Articles | Volume 25, issue 9
https://doi.org/10.5194/acp-25-5041-2025
https://doi.org/10.5194/acp-25-5041-2025
Research article
 | 
16 May 2025
Research article |  | 16 May 2025

Spatially separate production of hydrogen oxides and nitric oxide in lightning

Jena M. Jenkins and William H. Brune

Related authors

Characterization of errors in satellite-based HCHO ∕ NO2 tropospheric column ratios with respect to chemistry, column-to-PBL translation, spatial representation, and retrieval uncertainties
Amir H. Souri, Matthew S. Johnson, Glenn M. Wolfe, James H. Crawford, Alan Fried, Armin Wisthaler, William H. Brune, Donald R. Blake, Andrew J. Weinheimer, Tijl Verhoelst, Steven Compernolle, Gaia Pinardi, Corinne Vigouroux, Bavo Langerock, Sungyeon Choi, Lok Lamsal, Lei Zhu, Shuai Sun, Ronald C. Cohen, Kyung-Eun Min, Changmin Cho, Sajeev Philip, Xiong Liu, and Kelly Chance
Atmos. Chem. Phys., 23, 1963–1986, https://doi.org/10.5194/acp-23-1963-2023,https://doi.org/10.5194/acp-23-1963-2023, 2023
Short summary
Aqueous-phase reactive species formed by fine particulate matter from remote forests and polluted urban air
Haijie Tong, Fobang Liu, Alexander Filippi, Jake Wilson, Andrea M. Arangio, Yun Zhang, Siyao Yue, Steven Lelieveld, Fangxia Shen, Helmi-Marja K. Keskinen, Jing Li, Haoxuan Chen, Ting Zhang, Thorsten Hoffmann, Pingqing Fu, William H. Brune, Tuukka Petäjä, Markku Kulmala, Maosheng Yao, Thomas Berkemeier, Manabu Shiraiwa, and Ulrich Pöschl
Atmos. Chem. Phys., 21, 10439–10455, https://doi.org/10.5194/acp-21-10439-2021,https://doi.org/10.5194/acp-21-10439-2021, 2021
Short summary
Technical Note: Effect of varying the λ = 185 and 254 nm photon flux ratio on radical generation in oxidation flow reactors
Jake P. Rowe, Andrew T. Lambe, and William H. Brune
Atmos. Chem. Phys., 20, 13417–13424, https://doi.org/10.5194/acp-20-13417-2020,https://doi.org/10.5194/acp-20-13417-2020, 2020
Short summary

Cited articles

Bhetanabhotla, M. N., Crowell, B. A., Coucouvinos, A., Hill, R. D., and Rinker, R. G.: Simulation of trace species production by lightning and corona discharge in moist air, Atmos. Environ., 19, 1391–1397, https://doi.org/10.1016/0004-6981(85)90276-8, 1985. 
Biermann, H. W., Zetzsch, C., and Stuhl, F.: Rate Constant for the reaction of OH with N2O at 298 K, Berich. Bunsen. Gesell., 80, 909–911, https://doi.org/10.1021/i160062a006, 1976. 
Boldi, R. A.: A model of the ion chemistry of electrified convection, PhD dissertation, Massachusetts Institute of Technology, http://hdl.handle.net/1721.1/51502, 1992. 
Brandvold, D. K., Martinez, P, and Dogruel, D.: Polarity Dependence of N2O Formation From Corona Discharge, Atmos. Environ., 23, 1881–1883, https://doi.org/10.1016/0004-6981(89)90513-1, 1989. 
Download
Short summary
Both the atmosphere's primary cleaner, the hydroxyl radical, and nitric oxide are generated in extreme amounts by lightning, and laboratory and modeling experiments demonstrate that these molecules are generated in different places in lightning flashes. Thus the hydroxyl radical is not immediately consumed by the nitric oxide and instead is available to remove other pollutants in the atmosphere. Additionally, substantial nitrous acid is also likely generated by lightning.
Share
Altmetrics
Final-revised paper
Preprint