Articles | Volume 25, issue 11
https://doi.org/10.5194/acp-25-5695-2025
https://doi.org/10.5194/acp-25-5695-2025
Research article
 | 
11 Jun 2025
Research article |  | 11 Jun 2025

Enhancing SO3 hydrolysis and nucleation: the role of formic sulfuric anhydride

Rui Wang, Rongrong Li, Shasha Chen, Ruxue Mu, Changming Zhang, Xiaohui Ma, Majid Khan, and Tianlei Zhang

Related authors

A novel formation mechanism of sulfamic acid and its enhancing effect on methanesulfonic acid–methylamine aerosol particle formation in agriculture-developed and coastal industrial areas
Hui Wang, Shuqin Wei, Jihuan Yang, Yanlong Yang, Rongrong Li, Rui Wang, Chongqin Zhu, Tianlei Zhang, and Changming Zhang
Atmos. Chem. Phys., 25, 2829–2844, https://doi.org/10.5194/acp-25-2829-2025,https://doi.org/10.5194/acp-25-2829-2025, 2025
Short summary
Reaction of SO3 with H2SO4 and its implications for aerosol particle formation in the gas phase and at the air–water interface
Rui Wang, Yang Cheng, Shasha Chen, Rongrong Li, Yue Hu, Xiaokai Guo, Tianlei Zhang, Fengmin Song, and Hao Li
Atmos. Chem. Phys., 24, 4029–4046, https://doi.org/10.5194/acp-24-4029-2024,https://doi.org/10.5194/acp-24-4029-2024, 2024
Short summary

Related subject area

Subject: Gases | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Reactivity study of 3,3-dimethylbutanal and 3,3-dimethylbutanone: kinetics, reaction products, mechanisms, and atmospheric implications
Inmaculada Aranda, Sagrario Salgado, Beatriz Cabañas, Florentina Villanueva, and Pilar Martín
Atmos. Chem. Phys., 25, 5445–5468, https://doi.org/10.5194/acp-25-5445-2025,https://doi.org/10.5194/acp-25-5445-2025, 2025
Short summary
Spatially separate production of hydrogen oxides and nitric oxide in lightning
Jena M. Jenkins and William H. Brune
Atmos. Chem. Phys., 25, 5041–5052, https://doi.org/10.5194/acp-25-5041-2025,https://doi.org/10.5194/acp-25-5041-2025, 2025
Short summary
Gas-phase observations of accretion products from stabilized Criegee intermediates in terpene ozonolysis with two dicarboxylic acids
Yuanyuan Luo, Lauri Franzon, Jiangyi Zhang, Nina Sarnela, Neil M. Donahue, Theo Kurtén, and Mikael Ehn
Atmos. Chem. Phys., 25, 4655–4664, https://doi.org/10.5194/acp-25-4655-2025,https://doi.org/10.5194/acp-25-4655-2025, 2025
Short summary
Kinetics of the reactions of OH with CO, NO, and NO2 and of HO2 with NO2 in air at 1 atm pressure, room temperature, and tropospheric water vapour concentrations
Michael Rolletter, Andreas Hofzumahaus, Anna Novelli, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 25, 3481–3502, https://doi.org/10.5194/acp-25-3481-2025,https://doi.org/10.5194/acp-25-3481-2025, 2025
Short summary
Atmospheric breakdown kinetics and air quality impact of potential “green” solvents the oxymethylene ethers OME3 and OME4
James D. D'Souza Metcalf, Ruth K. Winkless, Caterina Mapelli, C. Rob McElroy, Claudiu Roman, Cecilia Arsene, Romeo I. Olariu, Iustinian G. Bejan, and Terry J. Dillon
EGUsphere, https://doi.org/10.5194/egusphere-2025-866,https://doi.org/10.5194/egusphere-2025-866, 2025
Short summary

Cited articles

Bandyopadhyay, B., Kumar, P., and Biswas, P.: Ammonia catalyzed formation of sulfuric acid in troposphere: The curious case of a base promoting acid rain, J. Phys. Chem. A, 121, 3101–3108, https://doi.org/10.1021/acs.jpca.7b01172, 2017. 
Bao, J. L., Zhang, X., and Truhlar, D. G.: Barrierless association of CF2 and dissociation of C2F4 by variational transition-state theory and system-specific quantum Rice-Ramsperger-Kassel theory, P. Natl. Acad. Sci. USA, 113, 13606–13611, https://doi.org/10.1073/pnas.1616208113, 2016. 
Becke, A. D.: Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, 38, 3098–3100, https://doi.org/10.1103/physreva.38.3098, 1988. 
Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., and Haak, J. R.: Molecular dynamics with coupling to an external bath, J. Chem. Phys., 81, 3684–3690, https://doi.org/10.1063/1.448118, 1984. 
Download
Short summary
Gaseous results indicated that SO3 hydrolysis with formic sulfuric anhydride (FSA) has a Gibbs free energy barrier as low as 1.5 kcal mol-1 and can effectively compete with other SO3 hydrolysis. Interfacial BOMD (Born–Oppenheimer molecular dynamics) simulations illustrated that FSA-mediated SO3 hydrolysis at the gas–liquid interface occurs through a stepwise mechanism and can be completed within a few picoseconds. ACDC (Atmospheric Clusters Dynamics Code) kinetic simulations indicated that FSA significantly enhances cluster formation rates in the H2SO4–NH3 system.
Share
Altmetrics
Final-revised paper
Preprint