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Abstract. Simulating aerosol chemistry and interactions (ACI) is crucial in climate and atmospheric model-
ing, yet conventional numerical schemes are computationally intensive due to the stiff differential equations and
iterative methods involved. While artificial intelligence (AI) has demonstrated potential in accelerating photo-
chemistry simulations, it has not been applied for simulating the full ACI processes, which encompass not only
chemical reactions but also other processes, such as nucleation and coagulation. To bridge this gap, we develop
a novel Artificial Intelligence Model for Aerosol Chemistry and Interactions (AIMACI), focusing initially on
inorganic aerosols. Trained based on a conventional scheme, it has been validated in both offline and online
modes (referring to whether it is coupled into a three-dimensional atmospheric model). Results demonstrate
that AIMACI is not only comparable with conventional schemes in spatial distributions, temporal variations,
and evolution of particle size distribution of main aerosol species, including water content in aerosols, but also
exhibits robust generalization ability, reliably simulating one month under different environmental conditions
across four seasons despite being trained on limited data from merely 16 d. Notably, it exhibits ∼5× speedup
with a single CPU and ∼277× speedup with a single GPU, compared with conventional schemes. However, the
stability of AIMACI for year-scale global simulations remains to be seen, requiring further testing. AIMACI’s
generalization capability and its modular design suggest potential for future coupling to global climate models,
which are expected to enhance the precision and efficiency of ACI simulations in climate modeling that neglects
or simplifies ACI processes.
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1 Introduction

Atmospheric aerosols, which consist of a suspension of solid
and liquid particles in the air, exert a profound influence on
Earth’s climate system and air quality (Charlson et al., 1992).
Their multifaceted impacts are evident in their capacity to al-
ter the Earth’s radiation balance through the scattering and
absorption of solar and longwave radiation, as well as in their
role as cloud condensation nuclei that influence the forma-
tion and characteristics of clouds (Twomey, 1974; Lohmann
and Feichter, 2005; Bellouin et al., 2020; Li et al., 2022).
The presence of atmospheric aerosols extends its reach to en-
vironmental well-being, with implications that span visibil-
ity, human health, and the integrity of ecological ecosystems
(Pöschl, 2005; Arfin et al., 2023). Full aerosol chemistry and
interactions (ACI) consist of multiple highly nonlinear sub-
processes, including chemical reactions, phase equilibrium,
gas-particle partitioning, particle size growth, coagulation,
and nucleation, which have a significant impact on the con-
centration of atmospheric aerosols (Zaveri et al., 2008). Nu-
merical models stand as indispensable analytical tools, piv-
otal for comprehending the aforementioned phenomena, and
are instrumental in air quality management and the formu-
lation of mitigation strategies for climate change. However,
simulating full ACI processes within these models poses a
significant computational challenge (Carmichael et al., 1999;
Ebel et al., 2006). As quantified in Fig. S1, using the Model
for Simulating Aerosol Interactions and Chemistry (MO-
SAIC) scheme with four bins for full ACI simulation in the
Weather Research and Forecasting with Chemistry (WRF-
Chem) model accounts for 31.4 % of the total computational
time of the chemistry module. This is primarily due to the
requirement to solve a complex set of stiff nonlinear differ-
ential equations governing aerosol processes, coupled with
the use of implicit integration schemes to ensure numerical
stability (Sandu et al., 1997a, b). Furthermore, to accommo-
date the diverse methodologies for describing the evolution
of particle size distribution (PSD), some aerosol processes
may require repeated calculations (J. L. Wang et al., 2022).
For example, when employing a discrete model, the coag-
ulation collision frequency functions need to be computed
for each discrete size (Zhang et al., 2020). Consequently, the
computational burden is significantly amplified. This com-
putational intensity often creates a dilemma, as it competes
with other priorities in numerical modeling, such as enhanc-
ing spatial resolution (Gu et al., 2022), recognized as helpful
for minimizing uncertainties in numerical models. Numerous
numerical models opt for simplified or even deactivated ACI
schemes during long-term simulations, particularly in high-
resolution atmospheric and climate models, introducing con-
siderable uncertainties in the simulation results (Lee et al.,
2016; Zhang et al., 2020). Consequently, there is a pressing
need to achieve rapid, accurate, and stable simulation of ACI
within numerical models.

Over the past few decades, extensive research efforts
have been dedicated to striking a tradeoff between accuracy
and computational efficiency in simulating ACI. Researchers
have primarily approached this challenge from two distinct
perspectives: one is the exploration of various methodolo-
gies for describing the evolution of PSD. For instance, in
the discrete model, the PSD is divided into discrete sizes,
with calculations performed for each individual size. This
approach yields the most precise results but also demands
the highest computational resources (Landgrebe and Pratsi-
nis, 1990; Zhao et al., 2013b). The moment model, which
tracks the lower-order moments of an unknown aerosol dis-
tribution, is particularly well-suited for scenarios where the
size distribution is lognormal (Pratsinis, 1988). Concurrently,
researchers have been engaged in employing diverse method-
ologies to solve the system of stiff differential equations.
For example, the Multicomponent Taylor Expansion Method
(MTEM) has been developed to compute activity coefficients
in aqueous atmospheric aerosols (Zaveri et al., 2005). This
method offers an efficient noniterative solution for systems
rich in sulfate aerosols. The Adaptive Step Time-split Eu-
ler Method (ASTEM) leverages several key characteristics
of the atmospheric gas-particle partitioning, systematically
reducing stiffness while preserving the integrity of the nu-
merical solution (Zaveri et al., 2008). Despite these advance-
ments significantly improving the computational efficiency
of simulating ACI, current progress remains far from suffi-
cient.

An alternative approach is to utilize artificial intelligence
(AI) schemes to replace conventional numerical schemes in
atmospheric and climate models, which could potentially
bring about a transformative impact. Recent studies by Liu
et al. (2021) developed an AI scheme based on a Residual
Neural Network (ResNet) algorithm for simulating atmo-
spheric photochemistry, achieving a nearly 10.6× increase
in computational efficiency. However, they adopted a hy-
brid approach, combining a numerical scheme for radicals
and oxidants with an AI scheme for volatile organic com-
pounds (VOCs). Kelp et al. (2022) employed an online train-
ing strategy to refine an AI scheme for a simplified super-
fast chemistry scheme (12 species) in atmospheric models,
achieving stable simulations over a year with a nearly 5×
speedup. However, their approach required training four sep-
arate AI emulators for each season and simulation disconti-
nuities (characterized by abrupt changes in simulation errors)
were observed when switching between seasonal AI emu-
lators. Sharma et al. (2023) developed a physics-informed
AI approach to study isoprene epoxydiols in acidic aque-
ous aerosols over the Amazon rainforest, halving computa-
tional costs but requiring the training of separate AI models
for each size bin. Xia et al. (2025) have taken a step fur-
ther by developing an artificial intelligence photochemistry
(AIPC) scheme, leveraging the Multi-Head Self-Attention
(MHSA) algorithm to simulate a full complex atmospheric
photochemistry (79 species) with a unified AI model. When
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coupled with three-dimensional (3D) numerical models, their
approach not only reliably simulates the continuous spa-
tiotemporal evolution of 79 chemical species over 15 con-
secutive days but also improves computational efficiency by
77 %.

While these studies have demonstrated AI schemes’ ca-
pability to capture nonlinear chemical relationships and re-
produce complex spatiotemporal distributions, no current AI
scheme has achieved fast, accurate, and stable end-to-end
simulation of full ACI within 3D atmospheric models. Unlike
atmospheric photochemistry, which only involves chemical
reactions between species, the full ACI encompasses multi-
ple other intricate processes. Furthermore, since the PSD of
an aerosol significantly influences aerosol behavior, an ac-
curate depiction of the evolution of PSD is as critical as the
precise simulation of aerosol species concentration. These re-
quirements collectively present a heightened challenge for AI
scheme development. Consequently, the fundamental ques-
tion of whether an AI scheme can effectively replace tradi-
tional numerical schemes for full ACI simulation – while si-
multaneously achieving high fidelity in spatiotemporal dis-
tributions and substantial improvements in computational ef-
ficiency – remains unresolved in atmospheric modeling re-
search.

To bridge this gap, in this study, we have developed a novel
Artificial Intelligence Model for Aerosol Chemistry and In-
teractions, termed AIMACI, which is based on the Multi-
Head Self-Attention algorithm and has been coupled online
with a 3D numerical atmospheric model. As a first step, this
study primarily focuses on inorganic aerosols because they
constitute significant amounts of secondary aerosols glob-
ally and serve as the important driver of aerosol radiative
forcing and cloud condensation nuclei activity in current cli-
mate models. Given that the production of secondary or-
ganic aerosols (SOAs) involves significantly more complex
chemical pathways, encompassing a wider array of precursor
species and heterogeneous reaction mechanisms, the current
AIMACI does not include them. Their incorporation will be
considered in the future development of AIMACI. To vali-
date the accuracy, stability, and computational efficiency of
the AIMACI scheme, we conducted a series of experiments
for both offline simulations (where the AIMACI scheme was
not coupled to a numerical model) and online simulations
(where the AIMACI scheme was coupled to a numerical
model). The structure of this paper is organized as follows:
Sect. 2 provides a detailed description of the WRF-Chem
model and the establishment of the AIMACI. Section 3 dis-
cusses the results, and Sect. 4 presents the conclusion, out-
lining the implications of our findings for the field.

2 Methods

2.1 WRF-Chem model and MOSAIC scheme

In this study, we utilize the updated version of WRF-Chem
developed by the University of Science and Technology of
China (USTC) for conducting all simulations. This USTC
version of WRF-Chem boasts additional functionalities com-
pared with the publicly released version, including the capa-
bility to diagnose radiative forcing of aerosol species, land-
surface-coupled biogenic volatile organic compound emis-
sions, and aerosol–snow interactions (Du et al., 2020; Hu et
al., 2019; Zhang et al., 2021; Zhao et al., 2013a, b, 2014,
2016).

The conventional numerical scheme adopted in this study
for full ACI simulation is the MOSAIC scheme (Zaveri et
al., 2008), coupled with the CBM-Z (Carbon Bond Mecha-
nism version Z) photochemistry scheme (Zaveri and Peters,
1999). The MOSAIC scheme stands out for its innovative
approach to address the long-standing issues in solving the
dynamic partitioning of semivolatile inorganic gases (HNO3,
HCl, and NH3) to size-distributed atmospheric aerosol parti-
cles. It has been validated against a benchmark model version
utilizing a rigorous solver for the integration of stiff differen-
tial equations, demonstrating both computational efficiency
and high fidelity (Zaveri et al., 2008). The MOSAIC scheme
used in this study features four discrete size bins (0.039–
0.156, 0.156–0.625, 0.625–2.5, and 2.5–10.0 µm in diame-
ter) and treats all the major aerosol species important at ur-
ban, regional, and global scales, including sulfate (SO2−

4 ), ni-
trate (NO−3 ), chloride (Cl−), carbonate (CO2−

3 ), ammonium
(NH4+), sodium (Na+), calcium (Ca2+), black carbon (BC),
organic carbon (OC), other inorganic mass (OIN), mineral
dust, methanesulfonic acid (MSA), and liquid water content
of aerosol (water). It also considers the impact of marine bio-
genic sources of dimethyl sulfide on atmospheric aerosols
and some aqueous processes. The chemical reactions among
various species are detailed in Zaveri et al. (2008). However,
secondary organic aerosols (SOAs) and complex heteroge-
neous chemical processes (e.g., oxidation of dissolved S(IV)
by H2O2, O3, NO2, and O2 catalyzed by transition metal ions
(TMIs) in aerosol water, Ruan et al., 2022) are not included
in the chosen MOSAIC scheme in this study. These aspects
will be considered in future development.

2.2 Learnable AIMACI scheme

2.2.1 Scheme construction

Previous attempts to substitute conventional numerical
schemes with AI schemes have predominantly utilized sim-
ple AI algorithms, such as random forest regression (Keller
and Evans, 2019). This preference stems from the challenge
of coupling sophisticated AI algorithms, often written in
Python, with numerical models coded in Fortran. While some
studies have explored the use of advanced AI algorithms,
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such as fully connected neural networks (Sharma et al., 2023)
and residual neural networks (Kelp et al., 2018, 2020, 2022;
Liu, 2021; Z. Wang et al., 2022), these have occasionally
encountered difficulties when dealing with high-dimensional
input variables and have demonstrated limitations in accu-
rately simulating highly nonlinear systems (Xia et al., 2025).

In this study, for the first time, we attempt to use an AI
algorithm to achieve end-to-end simulation of the full ACI
within a 3D atmospheric numerical model, replacing the cho-
sen MOSAIC numerical scheme to improve computational
efficiency. Given the complexity of multiple subprocesses in-
volved in full ACI, there is a clear need for AI algorithms
with superior representational capacity for nonlinear sys-
tems. The Multi-Head Self-Attention (MHSA) mechanism,
a pivotal component of state-of-the-art transformer architec-
tures, has demonstrated exceptional performance across di-
verse domains such as natural language processing (Vaswani
et al., 2017), computer vision (Liu et al., 2021), and weather
forecasting (Bi et al., 2023). Additionally, in the develop-
ment of an artificial intelligence photochemistry scheme, Xia
et al. (2025) have highlighted that the MHSA algorithm ex-
cels in capturing the intricate chemical relationships among
different species through calculating attention weights. Not
only does it offer high accuracy and computational efficiency
but it is also less susceptible to the increase in the number
of chemical species. Building upon these advancements, this
study leverages the MHSA algorithm to develop an Artificial
Intelligence Model for Aerosol Chemistry and Interactions
(AIMACI).

Figure 1 illustrates the development strategy of the
AIMACI scheme and its integration into our hybrid atmo-
spheric model with physics and AI schemes (physics-AI hy-
brid model). The corresponding pseudocode schematic dia-
gram for replacing the traditional numerical scheme with the
AIMACI scheme in WRF-Chem is provided in Fig. S2. The
AI model architecture shown in Fig. 1 is designed with three
main components, each serving a distinct function in the sim-
ulation process:

1. Input embedding layer. This initial layer receives me-
teorological variables and chemical species as input
features. The input embedding layer is designed as a
fully connected layer, which maps the input data into a
higher-dimensional space where interdependencies be-
tween variables can be more effectively captured.

2. Integrator. As the core of the AI model, it is composed
of two identical blocks, each of which contains two sub-
layers: an attention layer and a feed-forward layer. We
apply residual connections around each of these two
sublayers, followed by layer normalization. This inte-
grator is responsible for learning the complex and high
nonlinear processes of ACI within the data and integrat-
ing them over time.

3. Output representation layer. Following the integrator,
it is also implemented as a fully connected layer. This
layer translates the processed information from the inte-
grator into chemical concentrations, providing the out-
put targets for the simulation.

Furthermore, the AI model is complemented by pre-
processing and post-processing steps, such as min-max
normalization, to constitute the comprehensive AIMACI
scheme. The trained AIMACI scheme was packaged into
a static (or dynamic) library and then coupled into WRF-
Chem, utilizing TorchScript and LibTorch tools officially
provided by PyTorch. Compared with coupling approaches
relying on third-party libraries, such as CFFI (C Foreign
Function Interface for Python), our method demonstrates two
distinct technical advantages:

1. Enhanced computational efficiency. TorchScript and
LibTorch, as core components of the PyTorch ecosys-
tem, are specifically optimized for AI model deploy-
ment in C++ environments. This optimization reduces
computational overhead compared with generic third-
party libraries.

2. Streamlined implementation. PyTorch’s official docu-
mentation provides standardized workflows for serial-
izing trained AI models into static or dynamic libraries
via TorchScript and LibTorch.

In contrast, third-party libraries lack native support for AI
model deployment, necessitating manual reimplementation
of low-level interfaces. Therefore, our coupling approach
minimizes alterations to the original codebase and offers a
lightweight, adaptable, and modular solution. It is capable of
encapsulating a wide range of complex AI algorithms and
coupling them with atmospheric and climate models.

2.2.2 Training and testing procedure

To generate the training, validation, and test datasets, we
conducted the WRF-Chem simulations over East China,
spanning the period from 1 March 2019 00:00 UTC to
19 March 2019 23:00 UTC. The simulation result was seg-
mented as follows: the initial 16 d, from 2 March 2019
00:00 UTC, were designated as the training set; the penul-
timate day served as the validation set; and the final day
constituted the test set. The simulation was configured with
a 0.2° horizontal resolution, covering 140× 105 grid cells
within the geographical bounds of 107.1 to 127.9° E and 19.7
to 47.5° N, and featured 49 vertical layers extending up to
50 hPa. A dynamic time step of 2 min and a chemical time
step of 1 h were employed. For emission and meteorologi-
cal fields, we used the Multi-resolution Emission Inventory
for China (MEIC) at 0.25°× 0.25° resolution for 2019 (Li et
al., 2017; Geng et al., 2024), and the NCEP final reanalysis
(FNL) data (NCEP, 2000) with a 1°× 1° resolution and 6 h
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Figure 1. The Artificial Intelligence Model for Aerosol Chemistry and Interactions (AIMACI) in Weather Research and Forecasting with
Chemistry (WRF-Chem). The trained AIMACI is packaged into a static/dynamic library using TorchScript and LibTorch, and can be called
by WRF-Chem through an interface to replace the numerical scheme for simulating aerosol chemistry and interactions, while the remaining
processes maintain the original numerical scheme.

temporal resolution within the simulation domain. Concen-
trations of aerosol and gas species pertinent to gas-particle
partitioning were recorded hourly, along with key meteoro-
logical variables influencing chemistry: temperature, pres-
sure, air density, and water vapor mixing ratio. A comprehen-
sive list of variables used for training the AIMACI scheme
is presented in Table 1. Due to computational cost consid-
erations, the period of the training dataset is not very long;
however, the volume of training samples is large due to the
hourly chemical time step and the fine spatial resolution of
our simulation. With 140 by 105 grid cells, 49 vertical lay-
ers, and 24 h in a day, the total number of training samples
amounts to 276 595 200 (140× 105× 49× 24× 16), reach-
ing the hundred million scale. This large dataset provides a
rich and diverse set of samples for training, ensuring that the
AI model does not suffer from a lack of convergence due to
insufficient data.

In the training of the AI model we built from scratch,
each training sample included 65 input features (4 meteo-
rological variables, 5 gas species, and 14 aerosol species
with 4 size bins) and 61 output targets (5 gas species and
14 aerosol species with 4 size bins). All features and tar-
gets underwent min-max normalization to standardize the
data. We employed the PyTorch deep learning framework for
model training, with a batch size of 2048, an initial learn-
ing rate of 0.001, and the Adam optimization algorithm. The
mean squared error (MSE) was used as the loss function.

To optimize the training process, we implemented a learning
rate decay strategy using the ReduceLROnPlateau scheduler,
along with an early stopping mechanism after 10 consecutive
epochs without improvement in the validation loss. All other
hyperparameters not mentioned are kept at their default val-
ues. For this study, we trained the model using three GPUs
for approximately 1 d, and the model achieved optimal per-
formance at epoch 32.

To comprehensively evaluate the performance of the
trained AIMACI scheme, we conducted a series of additional
experiments in both offline and online modes, as detailed in
Table 2. These experiments included the following:

1. Offline simulations were performed on the test dataset
without coupling the AIMACI scheme into WRF-
Chem, treating AIMACI as a standalone box model to
assess its single-step performance.

2. Online simulations were conducted for a 10 d continu-
ous period outside the training phase, following the cou-
pling of the AIMACI scheme into WRF-Chem, where it
is invoked at each chemical time step and interacts with
other model processes to create a dynamic and iterative
aerosol simulation.

3. A month-long online continuous simulation was carried
out under different environmental conditions across all
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four seasons to evaluate the AIMACI scheme’s general-
ization ability.

In order to quantify the performance of the AIMACI scheme,
we evaluated statistical indicators for all species and a fo-
cused examination of spatial distributions, temporal series,
and the evolution of particle size distribution (PSD) for
four representative aerosol species. The four selected species
are sulfate, nitrate, liquid water content in aerosols, and
aerosol number concentration. Sulfate, mainly from fossil
fuel emissions, contributes to acid rain, aerosol formation,
and aerosol–cloud interactions (Calvert et al., 1985; Fuzzi et
al., 2015; Penkett et al., 1979). Nitrate, formed from nitrogen
oxides, is a key aerosol component that affects air quality and
ecosystems (Parrish et al., 2012; Saiz-Lopez et al., 2017).
Liquid water content in aerosols is important for understand-
ing how particles contribute to cloud formation and precip-
itation (Hodas et al., 2014; Liu et al., 2019; Nguyen et al.,
2016; Wu et al., 2018). Aerosol number concentration serves
as a key metric for assessing aerosol loading and its direct
impact on visibility, radiation balance, and climate feedback
mechanisms (Spracklen et al., 2010). Collectively, these four
species offer a holistic perspective on the multifaceted role
of aerosols in atmospheric processes.

2.3 Evaluation metric

In this research, a comprehensive evaluation of the AIMACI
scheme’s effectiveness was conducted utilizing five recog-
nized statistical measures. For every species examined, cal-
culation of the Pearson correlation coefficient (R2), the
root mean square error (RMSE), the normalized mean bias
(NMB), the absolute error (AE), and relative error (RE) was
performed:

↑ (R2)=

(∑Nlat
i=1
∑Nlong

j=1 L (i)
(
ci,j − c

)(
ĉi,j − ĉ

))2

∑Nlat
i=1
∑Nlong

j=1 L (i)
(
ci,j − c

)2
×
∑Nlat

i=1
∑Nlong

j=1 L (i) (ĉi,j − ĉ)2

, (1)

↓ RMSE=

√√√√∑Nlat
i=1
∑Nlong

j=1 L (i)
(
ĉi,j − ci,j

)2
Nlat×Nlong

, (2)

↓ NMB=

∑Nlat
i=1
∑Nlong

j=1 L (i)
(
ĉi,j − ci,j

)
∑Nlat

i=1
∑Nlong

j=1 L (i)ci,j

, (3)

↓ AE= Ĉ−C, (4)

↓ RE=
Ĉ−C

C
. (5)

In these equations, L (i)=Nlat× cosϕi/
∑Nlat

i=1 cosϕi is the
weight at latitude ϕi , Nlat is the number of grid points in the
latitudinal direction, Nlong is the number of grid points in the
longitudinal direction, Ĉ denotes the concentration simulated

by the AIMACI scheme, C denotes the concentration simu-
lated by the MOSAIC scheme, ↑ denotes higher values are
better, ↓ denotes lower values are better.

2.4 Computational configuration

A primary incentive for coupling AI schemes into atmo-
spheric and climate models is the pursuit of substantial
computational acceleration. However, such acceleration is
not inherently guaranteed, as demonstrated by Keller and
Evans (2019). Consequently, it is imperative to meticulously
compare the temporal expenditure of AI schemes against
those of traditional numerical schemes.

In this study, we undertook a comparative analysis of the
computational time required by the numerical scheme and
the AIMACI scheme for simulating ACI in 720 300 dis-
crete grid cells, which roughly corresponds to a global sim-
ulation at 2.5°× 2.5° horizontal resolution with 72 vertical
layers. To ensure a holistic and unbiased assessment of the
speedup achieved, we measured the computational time by
averaging the duration of 24 consecutive daily simulations.
Both schemes were tested utilizing a single CPU core; we
additionally evaluated the AIMACI scheme with a GPU-
accelerated scenario using a single GPU. The computational
hardware employed in our tests consisted of an Intel-Xeon-
E5-2680 2.40 GHz CPU core and an NVIDIA A100-80G
GPU.

3 Results

3.1 Offline single-step simulations with the AIMACI
scheme

Before coupling the AIMACI scheme with the 3D numer-
ical model WRF-Chem for continuous simulation, we first
evaluated its performance on a test dataset that was separate
from the training data. The test dataset, as detailed in previ-
ous sections, comprises a series of 3D spatial outcomes taken
at 24 hourly intervals, on 19 March 2019. It provides repre-
sentative samples that span a wide range of meteorological
conditions and species concentrations. The evaluation on this
dataset provides insight into the AIMACI scheme’s perfor-
mance in various atmospheric conditions. Table 3 presents
the statistical metrics for all simulated species, offering a
comprehensive assessment of the scheme’s simulation capa-
bilities.

Quantitative evaluation across 61 output targets demon-
strates close alignment between the simulations using the
AIMACI scheme and the MOSAIC scheme (hereinafter re-
ferred to as the numerical scheme), as evidenced by an av-
erage R2 of 0.98 and an average NMB of 3.02 %. While 55
output targets, including major inorganic aerosols, such as
sulfate, nitrate, and ammonium, achieve R2

≥ 0.95, there are
still a few species exhibiting relatively poorer statistical met-
rics, particularly carbonates (Table 3). To delve deeper into
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Table 1. Input and output variables of Artificial Intelligence Model for Aerosol Chemistry and Interactions (AIMACI).

Type Input variable Output variable

Meteorological
variable

Temperature –
Air density –
Pressure –
Water vapor mixing ratio –

Gas species

H2SO4 H2SO4
HNO3 HNO3
NH3 NH3
HCl HCl
MSA MSA

Aerosol
species

SO2−
4 [size: 1–4] SO2−

4 [size: 1–4]
NO−3 [size: 1–4] NO−3 [size: 1–4]
NH+4 [size: 1–4] NH+4 [size: 1–4]
Na+ [size: 1–4] Na+ [size: 1–4]
Cl− [size: 1–4] Cl− [size: 1–4]
MSA [size: 1–4] MSA [size: 1–4]
Water [size: 1–4] Water [size: 1–4]
Num [size: 1–4] Num [size: 1–4]
OIN [size: 1–4] OIN [size: 1–4]
Dust [size: 1–4] Dust [size: 1–4]
OC [size: 1–4] OC [size: 1–4]
BC [size: 1–4] BC [size: 1–4]
Ca2+ [size: 1–4] Ca2+ [size: 1–4]
CO2−

3 [size: 1–4] CO2−
3 [size: 1–4]

Table 2. Numerical experiments conducted in this study.

Number ACI scheme Period (hourly) Type

Exp 0 MOSAIC 1–19 Mar
(train: 2–17 Mar;
validation: 18 Mar;
test: 19 Mar)

Online continuous simulation

Exp 1 AIMACI 19 Mar Offline single-step simulation
Exp 2&3 MOSAIC & AIMACI 20–30 Mar Online continuous simulation
Exp 4&5 MOSAIC & AIMACI Jan, Apr, Jul, Oct (1 month) Online continuous simulation

this observation, we have plotted the frequency histograms of
the concentration distributions for all species in the test data
(Fig. S3). Our analysis revealed that species with skewed
concentration distributions, particularly those where more
than 99 % of the values are close to zero, tend to exhibit
poorer statistical indicators. However, this does not signify
that the AIMACI scheme has entirely forfeited its predictive
capability. As demonstrated in Fig. S4, which illustrates the
simulated carbonate concentrations in the 0.625–2.5 µm par-
ticle size range (CO3_a03), the AIMACI scheme continues
to perform well in predicting concentration changes in high-
value regions. The poorer statistical indicators are primarily
attributed to the challenge of accurately forecasting the very
low values that are close to zero.

Figure 2 presents the data density and distribution for col-
umn concentration of the four key aerosol species selected
in Sect. 2.2.2. The results from the numerical scheme simu-
lations indicate that sulfate, nitrate, and liquid water content
of aerosol exhibit higher column concentrations within 0.156
to 0.625 µm (size bin 2), whereas the number concentration
is notably larger within 0.039 to 0.156 µm (size bin 1). This
indicates that, despite the greater number of smaller particles
in size bin 1, their overall contribution to the total mass is
less significant due to their lower individual mass compared
with the larger particles in size bin 2. The AIMACI scheme
effectively captures these nuanced aerosol characteristics, as
corroborated by the R2 of 1.0 depicted in Fig. 2, which un-
derscore the scheme’s fidelity in modeling aerosol behavior
across various particle sizes.
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Table 3. Statistical metrics on the test dataset of Artificial Intelligence Model for Aerosol Chemistry and Interactions (AIMACI). (The
RMSEs of different species have different units: aerosol (µg kg−1), num (kg−1), gas (ppmv).)

Number Variable R2 RMSE NMB (%) Number Variable R2 RMSE NMB (%)

1 H2SO4 0.97 2.99E−07 −2.10 32 Ca_a02 0.95 2.32E−05 −2.87
2 HNO3 1.00 3.61E−05 0.19 33 CO3_a02 0.61 2.90E−05 28.40
3 NH3 1.00 4.84E−05 3.49 34 SO4_a03 0.94 2.90E−02 0.80
4 HCl 1.00 9.68E−06 −0.41 35 NO3_a03 1.00 2.68E−02 0.89
5 MSA 0.82 1.03E−09 0.12 36 NH4_a03 1.00 5.37E−03 0.48
6 SO4_a01 1.00 1.14E−02 0.16 37 Na_a03 1.00 2.01E−03 2.44
7 NO3_a01 1.00 4.90E−02 −0.43 38 Cl_a03 1.00 4.98E−03 1.29
8 NH4_a01 1.00 1.44E−02 −0.45 39 MSA_a03 1.00 2.94E−06 2.85
9 Na_a01 1.00 6.10E−06 0.32 40 Water_a03 0.99 4.11E−01 2.03
10 Cl_a01 0.99 2.52E−03 −1.42 41 Num_a03 1.00 1.05E+05 0.45
11 MSA_a01 1.00 1.78E−05 5.70 42 OIN_a03 1.00 1.86E−02 6.34
12 Water_a01 1.00 5.60E−01 0.46 43 DUST_a03 1.00 1.30E−01 2.30
13 Num_a01 1.00 4.45E+07 −0.10 44 OC_a03 1.00 1.37E−02 −0.45
14 OIN_a01 1.00 7.98E−03 4.36 45 BC_a03 1.00 2.61E−03 −0.53
15 DUST_a01 0.95 2.47E−04 3.80 46 Ca_a03 1.00 5.28E−04 2.62
16 OC_a01 1.00 4.97E−03 0.80 47 CO3_a03 0.90 1.42E−03 88.17
17 BC_a01 1.00 1.49E−03 −0.64 48 SO4_a04 1.00 7.25E−04 0.27
18 Ca_a01 0.95 9.93E−07 −0.49 49 NO3_a04 0.99 5.11E−02 0.75
19 CO3_a01 0.79 5.02E−12 0.09 50 NH4_a04 0.98 5.62E−03 −3.21
20 SO4_a02 1.00 4.16E−02 0.38 51 Na_a04 1.00 9.19E−03 4.13
21 NO3_a02 1.00 7.04E−02 0.69 52 Cl_a04 1.00 1.13E−02 3.28
22 NH4_a02 1.00 2.31E−02 0.51 53 MSA_a04 0.79 2.00E−05 7.93
23 Na_a02 1.00 1.65E−04 0.10 54 Water_a04 0.99 1.35E+00 −3.32
24 Cl_a02 1.00 4.63E−03 −1.25 55 Num_a04 1.00 5.89E+03 2.86
25 MSA_a02 1.00 1.51E−05 3.05 56 OIN_a04 1.00 2.27E−02 3.93
26 Water_a02 0.99 1.32E+00 1.58 57 DUST_a04 1.00 8.85E−01 −4.84
27 Num_a02 1.00 9.20E+06 0.61 58 OC_a04 0.96 4.72E−04 −1.38
28 OIN_a02 1.00 4.49E−02 −1.80 59 BC_a04 0.95 1.09E−04 5.14
29 DUST_a02 1.00 5.25E−03 −0.39 60 Ca_a04 1.00 3.24E−03 1.51
30 OC_a02 1.00 4.23E−02 2.67 61 CO3_a04 0.95 1.39E−02 15.00
31 BC_a02 1.00 1.12E−02 −2.54 Average R2: 0.98; average NMB: 3.02 %

3.2 Online multi-step simulations with the AIMACI
scheme

The integration of the AIMACI scheme into 3D atmospheric
models to build a physics-AI hybrid model presents unique
challenges beyond offline single-step simulation. Online con-
tinuous simulation involves not only iterative computation
across multiple time steps but also interactions and feedback
with numerous other processes in the model. Consequently,
a thorough evaluation of the AIMACI scheme’s online simu-
lation performance is essential. We focus on its performance
across three critical dimensions:

1. Stable and accurate simulation capability. The
AIMACI scheme should accurately reproduce the
spatiotemporal and size distribution of various aerosol
species without rapid accumulation of errors during the
simulation process.

2. Robust generalization ability. The AIMACI scheme
should be applicable to scenarios beyond the training

data, such as different seasons, demonstrating its robust-
ness in a variety of environmental conditions.

3. High computational efficiency. Compared with the
conventional numerical scheme, the AIMACI scheme
should offer enhanced computational efficiency, which
is vital for high-resolution, long-term simulations.

Although these requirements are often challenging to sat-
isfy simultaneously, achieving these benchmarks is crucial
for leveraging the full potential of the AIMACI scheme in
advancing our understanding of aerosol interactions.

3.2.1 Stable and accurate simulation capability

Coupling AI schemes into numerical models for stable and
accurate simulations across multiple time steps has long been
a significant challenge. While the simulation errors for indi-
vidual species at each time step may be minimal, they can
accumulate over multiple time steps, and may even spread
to other species and physical-chemical processes, leading to
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Figure 2. The density plot of column concentration of four key aerosol species (sulfate (SO2−
4 ), nitrate (NO−3 ), liquid water content of

aerosol (water), and number concentration of aerosol (Num)) simulated by the AIMACI scheme on the test dataset. The results are calculated
by covering the region spanning from 109.1 to 125.9° E and from 22.1 to 44.9° N, with the data being averaged across the time dimension.
The black line is the identical line (y = x), and the red line is the fitted line.

chaotic simulation outcomes at the end. Typically, simula-
tions with sophisticated aerosol processes at high resolution,
such as those in WRF-Chem, are limited to a few weeks due
to computational costs. In this study, we conducted a 10 d
continuous simulation from 20 March 2019 00:00 UTC to

30 March 2019 00:00 UTC to evaluate the performance of
the AIMACI scheme in a coupled mode.

Figure 3 illustrates the spatial distribution of sulfate col-
umn concentrations across different size bins at the end of the
10 d continuous simulation (i.e., 30 March 2019 00:00 UTC),
accompanied by the temporal evolution of RMSE during the

https://doi.org/10.5194/acp-25-6197-2025 Atmos. Chem. Phys., 25, 6197–6218, 2025



6206 Z. Xia et al.: Toward a learnable artificial intelligence model for aerosol chemistry

Figure 3. Sulfate column concentration simulations across different size bins. The first and second columns depict the spatial distribution
at the 10 d continuous simulation’s end (30 March 2019 00:00 UTC), as simulated online by both the numerical scheme and the AIMACI
scheme. The third column is the absolute error between them. The fourth column shows the temporal evolution of the hourly RMSE over
the 10 d period. The mean RMSE (unit: mg m−2) for all days and the slope (unit: mg m−2 h−1) for different simulation stages (2–4, 5–7,
8–10 d) are given.

simulation period. The results reveal that the high-value ar-
eas of sulfate column concentrations for different particle
sizes exhibit a hook-like structure, extending northeastward
from the Yangtze River Economic Belt to the northeastern
regions of China. The distinct patterns may be attributed to
the complex interplay of meteorological conditions, emission
sources, and atmospheric transport processes. The sulfate
column concentrations are predominantly concentrated in the

range 0.156 to 0.625 µm (size bin 2), with relatively lower
column concentrations in the range 2.5 to 10 µm (size bin 4),
which is consistent with the findings in Fig. 2. AIMACI re-
produces these spatial distribution patterns with strong fi-
delity, as evidenced by R2 exceeding 0.88 across all size bins.
However, a systematic bias pattern is observed that, for each
particle size, AIMACI tends to underestimate the higher con-
centration regions and overestimate lower values. This aligns
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Figure 4. Zonal mean total concentrations (summed across four size bins) of sulfate and nitrate between 109.1 and 125.9° E, as simulated
online by both the numerical scheme and the AIMACI scheme. Results are averages over the entire 10 d simulation period.

with the findings of Kelp et al. (2022), who report a similar
bias pattern in MSE-optimized emulators for photochemistry
simulation. We attribute this bias pattern to two main factors:
(1) the imbalance in the training dataset, where high-value
samples are underrepresented compared with low-value sam-
ples, leading to insufficient learning of high-value instances
by the AI model; and (2) the use of the RMSE (or MSE)
loss function, whose quadratic term penalizes large errors
more heavily, thereby biasing the model toward predicting
the mean of the target distribution to minimize the overall
loss (Gneiting, 2011). While alternative loss functions (e.g.,
Huber loss) may reduce this bias, RMSE (or MSE) remains
widely used in autoregressive simulation studies. One of the
key rationales stems from its inherent capability to effec-
tively prevent large errors, which is critical for ensuring the
stability of long-term simulations. To alleviate this bias pat-
tern, we plan to explore data transformation techniques to
reduce the skewness of the training data distribution in fu-
ture work. This approach may help alleviate the bias without
compromising the stability of the AIMACI.

Additionally, RMSE temporal evolution reveals that, dur-
ing the entire simulation period, rapid growth is not exhibited
and oscillations are maintained within a constrained range.
The analysis of the RMSE trend slopes across different sim-
ulation stages for four size bins demonstrates nonuniform er-
ror progression patterns (e.g., in Fig. 3l, the slope for the 2–
4 d period is 0.000959 mg m−2 h−1, while the slope for the
8–10 d period is−0.000127 mg m−2 h−1) where, even within
identical simulation phases, distinct size bins of the same
species manifest divergent error trends (e.g., during the 8–
10 d period, the slopes for different size bins are 0.00204,
0.00187, −0.000127, and −0.0000213 mg m−2 h−1, respec-
tively). The emergence of this complex error variation is re-
lated to the dual influence governing each grid point error in

online continuous simulations: (1) the inherent limitations of
the AIMACI scheme, which achieves accurate simulations
when encountering well-learned input feature combinations,
while exhibiting degraded performance under insufficiently
trained input patterns; and (2) the compound error propaga-
tion mechanisms during continuous simulations, where input
biases of species concentrations at each time step are affected
by three factors – local error accumulation from preceding
steps, error propagation through transport processes in nu-
merical models from neighboring grids, and perturbations
induced by other processes in numerical models (e.g., dry
deposition and wet scavenging). Consequently, input biases
exhibit nonlinear variability, with AIMACI’s simulation ac-
curacy being inversely correlated to input error magnitudes.
In operational implementations of physics-AI hybrid mod-
els for online simulations, the influences of these two factors
are often interrelated rather than independent, thereby ampli-
fying the complexity of error variation. Introducing an error-
correcting operator in the continuous simulation process may
enhance the stability of long-term simulations.

Figure 4 presents a comparison of the zonal average to-
tal concentrations (summed across all size bins) of sulfate
and nitrate, simulated by both the numerical scheme and
the AIMACI scheme, with results averaged over the entire
10 d simulation period. Figure 4a and e reveal that high-
concentration zones for both sulfate and nitrate are predom-
inantly located between 25 and 40° N, a latitudinal band en-
compassing the Yangtze River Economic Belt. This spatial
distribution is consistent with the region’s substantial an-
thropogenic emissions. Through turbulent mixing and con-
vective transport processes, sulfate and nitrate are vertically
transported from lower to higher altitudes, with concentra-
tions exhibiting a characteristic decay profile as altitude in-
creases. Figure 4b and f demonstrate strong agreement be-
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tween the AIMACI scheme and the numerical scheme, with
R2 reaching 0.99 for both species. The RMSE further con-
firms this alignment, measuring 0.10 µg kg−1 for sulfate and
0.48 µg kg−1 for nitrate. The absolute error exhibits a verti-
cal gradient, with larger errors near the surface and smaller
errors at higher altitudes. Conversely, the relative error dis-
tribution shows an inverse pattern, with lower relative errors
near the surface and higher relative errors at elevated alti-
tudes. This behavior arises because species concentrations at
higher altitudes are typically below 1.0 µg kg−1, and the rel-
ative error calculation divides the absolute error by these low
concentration values. Consequently, even small absolute per-
turbations at high altitudes can result in significantly large
relative errors. This effect is particularly pronounced for ni-
trate, which exhibits concentrations at higher altitudes that
are one to two orders of magnitude lower than sulfate, often
approaching zero.

Figure 5 illustrates the ability of the AIMACI scheme
to reproduce temporal variations of surface total concentra-
tions of four key aerosol species. These results represent the
calculated averages for the Yangtze River Delta region, a
crucial urban agglomeration in China, spanning the coordi-
nates 119.1 to 121.9° E and 30.1 to 31.9° N. Throughout the
simulation period, sulfate concentrations primarily fluctuate
within the range 0 to 6 µg kg−1, while nitrate concentrations
exhibit a broader variability, predominantly ranging from 0
to 20 µg kg−1. Notably, all four key aerosol species experi-
ence several instances of abrupt concentration spikes and de-
clines. For instance, between the 11th and 30th hours of the
simulation, the liquid water content of aerosol experiences a
dramatic increase from 32.86 to 263.47 µg kg−1, followed by
a sharp decrease to 28.72 µg kg−1. The occurrence of these
pronounced fluctuations may be related to the following fac-
tors:

1. Variations in meteorological conditions, such as
changes in wind speed and direction, can significantly
influence the dispersion and transport of aerosols. In-
creased wind speed or frequent shifts in wind direc-
tion may lead to more pronounced concentration fluc-
tuations. Additionally, changes in humidity can affect
the wet scavenging and hygroscopic growth of aerosols.
Precipitation events, in particular, can enhance the wet
scavenging effect, leading to a significant reduction in
aerosol concentrations.

2. Variations in anthropogenic emissions, such as differ-
ences in human activities during weekdays and week-
ends, can also contribute to changes in aerosol concen-
trations.

A more detailed analysis would be required to identify the
specific causes. Despite these pronounced fluctuations, the
AIMACI scheme adeptly reproduces these features without
introducing systematic bias, achieving R2 values larger than
0.97.

The aforementioned analyses have examined the AIMACI
scheme’s capability in capturing the spatiotemporal distribu-
tion and variation trends of major aerosol species. Here, we
further assess the scheme’s performance in accurately repro-
ducing the evolution of the aerosol particle size distribution
(PSD), given that particle size critically governs aerosol ra-
diative properties and cloud nucleation efficiencies – key de-
terminants of atmospheric energy balance and hydrological
cycles. Figure 6 presents the PSD and frequency distribution
of the surface concentrations for four key aerosol species.
The frequency distributions of sulfate and nitrate surface con-
centrations exhibit a relatively uniform pattern, whereas the
liquid water content and number concentration of aerosols
display extreme values, leading to pronounced skewness in
their distributions. Additionally, there are significant differ-
ences in the PSD among the aerosol species. Sulfate and ni-
trate concentrations peak within the range 0.156 to 0.625 µm
(size bin 2), whereas the liquid water content of aerosols is
concentrated in the range 2.5 to 10.0 µm (size bin 4) and the
number concentration of aerosols is predominantly found in
the range 0.039 to 0.156 µm (size bin 1). These findings un-
derscore the challenge of accurately modeling the evolution
of the aerosol PSD. However, the AIMACI scheme accu-
rately captures these distributions, highlighting its capability
in characterizing complex nonlinear processes.

3.2.2 Robust generalization ability

Following validation of the AIMACI scheme’s performance
in simulating the 3D spatiotemporal distributions and PSD
of major aerosol species concentrations, we assess its gen-
eralization ability under diverse environmental conditions, a
critical aspect for its future integration into climate models
to mitigate uncertainties stemming from oversimplified or
absent aerosol processes. To evaluate this, we implemented
a comparative analysis of 1 month simulations for each of
the four seasons – spring, summer, autumn, and winter – be-
tween the numerical scheme and the AIMACI scheme. This
comprehensive assessment helps to enhance our understand-
ing of how the AIMACI scheme’s performance varies un-
der different meteorological conditions. It also provides in-
sights for future model optimization to improve the stability
of long-term simulations.

Figure 7 shows monthly average surface nitrate concen-
trations simulated by AIMACI across four seasons, with
absolute and relative error plots. Nitrate concentrations ex-
hibit seasonal variations, with higher values in January and
lower values in July. This pattern corresponds to increased
winter heating emissions and enhanced summer atmospheric
dispersion from the East Asian monsoon. The spatial dis-
tribution of nitrate concentrations shows agreement with
the numerical scheme (R2

≥ 0.93), despite AIMACI be-
ing trained on only 16 d of March data. Figure 8 displays
hourly time series of nitrate concentrations in the Yangtze
River Delta (119.1–121.9° E, 30.1–31.9° N). The results re-
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Figure 5. Time series of surface total concentrations (summed across 4 size bins) of four key aerosol species (sulfate, nitrate, liquid water
content of aerosol, and number concentration of aerosol), as simulated online by both the numerical scheme and the AIMACI scheme. Results
represent the calculated averages for the Yangtze River Delta region (119.1–121.9° E, 30.1–31.9° N). The gray vertical lines mark the time
intervals from 0 to 24 h in Beijing Time for each corresponding day.

veal that the simulation for January experiences more pro-
nounced concentration fluctuations, with peaks exceeding
30 µg kg−1, while other months’ simulations exhibit more
rapid concentration variations. Simulating hourly concen-
tration changes poses a greater challenge than simulating
multi-day average concentrations, as the latter allows for the
offsetting of positive and negative errors. Nonetheless, the
AIMACI scheme demonstrates small biases from the nu-
merical scheme (RMSE≤ 2.71 µg kg−1) and maintains sta-
ble performance throughout continuous simulations, with ab-
solute errors oscillating within ±5 µg kg−1 and occasionally
approaching zero.

Additionally, we note that the simulation errors in July are
notably higher than in other months. Considering that July is
a typhoon-prone season, while our training data only include
partial data from March, we hypothesize that the lack of rep-
resentation of such distinct seasonal weather events in our
training data may contribute to the larger bias in July. To test
this hypothesis, we plotted the minimum values of the mean
sea level pressure (MSLP) in the training data and simula-

tion results of different months, as shown in Fig. 9. The time
series of the minimum MSLP for different months exhibit
some differences from the training data, with July showing
the most significant difference. This may be one of the con-
tributing factors leading to the overall suboptimal simulation
performance in July. Moreover, we observed the three low-
est MSLPs in the time series for April, July, and October,
which likely correspond to typhoon events, as indicated by
the red points in Fig. 9. Since the lowest MSLP in October
is at the start of the simulation, where the concentration of
pollutants is almost zero, it may not be diagnostic of simu-
lation bias. Therefore, we additionally selected a relatively
later time point, combined with the moments corresponding
to the three lowest values, and plotted the spatial distribu-
tion of nitrate surface concentrations at these four moments,
along with corresponding MSLP and wind fields, as shown
in Fig. 10. These results reveal that the lowest values in both
July and October correspond to typhoons over the western
Pacific, while the lowest value in April corresponds to a low-
pressure system over land. The absolute error plot in Fig. 10
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Figure 6. Frequency distributions of different particle sizes for the surface concentrations of four key aerosol species (sulfate (SO4), nitrate
(NO3), liquid water content of aerosol (water), and number concentration of aerosol (Num)), as simulated online by both the numerical
scheme and the AIMACI scheme. The last column showcases the particle size distributions of these key aerosol species surface concen-
trations. The results are calculated by covering the region spanning from 109.1 to 125.9° E and from 22.1 to 44.9° N, with the data being
averaged over the entire simulation period.

shows that, in the regions affected by typhoons, the simula-
tion errors are significantly increased (Fig. 10h, p), whereas
the accuracy of the AIMACI scheme in simulating the low-
pressure system in April is not significantly impacted. This
suggests that, while the AIMACI scheme demonstrates quan-
tifiable generalization capability across diverse environmen-
tal conditions, its performance significantly degrades when
facing significantly different seasonal weather events, such
as typhoons. To surmount these limitations and bolster the
precision of the AIMACI scheme, future iterations should
consider integrating a more comprehensive and diverse train-
ing dataset that accounts for a broader spectrum of environ-
mental conditions, notably incorporating additional seasonal
meteorological phenomena, such as typhoons. The augmen-
tation of the training dataset would facilitate the fine-tuning
of the AIMACI scheme, thereby enhancing its reliability in
delivering robust simulation outcomes.

3.2.3 High computational efficiency

A primary motivation for the development of the AIMACI
scheme is the potential for increased computational effi-
ciency offered by AI schemes, compared with conventional
numerical schemes. However, past research has indicated
that such computational efficiency gains are not always guar-
anteed (Keller and Evans, 2019), necessitating a direct com-
parison of the computational speeds of the AIMACI scheme
and the numerical scheme. Given that WRF-Chem, written
in Fortran, is not conducive to GPU acceleration, we con-
ducted offline tests of the AIMACI scheme’s computational
speed on a GPU and compared it with the numerical scheme
on a CPU, where the AIMACI scheme was coupled to the
WRF-Chem.

Figure 11 demonstrates that, when utilizing a single CPU
core, the AIMACI scheme achieves a computational speedup
of approximately 5×, with a time cost of 48.51 s com-
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Figure 7. Monthly average surface total concentrations (summed across four size bins) of nitrate for different environmental conditions
across seasons, as simulated online by both the numerical scheme and the AIMACI scheme.

pared with the numerical scheme’s 229.74 s. This advance-
ment is further amplified when employing a single GPU:
the AIMACI scheme completes the computation in a mere
0.83 s, which is approximately 277× faster than the numer-
ical scheme running on a single CPU core. While it is rea-
sonable to anticipate that future implementation of hetero-
geneous computing platforms, integrating both CPUs (cen-
tral processing units) and GPUs (graphics processing units),
will yield significant enhancements in computational effi-
ciency, further testing is necessary to account for the poten-
tial overhead associated with communication between CPUs
and GPUs.

4 Conclusions

This study develops and evaluates a novel Artificial In-
telligence Model for Aerosol Chemistry and Interactions,
termed AIMACI, with a special focus on addressing the
long-standing challenge of significant computational bur-
den caused by using traditional numerical schemes to simu-
late aerosol chemistry and interactions (ACI) in atmospheric
models. The differential equations governing ACI are no-
tably stiff, coupled with a stringent time integration scheme
required for numerical stability, resulting in limited break-
throughs in simulation speed with available numerical tech-
niques. While previous studies have explored AI schemes
as alternatives for conventional numerical schemes of pho-
tochemistry simulation, the application of AI schemes to
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Figure 8. Time series of surface total concentrations (summed across four size bins) of nitrate for different environmental conditions across
seasons, as simulated online by both the numerical scheme and the AIMACI scheme. The gray bar is the difference between the two schemes.
Results represent the calculated averages for the Yangtze River Delta region (119.1–121.9° E, 30.1–31.9° N).

achieve end-to-end simulation of full ACI within a 3D at-
mospheric model has not yet been studied. In contrast to
atmospheric photochemistry, which only involves chemi-
cal reactions among species, full ACI consists of multiple
highly nonlinear subprocesses, including chemical reactions
and phase equilibrium, gas-particle partitioning, particle size
growth, coagulation, and nucleation. Therefore, whether an
AI scheme can effectively supplant the traditional numeri-
cal scheme for simulating full ACI, achieving both high fi-
delity in simulation accuracy and a significant improvement
in computational efficiency, remains an open question.

To bridge this gap, the AIMACI scheme was established
based on the Multi-Head Self-Attention algorithm, which is
renowned for its powerful nonlinear representation capabil-
ities and can efficiently capture complex reaction relation-
ships between different chemical species. In an offline mode,
where the AIMACI scheme was not yet integrated with a 3D

atmospheric model, it demonstrated robust performance on
a test dataset, with all 61 evaluated output targets exhibit-
ing an average R2 of 0.98, and an average NMB of 3.02 %.
This strong consistency between the numerical and AIMACI
schemes lays a solid foundation for further online continuous
simulations.

To facilitate the coupling of the Python-written AIMACI
scheme with Fortran-based numerical models, we utilized
PyTorch’s TorchScript and LibTorch tools to encapsulate the
AIMACI scheme in a static library callable by the numeri-
cal model. This approach minimizes changes to the existing
numerical model’s codebase and offers a lightweight, adapt-
able, and modular solution for coupling AI algorithms of di-
verse complexities with a range of numerical models.

Employing a physics-AI hybrid model, we implemented
additional experiments to evaluate the online simulation per-
formance of the AIMACI scheme. The 10 d continuous sim-
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Figure 9. Time series of the minimum of mean sea level pressure (MSLP) in the training data and simulation results of different environmen-
tal conditions across seasons. The red points represent the lowest MSLP in the corresponding time series and the date of its occurrence. Since
the lowest MSLP in October is at the start of the simulation, where the concentration of pollutants is almost zero, it may not be diagnostic of
simulation bias. Therefore, we additionally selected a relatively later time point, as shown by the green point.

ulation results indicate that the AIMACI scheme not only
accurately captures the spatiotemporal distribution of vari-
ous aerosol species but also effectively reproduces their size
distributions, maintaining stability throughout the simulation
period without rapid error growth. Furthermore, the AIMACI
scheme exhibits robust generalization capabilities despite be-
ing trained on data from only 16 d in March. This is ev-
idenced by the results that, during month-long continuous
simulations across various environmental conditions in all
four seasons, R2 for monthly average surface nitrate concen-
trations is greater than 0.93, and the RMSE for hourly time
series of nitrate concentrations in the Yangtze River Delta is
smaller than 2.71 µg kg−1. However, systematic biases were
observed in the simulation results of the AIMACI scheme:

underestimation of high concentrations and overestimation
of low concentrations. This bias pattern could be attributed
to two main factors. First, the limited number of high-value
samples in the training set leads to insufficient learning of
high-value instances by the AIMACI scheme. Second, the
quadratic term in the RMSE loss function penalizes large er-
rors more heavily, thereby biasing the AIMACI scheme to-
ward predicting the mean of the target distribution to mini-
mize the overall loss. Future improvements may involve ex-
ploring data transformation techniques to reduce the skew-
ness of the training data distribution. Additionally, compared
with other months, the performance of the AIMACI scheme
in July was less accurate. Our analysis indicates that this is
primarily due to the significant difference between the mete-
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Figure 10. The spatial distribution of nitrate surface concentrations at four specified time points, along with corresponding mean sea level
pressure (MSLP) and wind fields. The black box corresponds to the area with the lowest MSLP.

orological conditions in July and those in the training data.
Seasonal weather events, such as typhoons, have a notable
impact on the performance of AIMACI. Therefore, in future
iterations of AIMACI, we plan to use a more diverse train-
ing dataset, particularly one that includes seasonal weather
events, to further enhance its performance.

In terms of computational speed, the AIMACI scheme is
approximately 5 times faster than the conventional numerical
scheme when predicting 720 300 grid points with 61 output

targets using a single CPU core. This speedup increases sig-
nificantly to about 277 times faster when utilizing a GPU.
Future simulations on heterogeneous platforms, integrating
both CPUs and GPUs, are expected to significantly improve
this speedup ratio. However, considering the potential com-
munication overhead between CPUs and GPUs, further test-
ing is still required.

An important outcome of this work is the first-time suc-
cessful application of an AI scheme to achieve fast, accurate,

Atmos. Chem. Phys., 25, 6197–6218, 2025 https://doi.org/10.5194/acp-25-6197-2025
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Figure 11. Comparison of computational speeds between the nu-
merical scheme and the AIMACI scheme under different computa-
tional configurations. The time cost for the GPU is measured in a
mode where the AIMACI scheme is not yet coupled to the model,
while the time cost for the CPU is measured in a mode with the
AIMACI scheme coupled to the model. The calculations are based
on simulating the concentrations of 61 output targets across 720 300
grid cells.

and stable end-to-end simulation for full ACI within the nu-
merical model, replacing the traditional numerical scheme.
As the first step, we mainly focus on inorganic aerosol
species and regional-scale monthly simulation tests. Future
work will consider integrating complex secondary organic
aerosols in our AIMACI scheme, performing global-scale
annual simulation tests, and coupling the AIMACI scheme
to climate models. These advancements will help to address
current limitations in climate models where full ACI is of-
ten oversimplified or even omitted due to the large computa-
tional burden associated with numerical simulations of ACI,
thereby improving the representation of aerosol–climate in-
teractions.

Code availability. The hybrid version of WRF-Chem with both
physics and AI schemes is publicly accessible. The source code for
this hybrid model, along with the parameter file for the Multi-Head
Self-Attention model used in the Artificial Intelligence Model for
Aerosol Chemistry and Interactions (AIMACI) is available under
an open license at https://doi.org/10.5281/zenodo.15702248 (Xia et
al., 2024).

Data availability. The Multi-resolution Emission Inventory for
China (MEIC) at 0.25°× 0.25° resolution for 2019 is available at
http://meicmodel.org.cn/?page_id=560 (Li et al., 2017; Geng et al.,
2024). The NCEP final reanalysis (FNL) data with a 1°× 1° reso-
lution and 6 h temporal resolution are available at https://rda.ucar.
edu/datasets/ds083.2/ (NCEP, 2000).
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