Articles | Volume 25, issue 11
https://doi.org/10.5194/acp-25-5695-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-5695-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Enhancing SO3 hydrolysis and nucleation: the role of formic sulfuric anhydride
Rui Wang
Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
Rongrong Li
Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
Shasha Chen
Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
Ruxue Mu
Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
Changming Zhang
Shaanxi Key Laboratory of Catalysis, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
Xiaohui Ma
CORRESPONDING AUTHOR
School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
Majid Khan
College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
Tianlei Zhang
CORRESPONDING AUTHOR
Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
Related authors
Rongrong Li, Zeyao Li, Chengyan Zhang, Rui Wang, Jihuan Yang, Heran Cui, Xuanye Li, Nini Huo, and Tianlei Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-4960, https://doi.org/10.5194/egusphere-2025-4960, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study investigates the formation of hydroxymethyl hydroperoxide (HMHP) through methanesulfonic acid (MSA)-catalyzed hydrolysis of CH2OO in the gas phase and at the air-water interface. HMHP forms rapidly and stably in both environments. Further analysis shows that HMHP enhances the stability of MSA-methylamine (MA) clusters and highlights HMHP's key role in MSA-MA-HMHP nucleation, especially in urban and forested regions.
Rui Wang, Shuqin Wei, Zeyao Li, Kaiyu Xue, Rui Bai, and Tianlei Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-4894, https://doi.org/10.5194/egusphere-2025-4894, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study investigates the atmospheric formation of lactic acid sulfate and its role in new particle formation, with implications for air quality and climate. The results show that lactic acid sulfate enhances particle cluster stability and promotes new particle formation, particularly in forested and agricultural regions. These findings highlight the important role of organic compounds like lactic acid sulfate in particle formation, offering insights for mitigating haze and health risks.
Hui Wang, Shuqin Wei, Jihuan Yang, Yanlong Yang, Rongrong Li, Rui Wang, Chongqin Zhu, Tianlei Zhang, and Changming Zhang
Atmos. Chem. Phys., 25, 2829–2844, https://doi.org/10.5194/acp-25-2829-2025, https://doi.org/10.5194/acp-25-2829-2025, 2025
Short summary
Short summary
In the gaseous reaction, the activation energy for the hydrolysis of HNSO2 catalyzed by MSA was only 0.8 kcal mol−1. Atmospheric Cluster Dynamic Code kinetic simulations disclosed that sulfamic acid markedly enhances the assembly of a methanesulfonic acid–methylamine-based cluster. At the air–water interface, the NH2SO3− and H3O+ ion formation mechanism and the proton exchange mechanism were observed.
Rui Wang, Yang Cheng, Shasha Chen, Rongrong Li, Yue Hu, Xiaokai Guo, Tianlei Zhang, Fengmin Song, and Hao Li
Atmos. Chem. Phys., 24, 4029–4046, https://doi.org/10.5194/acp-24-4029-2024, https://doi.org/10.5194/acp-24-4029-2024, 2024
Short summary
Short summary
We used quantum chemical calculations, Born–Oppenheimer molecular dynamics simulations, and the ACDC kinetic model to characterize SO3–H2SO4 interaction in the gas phase and at the air–water interface and to study the effect of H2S2O7 on H2SO4–NH3-based clusters. The work expands our understanding of new pathways for the loss of SO3 in acidic polluted areas and helps reveal some missing sources of NPF in metropolitan industrial regions and understand the atmospheric organic–sulfur cycle better.
Rongrong Li, Zeyao Li, Chengyan Zhang, Rui Wang, Jihuan Yang, Heran Cui, Xuanye Li, Nini Huo, and Tianlei Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-4960, https://doi.org/10.5194/egusphere-2025-4960, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study investigates the formation of hydroxymethyl hydroperoxide (HMHP) through methanesulfonic acid (MSA)-catalyzed hydrolysis of CH2OO in the gas phase and at the air-water interface. HMHP forms rapidly and stably in both environments. Further analysis shows that HMHP enhances the stability of MSA-methylamine (MA) clusters and highlights HMHP's key role in MSA-MA-HMHP nucleation, especially in urban and forested regions.
Rui Wang, Shuqin Wei, Zeyao Li, Kaiyu Xue, Rui Bai, and Tianlei Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-4894, https://doi.org/10.5194/egusphere-2025-4894, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study investigates the atmospheric formation of lactic acid sulfate and its role in new particle formation, with implications for air quality and climate. The results show that lactic acid sulfate enhances particle cluster stability and promotes new particle formation, particularly in forested and agricultural regions. These findings highlight the important role of organic compounds like lactic acid sulfate in particle formation, offering insights for mitigating haze and health risks.
Hui Wang, Shuqin Wei, Jihuan Yang, Yanlong Yang, Rongrong Li, Rui Wang, Chongqin Zhu, Tianlei Zhang, and Changming Zhang
Atmos. Chem. Phys., 25, 2829–2844, https://doi.org/10.5194/acp-25-2829-2025, https://doi.org/10.5194/acp-25-2829-2025, 2025
Short summary
Short summary
In the gaseous reaction, the activation energy for the hydrolysis of HNSO2 catalyzed by MSA was only 0.8 kcal mol−1. Atmospheric Cluster Dynamic Code kinetic simulations disclosed that sulfamic acid markedly enhances the assembly of a methanesulfonic acid–methylamine-based cluster. At the air–water interface, the NH2SO3− and H3O+ ion formation mechanism and the proton exchange mechanism were observed.
Rui Wang, Yang Cheng, Shasha Chen, Rongrong Li, Yue Hu, Xiaokai Guo, Tianlei Zhang, Fengmin Song, and Hao Li
Atmos. Chem. Phys., 24, 4029–4046, https://doi.org/10.5194/acp-24-4029-2024, https://doi.org/10.5194/acp-24-4029-2024, 2024
Short summary
Short summary
We used quantum chemical calculations, Born–Oppenheimer molecular dynamics simulations, and the ACDC kinetic model to characterize SO3–H2SO4 interaction in the gas phase and at the air–water interface and to study the effect of H2S2O7 on H2SO4–NH3-based clusters. The work expands our understanding of new pathways for the loss of SO3 in acidic polluted areas and helps reveal some missing sources of NPF in metropolitan industrial regions and understand the atmospheric organic–sulfur cycle better.
Yuemeng Ji, Qiuju Shi, Xiaohui Ma, Lei Gao, Jiaxin Wang, Yixin Li, Yanpeng Gao, Guiying Li, Renyi Zhang, and Taicheng An
Atmos. Chem. Phys., 22, 7259–7271, https://doi.org/10.5194/acp-22-7259-2022, https://doi.org/10.5194/acp-22-7259-2022, 2022
Short summary
Short summary
The formation mechanisms of secondary organic aerosol and brown carbon from small α-carbonyls are still unclear. Thus, the mechanisms and kinetics of aqueous-phase reactions of glyoxal were investigated using quantum chemical and kinetic rate calculations. Several essential isomeric processes were identified, including protonation to yield diol/tetrol and carbenium ions as well as nucleophilic addition of carbenium ions to diol/tetrol and free methylamine/ammonia.
Cited articles
Abraham, M., Alekseenko, A., Basov, V., Bergh, C., Briand, E., Brown, A., Doijade, M., Fiorin, G., Fleischmann, S., Gorelov, S., Gouaillardet, G., Grey, A., Irrgang, M. E., Jalalypour, F., Jordan, J., Kutzner, C., Lemkul, J. A., Lundborg, M., Merz, P., Miletic, V., Morozov, D., Nabet, J., Pall, S., Pasquadibisceglie, A., Pellegrino, M., Santuz, H., Schulz, R., Shugaeva, T., Shvetsov, A., Villa, A., Wingbermuehle, S., Hess, B., and Lindahl, E.: GROMACS 2024.3 Manual, Zenodo, https://doi.org/10.5281/zenodo.13457083, 2024.
Bandyopadhyay, B., Kumar, P., and Biswas, P.: Ammonia catalyzed formation of sulfuric acid in troposphere: The curious case of a base promoting acid rain, J. Phys. Chem. A, 121, 3101–3108, https://doi.org/10.1021/acs.jpca.7b01172, 2017.
Bao, J. L., Zhang, X., and Truhlar, D. G.: Barrierless association of CF2 and dissociation of C2F4 by variational transition-state theory and system-specific quantum Rice-Ramsperger-Kassel theory, P. Natl. Acad. Sci. USA, 113, 13606–13611, https://doi.org/10.1073/pnas.1616208113, 2016.
Becke, A. D.: Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, 38, 3098–3100, https://doi.org/10.1103/physreva.38.3098, 1988.
Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., and Haak, J. R.: Molecular dynamics with coupling to an external bath, J. Chem. Phys., 81, 3684–3690, https://doi.org/10.1063/1.448118, 1984.
Bondybey, V. E. and English, J. H.: Infrared spectra of SO3 polymers and complexes in rare gas matrices, J. Mol. Spectrosc., 109, 221–228, https://doi.org/10.1016/0022-2852(85)90308-X, 1985.
Bussi, G., Donadio, D., and Parrinello, M.: Canonical sampling through velocity rescaling, J. Chem. Phys., 126, 014101, https://doi.org/10.1063/1.2408420, 2007.
Carmona-García, J., Trabelsi, T., Francés-Monerris, A., Cuevas, C. A., Saiz-Lopez, A., Roca-Sanjuán, D., and Francisco, J. S.: Photochemistry of HOSO2 and SO3 and implications for the production of sulfuric acid, J. Am. Chem. Soc, 143, 18794–18802, https://doi.org/10.1021/jacs.1c10153, 2021.
Chen, T. and Plummer, P. L.: Ab initio MO investigation of the gas-phase reaction sulfur trioxide + water. fwdarw. sulfuric acid, J. Phys. Chem., 89, 3689–3693, https://doi.org/10.1021/j100263a023, 1985.
Cheng, Y., Ding, C., Zhang, T., Wang, R., Mu, R., Li, Z., Li, R., Shi, J., and Zhu, C.: Barrierless reactions of C2 Criegee intermediates with H2SO4 and their implication to oligomers and new particle formation, J. Environ. Sci., 149, 574–584, https://doi.org/10.1016/j.jes.2023.12.020, 2025.
Couling, S. B., Sully, K. J., and Horn, A. B.: Experimental study of the heterogeneous interaction of SO3 and H2O: formation of condensed phase molecular sulfuric acid hydrates, J. Am. Chem. Soc., 125, 1994–2003, https://doi.org/10.1021/ja0210704, 2003.
Ding, C., Wen, M. J., Zhang, T. L., Li, Z. Y., Li, R. R., Wang, R., Ou, T., Song, F. M., and Zhang, Q.: Molecular mechanisms and atmospheric implications of the simplest criegee intermediate and hydrochloric acid chemistry in the gas phase and at the aqueous interfaces, Atmos. Environ., 330, 120558, https://doi.org/10.1016/j.atmosenv.2024.120558, 2024.
Dong, Z., Francisco, J. S., and Long, B.: Ammonolysis of glyoxal at the air-water nanodroplet interface, Angew. Chem. Int. Ed., 63, e202316060, https://doi.org/10.1002/anie.202316060, 2024.
Fang, Y.-G., Wei, L., Francisco, J. S., Zhu, C., and Fang, W.-H.: Mechanistic insights into chloric acid production by hydrolysis of chlorine trioxide at an air-water interface, J. Am. Chem. Soc., 146, 21052–21060, https://doi.org/10.1021/jacs.4c06269, 2024.
Feng, Y. and Wang, C.: Surface Confinement of finite-size water droplets for SO3 hydrolysis reaction revealed by molecular dynamics simulations based on a machine learning force field, J. Am. Chem. Soc., 145, 10631–10640, https://doi.org/10.1021/jacs.3c00698, 2023.
Fleig, D. G., Vainio, E., Andersson, K., Brink, A., Johnsson, F., and Hupa, M.: Evaluation of SO3 measurement techniques in air and oxy-fuel combustion, Energy Fuels, 26, 5537–5549, https://doi.org/10.1021/EF301127X, 2012.
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., and Fox, D. J: Gaussian09 Revision D. 01, Gaussian Inc. Wallingford CT, http://www.gaussian.com (last access: 1 May 2024), 2009.
Gao, J., Wang, R., Zhang, T., Liu, F., and Wang, W.: Effect of methyl hydrogen sulfate on the formation of sulfuric acid-ammonia clusters: A theoretical study, J. Chin. Chem. Soc., 70, 689–698, https://doi.org/10.1002/jccs.202200148, 2023.
Gao, Q., Dong, Z., and Long, B.: Reactions of sulfur trioxide with hypochlorous acid catalyzed by water in gas phase and at the air-water nanodroplet interface in the atmosphere: An important sink for hypochlorous acid, Atmos. Environ., 331, 120574, https://doi.org/10.1016/j.atmosenv.2024.120574, 2024.
Glowacki, D. R., Liang, C. H., Morley, C., Pilling, M. J., and Robertson, S. H.: MESMER: an open-source master equation solver for multi-energy well reactions, J. Phys. Chem. A, 116, 9545–9560, https://doi.org/10.1021/jp3051033, 2012.
Goedecker, S., Teter, M., and Hutter, J.: Separable dual-space Gaussian pseudopotentials, Phys. Rev. B, 54, 1703, https://doi.org/10.1103/PhysRevB.54.1703, 1996.
Grimme, S., Antony, J., Ehrlich, S., and Krieg, H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys., 132, 154104, https://doi.org/10.1063/1.3382344, 2010.
Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M.: LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463–1472, https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H, 1997.
Hutter, J., Iannuzzi, M., Schiffmann, F., and VandeVondele, J.: cp2k: atomistic simulations of condensed matter systems, Wiley Interdiscip. Rev. Comput. Mol. Sci., 4, 15–25, https://doi.org/10.1002/wcms.1159, 2014.
Kangas, P., Hänninen, V., and Halonen, L.: An ab initio molecular dynamics study of the hydrolysis reaction of sulfur trioxide catalyzed by a formic acid or water molecule, J. Phys. Chem. A, 124, 1922–1928, https://doi.org/10.1021/acs.jpca.9b11954, 2020.
Kumar, A., Mallick, S., and Kumar, P.: Oxidation of HOSO⋅ by Cl⋅: a new source of SO2 in the atmosphere?, Phys. Chem. Chem. Phys., 23, 18707–18711, https://doi.org/10.1039/D1CP01048D, 2021.
Kumar, A., Iyer, S., Barua, S., Brean, J., Besic, E., Seal, P., Dall'Osto, M., Beddows, D. C. S., Sarnela, N., Jokinen, T., Sipilä, M., Harrison, R. M., and Rissanen, M.: Direct measurements of covalently bonded sulfuric anhydrides from gas-phase reactions of SO3 with acids under ambient conditions, J. Am. Chem. Soc., 146, 15562–15575, https://doi.org/10.1021/jacs.4c04531, 2024.
Lee, C., Yang, W., and Parr, R. G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 37, 785–789, https://doi.org/10.1103/PHYSREVB.37.785, 1988.
Li, H., Zhong, J., Vehkamäki, H., Kurtén, T., Wang, W., Ge, M., Zhang, S., Li, Z., Zhang, X., Francisco, J. S., and Zeng, X. C.: Self-Catalytic reaction of SO3 and NH3 to produce sulfamic acid and its implication to atmospheric particle formation, J. Am. Chem. Soc., 140, 11020–11028, https://doi.org/10.1021/jacs.8b04928, 2018.
Li, L., Zhang, Q. Z., Wei, Y. Y., Wang, Q., and Wang, W. X.: Theoretical Study on the Gas-Phase and Aqueous Interface Reaction Mechanism of Criegee Intermediates with 2-Methylglyceric Acid and the Nucleation of Products, Int. J. Mol. Sci. 24, 5400, https://doi.org/10.3390/ijms24065400, 2023.
Li, M., Li, L., Liu, S., Zhang, Q., Wang, W., and Wang, Q.: Insights into the catalytic effect of atmospheric organic trace species on the hydration of Criegee intermediates, Sci. Total. Environ., 949, 174877, https://doi.org/10.1016/j.scitotenv.2024.174877, 2024a.
Li, M., Zhang, Y., Yu, X., Li, L., Wang, S., Zhang, Q., Wang, W., and Wang, Q.: Mechanistic insights into Criegee intermediates with benzoic acid at gas-phase and air-water interface and nucleation of product, Atmos. Environ., 320, 120338, https://doi.org/10.1016/j.atmosenv.2024.120338, 2024b.
Liu, J., Liu, L., Rong, H., and Zhang, X.: The potential mechanism of atmospheric new particle formation involving amino acids with multiple functional groups, Phys. Chem. Chem. Phys., 23, 10184–10195, https://doi.org/10.1039/D0CP06472F, 2021a.
Liu, L., Zhong, J., Vehkamäki, H., Kurtén, T., Du, L., Zhang, X., Francisco, J. S., and Zeng, X. C.: Unexpected quenching effect on new particle formation from the atmospheric reaction of methanol with SO3, P. Natl. Acad. Sci. USA, 116, 24966–24971, https://doi.org/10.1073/pnas.1915459116, 2019.
Liu, L., Yu, F., Tu, K., Yang, Z., and Zhang, X.: Influence of atmospheric conditions on the role of trifluoroacetic acid in atmospheric sulfuric acid–dimethylamine nucleation, Atmos. Chem. Phys., 21, 6221–6230, https://doi.org/10.5194/acp-21-6221-2021, 2021b.
Long, B., Long, Z. W., Wang, Y. B., Tan, X. F., Han, Y. H., Long, C. Y., Qin, S. J., and Zhang, W. J.: Formic acid catalyzed gas-phase reaction of H2O with SO3 and the reverse reaction: A theoretical study, Chem. Phys. Chem., 13, 323–329, https://doi.org/10.1002/cphc.201100558, 2012.
Long, B., Chang, C.-R., Long, Z.-W., Wang, Y.-B., Tan, X.-F., and Zhang, W.-J.: Nitric acid catalyzed hydrolysis of SO3 in the formation of sulfuric acid: A theoretical study, Chem. Phys. Lett., 581, 26–29, https://doi.org/10.1016/j.cplett.2013.07.012, 2013.
Long, B., Xia, Y., Bao, J. L., Carmona-García, J., Gómez Martín, J. C., Plane, J. M. C., Saiz-Lopez, A., Roca-Sanjuán, D., and Francisco, J. S.: Reaction of SO3 with HONO2 and implications for sulfur partitioning in the atmosphere, J. Am. Chem. Soc., 144, 9172–9177, https://doi.org/10.1021/jacs.2c03499, 2022.
Lu, T.: Sobtop, Version 1.0, http://sobereva.com/soft/Sobtop/ (last access: 1 November 2023), 2023.
Lu, T. and Chen, F.: Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem., 33, 580–592, https://doi.org/10.1002/jcc.22885, 2012.
Lv, G., Sun, X., Zhang, C., and Li, M.: Understanding the catalytic role of oxalic acid in SO3 hydration to form H2SO4 in the atmosphere, Atmos. Chem. Phys., 19, 2833–2844, https://doi.org/10.5194/acp-19-2833-2019, 2019.
Ma, X., Zhao, X., Huang, Z., Wang, J., Lv, G., Xu, F., Zhang, Q., and Wang, W.: Determination of reactions between Criegee intermediates and methanesulfonic acid at the air-water interface, Sci. Tot. Environ., 707, 135804, https://doi.org/10.1016/j.scitotenv.2019.135804, 2020.
Mackenzie, R. B., Dewberry, C. T., and Leopold, K. R.: Gas phase observation and microwave spectroscopic characterization of formic sulfuric anhydride, Science, 349, 58–61, https://doi.org/10.1126/science.aaa9704, 2015.
Mardirossian, N. and Head-Gordon M.: How Accurate Are the Minnesota Density Functionals for Noncovalent Interactions, Isomerization Energies, Thermochemistry, and Barrier Heights Involving Molecules Composed of Main-Group Elements, J. Chem. Theor. Comput., 12, 4303–4325, https://doi.org/10.1021/acs.jctc.6b00637, 2016.
Martínez, L., Andrade, R., Birgin, E. G., and Martínez, J. M.: PACKMOL: A package for building initial configurations for molecular dynamics simulations, J. Comput. Chem., 30, 2157–2164, https://doi.org/10.1002/jcc.21224, 2009.
Martins-Costa, M. T. and Ruiz-López, M. F.: The structure of carbon dioxide at the air-water interface and its chemical implications, Chem. Eur. J., 30, e202400825, https://doi.org/10.1002/chem.202400825, 2024.
McGrath, M. J., Olenius, T., Ortega, I. K., Loukonen, V., Paasonen, P., Kurtén, T., Kulmala, M., and Vehkamäki, H.: Atmospheric Cluster Dynamics Code: a flexible method for solution of the birth-death equations, Atmos. Chem. Phys., 12, 2345–2355, https://doi.org/10.5194/acp-12-2345-2012, 2012.
Meana-Pañeda, R., Zheng, J., Bao, J. L., Zhang, S., Lynch, B. J., Corchado, J. C., Chuang, Y.-Y., Fast, P. L., Hu, W.-P., Liu, Y.-P., Lynch, G. C., Nguyen, K. A., Jackels, C. F., Fernández-Ramos, A., Ellingson, B. A., Melissas, V. S., Villà, J., Rossi, I., Coitiño, E. L., Pu, J., Albu, T. V., Zhang, R. M., Xu, X., Ratkiewicz, A., Steckler, R., Garrett, B. C., Isaacson, A. D., and Truhlar, D. G.: Polyrate 2023: A computer program for the calculation of chemical reaction rates for polyatomics. New version announcement, Comput. Phys. Commun., 294, 108933, https://doi.org/10.1016/j.cpc.2023.108933, 2024.
Morokuma, K. and Muguruma, C.: Ab initio molecular orbital study of the mechanism of the gas phase reaction SO3+ H2O: Importance of the second water molecule, J. Am. Chem. Soc., 116, 10316–10317, https://doi.org/10.1021/JA00101A068, 1994.
Neese, F.: The ORCA program system, WIREs Comput. Mol. Sci., 2, 73–78, https://doi.org/10.1002/wcms.81, 2012.
Partanen, L., Vehkamäki, H., Hansen, K., Elm, J., Henschel, H., Kurtén, T., Halonen, R., and Zapadinsky, E.: Effect of conformers on free energies of atmospheric complexes, J. Phys. Chem. A, 120, 8613–8624, https://doi.org/10.1021/acs.jpca.6b04452, 2016.
Pereira, A. T., Ribeiro A. J. M., Fernandes P. A., and Ramos M. J.: Benchmarking of density functionals for the kinetics and thermodynamics of the hydrolysis of glycosidic bonds catalyzed by glycosidases, Int. J. Quantum Chem., 117, e254092017, https://doi.org/10.1002/qua.25409, 2017.
Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., and Schulten, K.: Scalable molecular dynamics with NAMD, J. Comput. Chem., 26, 1781–1802, https://doi.org/10.1002/jcc.20289, 2005.
Reiner, T. and Arnold, F.: Laboratory flow reactor measurements of the reaction SO3+ H2O + M → H2SO4+ M: Implications for gaseous H2SO4 and aerosol formation in the plumes of jet aircraft, J. Geophys. Res., 20, 2659–2662, https://doi.org/10.1029/93GL02996, 1993.
Rong, H., Liu, L., Liu, J., and Zhang, X.: Glyoxylic sulfuric anhydride from the gas-phase reaction between glyoxylic acid and SO3: A potential nucleation precursor, J. Phys. Chem. A, 124, 3261–3268, https://doi.org/10.1021/acs.jpca.0c01558, 2020.
Sarkar, S., Oram, B. K., and Bandyopadhyay, B.: Influence of ammonia and water on the fate of sulfur trioxide in the troposphere: Theoretical investigation of sulfamic acid and sulfuric acid formation pathways, J. Phys. Chem. A, 123, 3131–3141, https://doi.org/10.1021/acs.jpca.8b09306, 2019.
Smith, C. J., Huff, A. K., Ward, R. M., and Leopold, K. R.: Carboxylic sulfuric anhydrides, J. Phys. Chem. A, 124, 601–612, https://doi.org/10.1021/acs.jpca.9b09310, 2020.
Sun, G., Li, H., Hou, J., Wang, H., Wang, J., Lu, Z., and Gao, X.: Molecular behavior of ethylene glycol/1,2-Butanediol Mixtures at the vapor-liquid interface, Ind. Eng. Chem. Res., 63, 4853–4865, https://doi.org/10.1021/acs.iecr.3c03410, 2024.
Tan, S., Zhang, X., Lian, Y., Chen, X., Yin, S., Du, L., and Ge, M.: OH group orientation leads to organosulfate formation at the liquid aerosol surface, J. Am. Chem. Soc., 144, 16953–16964, https://doi.org/10.1021/jacs.2c05807, 2022.
Tang, B., Bai, Q., Fang, Y.-G., Francisco, J. S., Zhu, C., and Fang, W.-H.: Mechanistic insights into N2O5-Halide ions chemistry at the air-water interface, J. Am. Chem. Soc., 146, 21742–21751, https://doi.org/10.1021/jacs.4c05850, 2024.
Tao, E. L., Li, J. Y., Soriano, S., and Tao, F.-M. J. C. J. o. C. P.: Quantum chemical study of potential energy surface in the formation of atmospheric sulfuric acid, Chin. J. Chem. Phys. 31, 503–509, https://doi.org/10.1063/1674-0068/31/cjcp1805126, 2018.
Tsona Tchinda, N., Du, L., Liu, L., and Zhang, X.: Pyruvic acid, an efficient catalyst in SO3 hydrolysis and effective clustering agent in sulfuric-acid-based new particle formation, Atmos. Chem. Phys., 22, 1951–1963, https://doi.org/10.5194/acp-22-1951-2022, 2022.
Torrent-Sucarrat, M., Francisco, J. S., and Anglada, J. M.: Sulfuric acid as autocatalyst in the formation of sulfuric acid, J. Am. Chem. Soc., 134, 20632–20644, https://doi.org/10.1021/ja307523b, 2012.
Venkataraman, C., Mehra, A., and Mhaskar, P.: Mechanisms of sulphate aerosol production in clouds: effect of cloud characteristics and season in the Indian region, Tellus B, 53, 260–272, https://doi.org/10.3402/tellusb.v53i3.16595, 2001.
Wan, Z., Zhu, C., and Francisco, J. S.: Molecular insights into the spontaneous generation of Cl2O in the reaction of ClONO2 and HOCl at the air-water interface, J. Am. Chem. Soc., 145, 17478–17484, https://doi.org/10.1021/jacs.3c06527, 2023.
Wang, R., Cheng, Y., Chen, S., Li, R., Hu, Y., Guo, X., Zhang, T., Song, F., and Li, H.: Reaction of SO3 with H2SO4 and its implications for aerosol particle formation in the gas phase and at the air–water interface, Atmos. Chem. Phys., 24, 4029–4046, https://doi.org/10.5194/acp-24-4029-2024, 2024.
Wei, Y. Y., Zhang, Q. Z., Huo, X. X., Wang, W. X., and Wang, Q.: The reaction of Criegee intermediates with formamide and its implication to atmospheric aerosols, Chemosphere, 296, 133717, https://doi.org/10.1016/j.chemosphere.2022.133717, 2022.
Yang, Y., Liu, L., Wang, H., and Zhang, X.: Molecular-Scale mechanism of sequential reaction of oxalic acid with SO3: Potential participator in atmospheric aerosol nucleation, J. Phys. Chem. A, 125, 4200–4208, https://doi.org/10.1021/acs.jpca.1c02113, 2021.
Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B., Ehn, M., Paasonen, P., Sipilä, M., Wang, M., Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, F.-H., Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, V.-M., Petäjä, T., Worsnop, D. R., Kulmala, M., and Wang, L. J. S.: Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity, Science, 361, 278–281, https://doi.org/10.1126/science.aao4839, 2018.
York, D. M., Darden, T. A., and Pedersen, L. G.: The effect of long-range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods, J. Chem. Phys., 99, 8345–8348, https://doi.org/10.1063/1.465608, 1993.
Zhang, H., Kupiainen-Määttä, O., Zhang, X., Molinero, V., Zhang, Y., and Li, Z.: The enhancement mechanism of glycolic acid on the formation of atmospheric sulfuric acid-ammonia molecular clusters, J. Chem. Phys., 146, 184308, https://doi.org/10.1063/1.4982929, 2017.
Zhang, H., Wang, W., Pi, S., Liu, L., Li, H., Chen, Y., Zhang, Y., Zhang, X., and Li, Z.: Gas phase transformation from organic acid to organic sulfuric anhydride: Possibility and atmospheric fate in the initial new particle formation, Chemosphere, 212, 504–512, https://doi.org/10.1016/j.chemosphere.2018.08.074, 2018.
Zhang, H., Wang, W., Fan, L., Li, J., Ren, Y., Li, H., Gao, R., and Xu, Y.: The role of sulfur cycle in new particle formation: Cycloaddition reaction of SO3 to H2S, J. Environ. Sci., 148, 489–501, https://doi.org/10.1016/j.jes.2023.09.010, 2025.
Zhang, J. and Dolg, M.: ABCluster: the artificial bee colony algorithm for cluster global optimization, Phys. Chem. Chem. Phys., 17, 24173–24181, https://doi.org/10.1039/C5CP04060D, 2015.
Zhang, Z., Yin, H., Shang, Y., and Luo, S.-N.: Accurate rate constants for barrierless dissociation of ethanol: VRC-VTST and SS-QRRK calculations with the cheaper DFT method, Chem. Phys. Lett., 823, 140522, https://doi.org/10.1016/j.cplett.2023.140522, 2023.
Zhang, Z. P., Wang, S. H., Shang, Y. L., Liu, J. H., and Luo, S. N.: Theoretical study on ethylamine dissociation reactions using VRC-VTST and SS-QRRK methods, J. Phys. Chem. A, 128, 2191–2199, https://doi.org/10.1021/acs.jpca.3c08373, 2024.
Zhao, Z., Kong, K., Wang, S., Zhou, Y., Cheng, D., Wang, W., Zeng, X. C., and Li, H.: Understanding hygroscopic nucleation of sulfate aerosols: combination of molecular dynamics simulation with classical nucleation theory, J. Phys. Chem. Lett., 10, 1126–1132, https://doi.org/10.1021/acs.jpclett.9b00152, 2019.
Zhong, J., Zhu, C., Li, L., Richmond, G. L., Francisco, J. S., and Zeng, X. C.: Interaction of SO2 with the surface of a water nanodroplet, J. Am. Chem. Soc., 139, 17168–17174, https://doi.org/10.1021/jacs.7b09900, 2017.
Zhong, J., Li, H., Kumar, M., Liu, J., Liu, L., Zhang, X., Zeng, X. C., and Francisco, J. S.: Mechanistic insight into the reaction of organic acids with SO3 at the air-water interface, Angew. Chem. Int. Ed. Engl., 58, 8351–8355, https://doi.org/10.1002/anie.201900534, 2019.
Short summary
Gaseous results indicated that SO3 hydrolysis with formic sulfuric anhydride (FSA) has a Gibbs free energy barrier as low as 1.5 kcal mol-1 and can effectively compete with other SO3 hydrolysis. Interfacial BOMD (Born–Oppenheimer molecular dynamics) simulations illustrated that FSA-mediated SO3 hydrolysis at the gas–liquid interface occurs through a stepwise mechanism and can be completed within a few picoseconds. ACDC (Atmospheric Clusters Dynamics Code) kinetic simulations indicated that FSA significantly enhances cluster formation rates in the H2SO4–NH3 system.
Gaseous results indicated that SO3 hydrolysis with formic sulfuric anhydride (FSA) has a Gibbs...
Altmetrics
Final-revised paper
Preprint