year (from May 2014 to April 2021) concentration data of six criteria air pollutants (PM2.5, PM10, O3, NO2, CO and SO2) as well as the sum of NO2 and O3 in six cities in South China. Three different analysis methods were used to identify emission-driven interannual variations and perturbations from varying weather conditions. In addition, a self-developed method was further introduced to constrain analysis uncertainties.
Cited articles
Arfin, T., Pillai, A. M., Mathew, N., Tirpude, A., Bang, R., and Mondal, P.: An overview of atmospheric aerosol and their effects on human health, Environ. Sci. Pollut. Res., 30, 125347–125369, https://doi.org/10.1007/s11356-023-29652-w, 2023.
Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher, O., Carslaw, K. S., Christensen, M., Daniau, A.-L., Dufresne, J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J. M., Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D. T., Myhre, G., Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y., Schulz, M., Schwartz, S. E., Sourdeval, O., Storelvmo, T., Toll, V., Winker, D., and Stevens, B.: Bounding Global Aerosol Radiative Forcing of Climate Change, Rev. Geophys., 58, e2019RG000660, https://doi.org/10.1029/2019RG000660, 2020.
Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q.: Accurate medium-range global weather forecasting with 3D neural networks, Nature, 619, 533–538, https://doi.org/10.1038/s41586-023-06185-3, 2023.
Calvert, J. G., Lazrus, A., Kok, G. L., Heikes, B. G., Walega, J. G., Lind, J., and Cantrell, C. A.: Chemical mechanisms of acid generation in the troposphere, Nature, 317, 27–35, https://doi.org/10.1038/317027a0, 1985.
Carmichael, G. R., Sandu, A., Song, C. H., He, S., Phandis, M. J., Daescu, D., Damian-Iordache, V., and Potra, F. A.: Computational Challenges of Modeling Interactions Between Aerosol and Gas Phase Processes in Large Scale Air Pollution Models, in: Large Scale Computations in Air Pollution Modelling, edited by: Zlatev, Z., Brandt, J., Builtjes, P. J. H., Carmichael, G., Dimov, I., Dongarra, J., van Dop, H., Georgiev, K., Hass, H., and Jose, R. S., Springer Netherlands, Dordrecht, 99–136, https://doi.org/10.1007/978-94-011-4570-1_10, 1999.
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E., and Hofmann, D. J.: Climate Forcing by Anthropogenic Aerosols, Science, 255, 423–430, https://doi.org/10.1126/science.255.5043.423, 1992.
Du, Q., Zhao, C., Zhang, M., Dong, X., Chen, Y., Liu, Z., Hu, Z., Zhang, Q., Li, Y., Yuan, R., and Miao, S.: Modeling diurnal variation of surface PM2.5 concentrations over East China with WRF-Chem: impacts from boundary-layer mixing and anthropogenic emission, Atmos. Chem. Phys., 20, 2839–2863, https://doi.org/10.5194/acp-20-2839-2020, 2020.
Ebel, A., Memmesheimer, M., Friese, E., Jakobs, H. J., Feldmann, H., Kessler, C., and Piekorz, G.: Long-Term Atmospheric Aerosol Simulations – Computational and Theoretical Challenges, in: Large-Scale Scientific Computing, Berlin, Heidelberg, 490–497, https://doi.org/10.1007/11666806_56, 2006.
Fuzzi, S., Baltensperger, U., Carslaw, K., Decesari, S., Denier van der Gon, H., Facchini, M. C., Fowler, D., Koren, I., Langford, B., Lohmann, U., Nemitz, E., Pandis, S., Riipinen, I., Rudich, Y., Schaap, M., Slowik, J. G., Spracklen, D. V., Vignati, E., Wild, M., Williams, M., and Gilardoni, S.: Particulate matter, air quality and climate: lessons learned and future needs, Atmos. Chem. Phys., 15, 8217–8299, https://doi.org/10.5194/acp-15-8217-2015, 2015.
Geng, G., Liu, Y., Liu, Y., Liu, S., Cheng, J., Yan, L., Wu, N., Hu, H., Tong, D., Zheng, B., Yin, Z., He, K., and Zhang, Q.: Efficacy of China’s clean air actions to tackle PM2.5 pollution between 2013 and 2020, Nat. Geosci., 17, 987–994, https://doi.org/10.1038/s41561-024-01540-z, 2024 (data available at http://meicmodel.org.cn/?page_id=560, last access: 20 June 2025).
Gneiting, T.: Making and Evaluating Point Forecasts, J. Am. Stat. Assoc., 106, 746–762, https://doi.org/10.1198/jasa.2011.r10138, 2011.
Gu, J., Feng, J., Hao, X., Fang, T., Zhao, C., An, H., Chen, J., Xu, M., Han, W., Yang, C., Li, F., and Chen, D.: Establishing a non-hydrostatic global atmospheric modeling system at 3-km horizontal resolution with aerosol feedbacks on the Sunway supercomputer of China, Sci. Bull., 67, 1170–1181, https://doi.org/10.1016/j.scib.2022.03.009, 2022.
Hodas, N., Sullivan, A. P., Skog, K., Keutsch, F. N., Collett, J. L. Jr., Decesari, S., Facchini, M. C., Carlton, A. G., Laaksonen, A., and Turpin, B. J.: Aerosol Liquid Water Driven by Anthropogenic Nitrate: Implications for Lifetimes of Water-Soluble Organic Gases and Potential for Secondary Organic Aerosol Formation, Environ. Sci. Technol., 48, 11127–11136, https://doi.org/10.1021/es5025096, 2014.
Hu, Z., Huang, J., Zhao, C., Bi, J., Jin, Q., Qian, Y., Leung, L. R., Feng, T., Chen, S., and Ma, J.: Modeling the contributions of Northern Hemisphere dust sources to dust outflow from East Asia, Atmos. Environ., 202, 234–243, https://doi.org/10.1016/j.atmosenv.2019.01.022, 2019.
Keller, C. A. and Evans, M. J.: Application of random forest regression to the calculation of gas-phase chemistry within the GEOS-Chem chemistry model v10, Geosci. Model Dev., 12, 1209–1225, https://doi.org/10.5194/gmd-12-1209-2019, 2019.
Kelp, M. M., Tessum, C. W., and Marshall, J. D.: Orders-of-magnitude speedup in atmospheric chemistry modeling through neural network-based emulation, arXiv, https://doi.org/10.48550/arXiv.1808.03874, 2018.
Kelp, M. M., Jacob, D. J., Kutz, J. N., Marshall, J. D., and Tessum, C. W.: Toward Stable, General Machine-Learned Models of the Atmospheric Chemical System, J. Geophys. Res.-Atmos., 125, e2020JD032759, https://doi.org/10.1029/2020JD032759, 2020.
Kelp, M. M., Jacob, D. J., Lin, H., and Sulprizio, M. P.: An Online-Learned Neural Network Chemical Solver for Stable Long-Term Global Simulations of Atmospheric Chemistry, J. Adv. Model. Earth Sy., 14, e2021MS002926, https://doi.org/10.1029/2021MS002926, 2022.
Landgrebe, J. D. and Pratsinis, S. E.: A discrete-sectional model for particulate production by gas-phase chemical reaction and aerosol coagulation in the free-molecular regime, J. Colloid Interf. Sci., 139, 63–86, https://doi.org/10.1016/0021-9797(90)90445-T, 1990.
Lee, L. A., Reddington, K., and Carslaw, S.: On the relationship between aerosol model uncertainty and radiative forcing uncertainty, P. Natl. Acad. Sci. USA, 113, 5820–5827, https://doi.org/10.1073/pnas.1507050113, 2016.
Li, J., Carlson, B. E., Yung, Y. L., Lv, D., Hansen, J., Penner, J. E., Liao, H., Ramaswamy, V., Kahn, R. A., Zhang, P., Dubovik, O., Ding, A., Lacis, A. A., Zhang, L., and Dong, Y.: Scattering and absorbing aerosols in the climate system, Nat. Rev. Earth Environ., 3, 363–379, https://doi.org/10.1038/s43017-022-00296-7, 2022.
Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., Man, H., Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review, Nat. Sci. Rev., 4, 834–866, https://doi.org/10.1093/nsr/nwx150, 2017.
Liu, C., Zhang, H., Cheng, Z., Shen, J., Zhao, J., Wang, Y., Wang, S., and Cheng, Y.: Emulation of an atmospheric gas-phase chemistry solver through deep learning: Case study of Chinese Mainland, Atmos. Pollut. Res., 12, 101079, https://doi.org/10.1016/j.apr.2021.101079, 2021.
Liu, Y., Wu, Z., Huang, X., Shen, H., Bai, Y., Qiao, K., Meng, X., Hu, W., Tang, M., and He, L.: Aerosol Phase State and Its Link to Chemical Composition and Liquid Water Content in a Subtropical Coastal Megacity, Environ. Sci. Technol., 53, 5027–5033, https://doi.org/10.1021/acs.est.9b01196, 2019.
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B.: Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows, Proceedings of the IEEE/CVF International Conference on Computer Vision, in: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 9992–10002, IEEE Computer Society, Los Alamitos, CA, USA, https://doi.org/10.1109/ICCV48922.2021.00986, 2021.
Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a review, Atmos. Chem. Phys., 5, 715–737, https://doi.org/10.5194/acp-5-715-2005, 2005.
NCEP: NCEP FNL operational model global tropospheric analyses, continuing from July 1999, [Dataset], Research Data Archive at the National Center for Atmosp Ncep: NCEP FNL operational model global tropospheric analyses, continuing from July 1999, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], https://doi.org/10.5065/D6M043C6, 2000.
Nguyen, T. K. V., Zhang, Q., Jimenez, J. L., Pike, M., and Carlton, A. G.: Liquid Water: Ubiquitous Contributor to Aerosol Mass, Environ. Sci. Technol. Lett., 3, 257–263, https://doi.org/10.1021/acs.estlett.6b00167, 2016.
Parrish, D. D., Law, K. S., Staehelin, J., Derwent, R., Cooper, O. R., Tanimoto, H., Volz-Thomas, A., Gilge, S., Scheel, H.-E., Steinbacher, M., and Chan, E.: Long-term changes in lower tropospheric baseline ozone concentrations at northern mid-latitudes, Atmos. Chem. Phys., 12, 11485–11504, https://doi.org/10.5194/acp-12-11485-2012, 2012.
Penkett, S. A., Jones, B. M. R., Brich, K. A., and Eggleton, A. E. J.: The importance of atmospheric ozone and hydrogen peroxide in oxidising sulphur dioxide in cloud and rainwater, Atmos. Environ., 13, 123–137, https://doi.org/10.1016/0004-6981(79)90251-8, 1979.
Pöschl, U.: Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects, Angew. Chem. Int. Edit., 44, 7520–7540, https://doi.org/10.1002/anie.200501122, 2005.
Pratsinis, S. E.: Simultaneous nucleation, condensation, and coagulation in aerosol reactors, J. Colloid Interf. Sci., 124, 416–427, https://doi.org/10.1016/0021-9797(88)90180-4, 1988.
Ruan, X., Zhao, C., Zaveri, R. A., He, P., Wang, X., Shao, J., and Geng, L.: Simulations of aerosol pH in China using WRF-Chem (v4.0): sensitivities of aerosol pH and its temporal variations during haze episodes, Geosci. Model Dev., 15, 6143–6164, https://doi.org/10.5194/gmd-15-6143-2022, 2022.
Saiz-Lopez, A., Borge, R., Notario, A., Adame, J. A., Paz, D. de la, Querol, X., Artíñano, B., Gómez-Moreno, F. J., and Cuevas, C. A.: Unexpected increase in the oxidation capacity of the urban atmosphere of Madrid, Spain, Sci. Rep., 7, 45956, https://doi.org/10.1038/srep45956, 2017.
Sandu, A., Verwer, J. G., Blom, J. G., Spee, E. J., Carmichael, G. R., and Potra, F. A.: Benchmarking stiff ode solvers for atmospheric chemistry problems II: Rosenbrock solvers, Atmos. Environ., 31, 3459–3472, https://doi.org/10.1016/S1352-2310(97)83212-8, 1997a.
Sandu, A., Verwer, J. G., Van Loon, M., Carmichael, G. R., Potra, F. A., Dabdub, D., and Seinfeld, J. H.: Benchmarking stiff ode solvers for atmospheric chemistry problems – I. implicit vs explicit, Atmos. Environ., 31, 3151–3166, https://doi.org/10.1016/S1352-2310(97)00059-9, 1997b.
Sharma, H., Shrivastava, M., and Singh, B.: Physics informed deep neural network embedded in a chemical transport model for the Amazon rainforest, npj Clim. Atmos. Sci., 6, 1–10, https://doi.org/10.1038/s41612-023-00353-y, 2023.
Spracklen, D. V., Carslaw, K. S., Merikanto, J., Mann, G. W., Reddington, C. L., Pickering, S., Ogren, J. A., Andrews, E., Baltensperger, U., Weingartner, E., Boy, M., Kulmala, M., Laakso, L., Lihavainen, H., Kivekäs, N., Komppula, M., Mihalopoulos, N., Kouvarakis, G., Jennings, S. G., O'Dowd, C., Birmili, W., Wiedensohler, A., Weller, R., Gras, J., Laj, P., Sellegri, K., Bonn, B., Krejci, R., Laaksonen, A., Hamed, A., Minikin, A., Harrison, R. M., Talbot, R., and Sun, J.: Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation, Atmos. Chem. Phys., 10, 4775–4793, https://doi.org/10.5194/acp-10-4775-2010, 2010.
Twomey, S.: Pollution and the planetary albedo, Atmos. Environ., 8, 1251–1256, https://doi.org/10.1016/0004-6981(74)90004-3, 1974.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I.: Attention is All you Need, in: Advances in Neural Information Processing Systems, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, Curran Associates Inc., Red Hook, NY, USA, 6000–6010, ISBN: 978151086096, 2017.
Wang, J. L., Curtis, J. H., Riemer, N., and West, M.: Learning Coagulation Processes With Combinatorial Neural Networks, J. Adv. Model. Earth Sy., 14, e2022MS003252, https://doi.org/10.1029/2022MS003252, 2022.
Wang, Z., Li, J., Wu, L., Zhu, M., Zhang, Y., Ye, Z., and Wang, Z.: Deep learning-based gas-phase chemical kinetics kernel emulator: Application in a global air quality simulation case, Front. Environ. Sci., 10, 955980, https://doi.org/10.3389/fenvs.2022.955980, 2022.
Wu, Z., Wang, Y., Tan, T., Zhu, Y., Li, M., Shang, D., Wang, H., Lu, K., Guo, S., Zeng, L., and Zhang, Y.: Aerosol Liquid Water Driven by Anthropogenic Inorganic Salts: Implying Its Key Role in Haze Formation over the North China Plain, Environ. Sci. Technol. Lett., 5, 160–166, https://doi.org/10.1021/acs.estlett.8b00021, 2018.
Xia, Z., Zhao, C., Yang, Z., Du, Q., Jia, W., Jin, C., Shi, J., and An, H.: Source code for Hybrid WRFCHEM with Physics and AI Schemes (Aerosol Chemistry and Interactions) (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.15702248, 2024.
Xia, Z., Zhao, C., Du, Q., Yang, Z., Zhang, M., and Qiao, L.: Advancing Sophisticated Photochemistry Simulation in Atmospheric Numerical Models with Artificial Intelligence PhotoChemistry (AIPC) Scheme Using the Feature-Mapping Subspace Self-Attention algorithm, J. Adv. Model. Earth Sy., in process, 2025.
Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical mechanism for large-scale applications, J. Geophys. Res.-Atmos., 104, 30387–30415, https://doi.org/10.1029/1999JD900876, 1999.
Zaveri, R. A., Easter, R. C., and Wexler, A. S.: A new method for multicomponent activity coefficients of electrolytes in aqueous atmospheric aerosols, J. Geophys. Res.-Atmos., 110, D02201, https://doi.org/10.1029/2004JD004681, 2005.
Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for Simulating Aerosol Interactions and Chemistry (MOSAIC), J. Geophys. Res.-Atmos., 113, D13204, https://doi.org/10.1029/2007JD008782, 2008.
Zhang, H., Sharma, G., Dhawan, S., Dhanraj, D., Li, Z., and Biswas, P.: Comparison of discrete, discrete-sectional, modal and moment models for aerosol dynamics simulations, Aerosol Sci. Technol., 54, 739–760, https://doi.org/10.1080/02786826.2020.1723787, 2020.
Zhang, M., Zhao, C., Yang, Y., Du, Q., Shen, Y., Lin, S., Gu, D., Su, W., and Liu, C.: Modeling sensitivities of BVOCs to different versions of MEGAN emission schemes in WRF-Chem (v3.6) and its impacts over eastern China, Geosci. Model Dev., 14, 6155–6175, https://doi.org/10.5194/gmd-14-6155-2021, 2021.
Zhao, C., Ruby Leung, L., Easter, R., Hand, J., and Avise, J.: Characterization of speciated aerosol direct radiative forcing over California, J. Geophys. Res.-Atmos., 118, 2372–2388, https://doi.org/10.1029/2012JD018364, 2013a.
Zhao, C., Chen, S., Leung, L. R., Qian, Y., Kok, J. F., Zaveri, R. A., and Huang, J.: Uncertainty in modeling dust mass balance and radiative forcing from size parameterization, Atmos. Chem. Phys., 13, 10733–10753, https://doi.org/10.5194/acp-13-10733-2013, 2013b.
Zhao, C., Hu, Z., Qian, Y., Ruby Leung, L., Huang, J., Huang, M., Jin, J., Flanner, M. G., Zhang, R., Wang, H., Yan, H., Lu, Z., and Streets, D. G.: Simulating black carbon and dust and their radiative forcing in seasonal snow: a case study over North China with field campaign measurements, Atmos. Chem. Phys., 14, 11475–11491, https://doi.org/10.5194/acp-14-11475-2014, 2014.
Zhao, C., Huang, M., Fast, J. D., Berg, L. K., Qian, Y., Guenther, A., Gu, D., Shrivastava, M., Liu, Y., Walters, S., Pfister, G., Jin, J., Shilling, J. E., and Warneke, C.: Sensitivity of biogenic volatile organic compounds to land surface parameterizations and vegetation distributions in California, Geosci. Model Dev., 9, 1959–1976, https://doi.org/10.5194/gmd-9-1959-2016, 2016.
Short summary
Traditional numerical schemes of aerosol chemistry and interactions (ACI) in atmospheric models are computationally costly and are often simplified or omitted, introducing uncertainties. We use an AI scheme to achieve fast, accurate, and stable end-to-end simulation for full ACI within an atmospheric model, replacing numerical schemes. This innovation is expected to enhance the accuracy and efficiency of ACI simulations in climate models that would otherwise neglect or simplify ACI processes.
Traditional numerical schemes of aerosol chemistry and interactions (ACI) in atmospheric models...
Altmetrics
Final-revised paper
Preprint