Articles | Volume 25, issue 1
https://doi.org/10.5194/acp-25-459-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-459-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal air concentration variability, gas–particle partitioning, precipitation scavenging, and air–water equilibrium of organophosphate esters in southern Canada
Yuening Li
Department of Physical & Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
Faqiang Zhan
Department of Physical & Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
Chubashini Shunthirasingham
Environment and Climate Change Canada, Downsview, 4905 Dufferin St, North York, Ontario, M3H 5T4, Canada
Ying Duan Lei
Department of Physical & Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
Jenny Oh
Department of Physical & Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
Department of Chemistry, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
Amina Ben Chaaben
Institut des Sciences de la Mer, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, Quebec, G5L 3A1, Canada
Institut des Sciences de la Mer, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, Quebec, G5L 3A1, Canada
Kelsey Lee
School of Resource and Environmental Management, Simon Fraser University, 8888 University Dr, Burnaby, British Columbia, V5A 1S6, Canada
Frank A. P. C. Gobas
School of Resource and Environmental Management, Simon Fraser University, 8888 University Dr, Burnaby, British Columbia, V5A 1S6, Canada
Hayley Hung
Environment and Climate Change Canada, Downsview, 4905 Dufferin St, North York, Ontario, M3H 5T4, Canada
Department of Physical & Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
Department of Chemistry, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
Related authors
Yuening Li, Faqiang Zhan, Yushan Su, Ying Duan Lei, Chubashini Shunthirasingham, Zilin Zhou, Jonathan P. D. Abbatt, Hayley Hung, and Frank Wania
Atmos. Meas. Tech., 17, 715–729, https://doi.org/10.5194/amt-17-715-2024, https://doi.org/10.5194/amt-17-715-2024, 2024
Short summary
Short summary
A simple device for sampling gases from the atmosphere without the help of pumps was calibrated for an important group of hazardous air pollutants called polycyclic aromatic compounds (PACs). While the sampler appeared to perform well when used for relatively short periods of up to several months, some PACs were lost from the sampler during longer deployments. Sampling rates that can be used to quantitatively interpret the quantities of PACs taken up in the device have been derived.
Jenny Oh, Chubashini Shunthirasingham, Ying Duan Lei, Faqiang Zhan, Yuening Li, Abigaëlle Dalpé Castilloux, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Sabine Eckhardt, Nick Alexandrou, Hayley Hung, and Frank Wania
Atmos. Chem. Phys., 23, 10191–10205, https://doi.org/10.5194/acp-23-10191-2023, https://doi.org/10.5194/acp-23-10191-2023, 2023
Short summary
Short summary
An emerging brominated flame retardant (BFR) called TBECH (1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane) has never been produced or imported for use in Canada yet is found to be one of the most abundant gaseous BFRs in the Canadian atmosphere. The recorded spatial and temporal variability of TBECH suggest that the release from imported consumer products containing TBECH is the most likely explanation for its environmental occurrence in Canada.
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Stephen R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christophe Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-126, https://doi.org/10.5194/gmd-2024-126, 2024
Preprint under review for GMD
Short summary
Short summary
The multi-model experiment design of the HTAP3 Fires project takes a multi-pollutant approach to improving our understanding of transboundary transport of wildland fire and agricultural burning emissions and their impacts. The experiments are designed with the goal of answering science policy questions related to fires. The options for the multi-model approach, including inputs, outputs, and model set up are discussed, and the official recommendations for the project are presented.
Yuening Li, Faqiang Zhan, Yushan Su, Ying Duan Lei, Chubashini Shunthirasingham, Zilin Zhou, Jonathan P. D. Abbatt, Hayley Hung, and Frank Wania
Atmos. Meas. Tech., 17, 715–729, https://doi.org/10.5194/amt-17-715-2024, https://doi.org/10.5194/amt-17-715-2024, 2024
Short summary
Short summary
A simple device for sampling gases from the atmosphere without the help of pumps was calibrated for an important group of hazardous air pollutants called polycyclic aromatic compounds (PACs). While the sampler appeared to perform well when used for relatively short periods of up to several months, some PACs were lost from the sampler during longer deployments. Sampling rates that can be used to quantitatively interpret the quantities of PACs taken up in the device have been derived.
Jenny Oh, Chubashini Shunthirasingham, Ying Duan Lei, Faqiang Zhan, Yuening Li, Abigaëlle Dalpé Castilloux, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Sabine Eckhardt, Nick Alexandrou, Hayley Hung, and Frank Wania
Atmos. Chem. Phys., 23, 10191–10205, https://doi.org/10.5194/acp-23-10191-2023, https://doi.org/10.5194/acp-23-10191-2023, 2023
Short summary
Short summary
An emerging brominated flame retardant (BFR) called TBECH (1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane) has never been produced or imported for use in Canada yet is found to be one of the most abundant gaseous BFRs in the Canadian atmosphere. The recorded spatial and temporal variability of TBECH suggest that the release from imported consumer products containing TBECH is the most likely explanation for its environmental occurrence in Canada.
Attilio Naccarato, Antonella Tassone, Maria Martino, Sacha Moretti, Antonella Macagnano, Emiliano Zampetti, Paolo Papa, Joshua Avossa, Nicola Pirrone, Michelle Nerentorp, John Munthe, Ingvar Wängberg, Geoff W. Stupple, Carl P. J. Mitchell, Adam R. Martin, Alexandra Steffen, Diana Babi, Eric M. Prestbo, Francesca Sprovieri, and Frank Wania
Atmos. Meas. Tech., 14, 3657–3672, https://doi.org/10.5194/amt-14-3657-2021, https://doi.org/10.5194/amt-14-3657-2021, 2021
Short summary
Short summary
Mercury monitoring in support of the Minamata Convention requires effective and reliable analytical tools. Passive sampling is a promising approach for creating a sustainable long-term network for atmospheric mercury with improved spatial resolution and global coverage. In this study the analytical performance of three passive air samplers (CNR-PAS, IVL-PAS, and MerPAS) was assessed over extended deployment periods and the accuracy of concentrations was judged by comparison with active sampling.
David S. McLagan, Carl P. J. Mitchell, Alexandra Steffen, Hayley Hung, Cecilia Shin, Geoff W. Stupple, Mark L. Olson, Winston T. Luke, Paul Kelley, Dean Howard, Grant C. Edwards, Peter F. Nelson, Hang Xiao, Guey-Rong Sheu, Annekatrin Dreyer, Haiyong Huang, Batual Abdul Hussain, Ying D. Lei, Ilana Tavshunsky, and Frank Wania
Atmos. Chem. Phys., 18, 5905–5919, https://doi.org/10.5194/acp-18-5905-2018, https://doi.org/10.5194/acp-18-5905-2018, 2018
Short summary
Short summary
A new passive air sampler for gaseous mercury was tested at 20 sites on four continents. These sites have in common that they use the state-of-the-art active air sampling technique for gaseous mercury on a continuous basis and therefore allow for an evaluation and calibration of the passive sampler. The sampler proved to work exceptionally well, with a precision and accuracy on par with the active
instrument and better than what has previously been achieved with passive samplers.
Katrina M. Macdonald, Sangeeta Sharma, Desiree Toom, Alina Chivulescu, Andrew Platt, Mike Elsasser, Lin Huang, Richard Leaitch, Nathan Chellman, Joseph R. McConnell, Heiko Bozem, Daniel Kunkel, Ying Duan Lei, Cheol-Heon Jeong, Jonathan P. D. Abbatt, and Greg J. Evans
Atmos. Chem. Phys., 18, 3485–3503, https://doi.org/10.5194/acp-18-3485-2018, https://doi.org/10.5194/acp-18-3485-2018, 2018
Short summary
Short summary
The sources of key contaminants in Arctic snow may be an important factor in understanding the rapid climate changes observed in the Arctic. Fresh snow samples collected frequently through the winter season were analyzed for major constituents. Temporally refined source apportionment via positive matrix factorization in conjunction with FLEXPART suggested potential source characteristics and locations. The identity of these sources and their relative contribution to key analytes is discussed.
David S. McLagan, Carl P. J. Mitchell, Haiyong Huang, Batual Abdul Hussain, Ying Duan Lei, and Frank Wania
Atmos. Meas. Tech., 10, 3651–3660, https://doi.org/10.5194/amt-10-3651-2017, https://doi.org/10.5194/amt-10-3651-2017, 2017
Short summary
Short summary
Laboratory experiments indicate that the sampling rate of a passive air sampler for gaseous mercury is (1) not affected by relative humidity, (2) increases slightly with increasing temperature because of the effect of temperature on molecular diffusivity, (3) increases only slightly with wind speed as long as the wind speed is at least 1 m/s, and (4) is not changed when previously deployed diffusive barriers are used.
Leiming Zhang, Seth Lyman, Huiting Mao, Che-Jen Lin, David A. Gay, Shuxiao Wang, Mae Sexauer Gustin, Xinbin Feng, and Frank Wania
Atmos. Chem. Phys., 17, 9133–9144, https://doi.org/10.5194/acp-17-9133-2017, https://doi.org/10.5194/acp-17-9133-2017, 2017
Short summary
Short summary
Future research needs are proposed for improving the understanding of atmospheric mercury cycling. These include refinement of mercury emission estimations, quantification of dry deposition and air–surface exchange, improvement of the treatment of chemical mechanisms in chemical transport models, increase in the accuracy of oxidized mercury measurements, better interpretation of atmospheric mercury chemistry data, and harmonization of network operation.
Chen Wang, Tiange Yuan, Stephen A. Wood, Kai-Uwe Goss, Jingyi Li, Qi Ying, and Frank Wania
Atmos. Chem. Phys., 17, 7529–7540, https://doi.org/10.5194/acp-17-7529-2017, https://doi.org/10.5194/acp-17-7529-2017, 2017
Short summary
Short summary
Three property prediction methods are used to predict equilibrium partitioning coefficients for a set of 3414 compounds implicated in secondary organic aerosol formation. Partitioning from the gas phase to water is found to be much more uncertain than estimates of partitioning into the organic matter of aerosol. This uncertainty matters, as phase distribution is very different depending on which prediction method is applied.
Katrina M. Macdonald, Sangeeta Sharma, Desiree Toom, Alina Chivulescu, Sarah Hanna, Allan K. Bertram, Andrew Platt, Mike Elsasser, Lin Huang, David Tarasick, Nathan Chellman, Joseph R. McConnell, Heiko Bozem, Daniel Kunkel, Ying Duan Lei, Greg J. Evans, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 17, 5775–5788, https://doi.org/10.5194/acp-17-5775-2017, https://doi.org/10.5194/acp-17-5775-2017, 2017
Short summary
Short summary
Rapid climate changes within the Arctic have highlighted existing uncertainties in the transport of contaminants to Arctic snow. Fresh snow samples collected frequently through the winter season were analyzed for major constituents creating a unique record of Arctic snow. Comparison with simultaneous atmospheric measurements provides insight into the driving processes in the transfer of contaminants from air to snow. The relative importance of deposition mechanisms over the season is proposed.
David S. McLagan, Maxwell E. E. Mazur, Carl P. J. Mitchell, and Frank Wania
Atmos. Chem. Phys., 16, 3061–3076, https://doi.org/10.5194/acp-16-3061-2016, https://doi.org/10.5194/acp-16-3061-2016, 2016
Short summary
Short summary
For more than 20 years, scientists and engineers have tried to design simple sampling devices that can collect gaseous elemental mercury from the atmosphere without the use of a pump. A thorough review of the sampler designs that have been presented so far suggests that while some may be suitable for measuring higher air concentrations close to sources, none of them have the accuracy and precision required to record the low atmospheric mercury concentrations prevalent in background regions.
F. Wania, Y. D. Lei, C. Wang, J. P. D. Abbatt, and K.-U. Goss
Atmos. Chem. Phys., 15, 3395–3412, https://doi.org/10.5194/acp-15-3395-2015, https://doi.org/10.5194/acp-15-3395-2015, 2015
Short summary
Short summary
The manuscript presents a new way to graphically illustrate some of the processes that occur when organic particles form in the atmosphere. In particular, this method makes it possible to see how factors such as the composition of the atmosphere and temperature affect these processes.
T. F. Bidleman, L. M. Jantunen, H. Hung, J. Ma, G. A. Stern, B. Rosenberg, and J. Racine
Atmos. Chem. Phys., 15, 1411–1420, https://doi.org/10.5194/acp-15-1411-2015, https://doi.org/10.5194/acp-15-1411-2015, 2015
Short summary
Short summary
Canadian Arctic air samples were analysed for enantiomers (mirror-image isomers) of pesticides α-hexachlorocyclohexane (α-HCH), trans-chlordane (TC) and cis-chlordane (CC). Annual cycles of enantiomer proportions suggested greater emission of microbially degraded residues from water and soil in warm vs. cold seasons. Enantiomer profiles may change in the future with rising contributions from secondary sources, monitoring them could increase the forensic capability in air monitoring programs.
F. Wania, Y. D. Lei, C. Wang, J. P. D. Abbatt, and K.-U. Goss
Atmos. Chem. Phys., 14, 13189–13204, https://doi.org/10.5194/acp-14-13189-2014, https://doi.org/10.5194/acp-14-13189-2014, 2014
Short summary
Short summary
A description of the formation of secondary organic aerosol requires the prediction of the partitioning equilibrium of organic compounds with multiple functional groups between gas and organic particle phase. While this is typically done by predicting both the saturation vapour pressure and the activity coefficient in the organic particle phase, we demonstrate here that it is feasible to predict the partitioning equilibrium directly. This direct approach has greater precision.
A. M. Grannas, C. Bogdal, K. J. Hageman, C. Halsall, T. Harner, H. Hung, R. Kallenborn, P. Klán, J. Klánová, R. W. Macdonald, T. Meyer, and F. Wania
Atmos. Chem. Phys., 13, 3271–3305, https://doi.org/10.5194/acp-13-3271-2013, https://doi.org/10.5194/acp-13-3271-2013, 2013
A. S. Cole, A. Steffen, K. A. Pfaffhuber, T. Berg, M. Pilote, L. Poissant, R. Tordon, and H. Hung
Atmos. Chem. Phys., 13, 1535–1545, https://doi.org/10.5194/acp-13-1535-2013, https://doi.org/10.5194/acp-13-1535-2013, 2013
Related subject area
Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Measurement report: Surface exchange fluxes of HONO during the growth process of paddy fields in the Huaihe River Basin, China
Molecular and seasonal characteristics of organic vapors in urban Beijing: insights from Vocus-PTR measurements
The variations in volatile organic compounds based on the policy change for Omicron in the traffic hub of Zhengzhou
On the dynamics of ozone depletion events at Villum Research Station in the High Arctic
Measurement report: Long-term measurements of surface ozone and trends in semi-natural sub-Saharan African ecosystems
Characterization of biogenic volatile organic compounds and their oxidation products in a stressed spruce-dominated forest close to a biogas power plant
Reactive chlorine-, sulfur-, and nitrogen-containing volatile organic compounds impact atmospheric chemistry in the megacity of Delhi during both clean and extremely polluted seasons
Analysis of the day-to-day variability of ozone vertical profiles in the lower troposphere during the 2022 Paris ACROSS campaign
Ozone deposition measurements over wheat fields in the North China Plain: variability and related factors of deposition flux and velocity
Consistency evaluation of tropospheric ozone from ozonesonde and IAGOS (In-service Aircraft for a Global Observing System) observations: vertical distribution, ozonesonde types, and station–airport distance
CO2 and CO temporal variability over Mexico City from ground-based total column and surface measurements
Investigating carbonyl compounds above the Amazon rainforest using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) with NO+ chemical ionization
Measurement report: In-flight and ground-based measurements of nitrogen oxide emissions from latest-generation jet engines and 100 % sustainable aviation fuel
Vertical changes in volatile organic compounds (VOCs) and impacts on photochemical ozone formation
Measurement report: Sources, sinks, and lifetime of NOx in a suburban temperate forest at night
Measurement report: Urban ammonia and amines in Houston, Texas
Biomass-burning sources control ambient particulate matter, but traffic and industrial sources control volatile organic compound (VOC) emissions and secondary-pollutant formation during extreme pollution events in Delhi
Multi-year observations of variable incomplete combustion in the New York megacity
Observations of the vertical distributions of summertime atmospheric pollutants in Nam Co: OH production and source analysis
Understanding summertime peroxyacetyl nitrate (PAN) formation and its relation to aerosol pollution: Insights from high-resolution measurements and modeling
Measurement report: Elevated atmospheric ammonia may promote particle pH and HONO formation – insights from the COVID-19 pandemic
Measurement report: Vertical and temporal variability in the near-surface ozone production rate and sensitivity in an urban area in the Pearl River Delta region, China
Elevated oxidized mercury in the free troposphere: analytical advances and application at a remote continental mountaintop site
Using observed urban NOx sinks to constrain VOC reactivity and the ozone and radical budget in the Seoul Metropolitan Area
Real-world emission characteristics of VOCs from typical cargo ships and their potential contributions to secondary organic aerosol and O3 under low-sulfur fuel policies
NO3 reactivity during a summer period in a temperate forest below and above the canopy
The role of oceanic ventilation and terrestrial outflow in atmospheric non-methane hydrocarbons over the Chinese marginal seas
Concentration and source changes of nitrous acid (HONO) during the COVID-19 lockdown in Beijing
Characteristics and sources of nonmethane volatile organic compounds (NMVOCs) and O3–NOx–NMVOC relationships in Zhengzhou, China
Exploring the variations in ambient BTEX in urban Europe and its environmental health implications
Cloud processing of DMS oxidation products limits SO2 and OCS production in the Eastern North Atlantic marine boundary layer
Deciphering anthropogenic and biogenic contributions to selected non-methane volatile organic compound emissions in an urban area
Emission characteristics of reactive organic gases (ROGs) from industrial volatile chemical products (VCPs) in the Pearl River Delta (PRD), China
Measurement report: Enhanced photochemical formation of formic and isocyanic acids in urban regions aloft – insights from tower-based online gradient measurements
Sources of organic gases and aerosol particles and their roles in nighttime particle growth at a rural forested site in southwest Germany
Exploring the Crucial Role of Atmospheric Carbonyl Compounds in Regional Ozone heavy Pollution: Insights from Intensive Field Observations and Observation-based modelling in the Chengdu Plain Urban Agglomeration, China
Surface snow bromide and nitrate at Eureka, Canada, in early spring and implications for polar boundary layer chemistry
Opinion: Strengthening research in the Global South – atmospheric science opportunities in South America and Africa
Shipping and algae emissions have a major impact on ambient air mixing ratios of non-methane hydrocarbons (NMHCs) and methanethiol on Utö Island in the Baltic Sea
Contribution of cooking emissions to the urban volatile organic compounds in Las Vegas, NV
Reanalysis of NOAA H2 observations: implications for the H2 budget
A large role of missing volatile organic compound reactivity from anthropogenic emissions in ozone pollution regulation
Diurnal, seasonal, and interannual variations in δ(18O) of atmospheric O2 and its application to evaluate changes in oxygen, carbon, and water cycles
Measurement report: Insights into the chemical composition and origin of molecular clusters and potential precursor molecules present in the free troposphere over the southern Indian Ocean: observations from the Maïdo Observatory (2150 m a.s.l., Réunion)
Production of oxygenated volatile organic compounds from the ozonolysis of coastal seawater
Comment on “Transport of substantial stratospheric ozone to the surface by a dying typhoon and shallow convection” by Chen et al. (2022)
Characterization of nitrous acid and its potential effects on secondary pollution in warm-season of Beijing urban areas
Observations of cyanogen bromide (BrCN) in the global troposphere and their relation to polar surface O3 destruction
Individual coal mine methane emissions constrained by eddy covariance measurements: low bias and missing sources
Measurement report: Observations of ground-level ozone concentration gradients perpendicular to the Lake Ontario shoreline
Fanhao Meng, Baobin Han, Min Qin, Wu Fang, Ke Tang, Dou Shao, Zhitang Liao, Jun Duan, Yan Feng, Yong Huang, Ting Ni, and Pinhua Xie
Atmos. Chem. Phys., 24, 14191–14208, https://doi.org/10.5194/acp-24-14191-2024, https://doi.org/10.5194/acp-24-14191-2024, 2024
Short summary
Short summary
Comprehensive observations of HONO and NOx fluxes were conducted over paddy fields in the Huaihe River Basin. Consecutive peaks in HONO and NO fluxes suggest a potentially enhanced release of HONO and NO due to soil tillage, whereas waterlogged soil may inhibit microbial nitrification processes following irrigation. Notably, biological processes and light-driven NO2 reactions at the surface may serve as sources of HONO and influence the local HONO budget during rotary tillage.
Zhaojin An, Rujing Yin, Xinyan Zhao, Xiaoxiao Li, Yuyang Li, Yi Yuan, Junchen Guo, Yiqi Zhao, Xue Li, Dandan Li, Yaowei Li, Dongbin Wang, Chao Yan, Kebin He, Douglas R. Worsnop, Frank N. Keutsch, and Jingkun Jiang
Atmos. Chem. Phys., 24, 13793–13810, https://doi.org/10.5194/acp-24-13793-2024, https://doi.org/10.5194/acp-24-13793-2024, 2024
Short summary
Short summary
Online Vocus-PTR measurements show the compositions and seasonal variations in organic vapors in urban Beijing. With enhanced sensitivity and mass resolution, various species at a level of sub-parts per trillion (ppt) and organics with multiple oxygens (≥ 3) were observed. The fast photooxidation process in summer leads to an increase in both concentration and proportion of organics with multiple oxygens, while, in other seasons, the variations in them could be influenced by mixed sources.
Bowen Zhang, Dong Zhang, Zhe Dong, Xinshuai Song, Ruiqin Zhang, and Xiao Li
Atmos. Chem. Phys., 24, 13587–13601, https://doi.org/10.5194/acp-24-13587-2024, https://doi.org/10.5194/acp-24-13587-2024, 2024
Short summary
Short summary
To gain insight into the impact of changes due to epidemic control policies, we undertook continuous online monitoring of volatile organic compounds (VOCs) at an urban site in Zhengzhou over a 2-month period. This study examines the characteristics of VOCs, their sources, and their temporal evolution. It also assesses the impact of the policy change on VOC pollution during the monitoring period, thus providing a basis for further research on VOC pollution and source control.
Jakob Boyd Pernov, Jens Liengaard Hjorth, Lise Lotte Sørensen, and Henrik Skov
Atmos. Chem. Phys., 24, 13603–13631, https://doi.org/10.5194/acp-24-13603-2024, https://doi.org/10.5194/acp-24-13603-2024, 2024
Short summary
Short summary
Arctic ozone depletion events (ODEs) occur every spring and have vast implications for the oxidizing capacity, radiative balance, and mercury oxidation. In this study, we analyze ozone, ODEs, and their connection to meteorological and air mass history variables through statistical analyses, back trajectories, and machine learning (ML) at Villum Research Station. ODEs are favorable under sunny, calm conditions with air masses arriving from northerly wind directions with sea ice contact.
Hagninou Elagnon Venance Donnou, Aristide Barthélémy Akpo, Money Ossohou, Claire Delon, Véronique Yoboué, Dungall Laouali, Marie Ouafo-Leumbe, Pieter Gideon Van Zyl, Ousmane Ndiaye, Eric Gardrat, Maria Dias-Alves, and Corinne Galy-Lacaux
Atmos. Chem. Phys., 24, 13151–13182, https://doi.org/10.5194/acp-24-13151-2024, https://doi.org/10.5194/acp-24-13151-2024, 2024
Short summary
Short summary
Ozone is a secondary air pollutant that is detrimental to human and plant health. A better understanding of its chemical evolution is a challenge for Africa, where it is still undersampled. Out of 14 sites examined (1995–2020), high levels of O3 are reported in southern Africa. The dominant chemical processes leading to O3 formation are identified. A decrease in O3 is observed at Katibougou (Mali) and Banizoumbou (Niger), and an increase is found at Zoétélé (Cameroon) and Skukuza (South Africa).
Junwei Song, Georgios I. Gkatzelis, Ralf Tillmann, Nicolas Brüggemann, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 13199–13217, https://doi.org/10.5194/acp-24-13199-2024, https://doi.org/10.5194/acp-24-13199-2024, 2024
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) and organic aerosol (OA) particles were measured online in a stressed spruce-dominated forest. OA was mainly attributed to the monoterpene oxidation products. The mixing ratios of BVOCs were higher than the values previously measured in other temperate forests. The results demonstrate that BVOCs are influenced not only by meteorology and biogenic emissions but also by local anthropogenic emissions and subsequent chemical transformation processes.
Sachin Mishra, Vinayak Sinha, Haseeb Hakkim, Arpit Awasthi, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Baerbel Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 13129–13150, https://doi.org/10.5194/acp-24-13129-2024, https://doi.org/10.5194/acp-24-13129-2024, 2024
Short summary
Short summary
We quantified 111 gases using mass spectrometry to understand how seasonal and emission changes lead from clean air in the monsoon season to extremely polluted air in the post-monsoon season in Delhi. Averaged total mass concentrations (260 µg m-3) were > 4 times in polluted periods, driven by biomass burning emissions and reduced atmospheric ventilation. Reactive gaseous nitrogen, chlorine, and sulfur compounds hitherto unreported from such a polluted environment were discovered.
Gérard Ancellet, Camille Viatte, Anne Boynard, François Ravetta, Jacques Pelon, Cristelle Cailteau-Fischbach, Pascal Genau, Julie Capo, Axel Roy, and Philippe Nédélec
Atmos. Chem. Phys., 24, 12963–12983, https://doi.org/10.5194/acp-24-12963-2024, https://doi.org/10.5194/acp-24-12963-2024, 2024
Short summary
Short summary
Characterization of ozone pollution in urban areas benefited from a measurement campaign in summer 2022 in the Paris region. The analysis is based on 21 d of lidar and aircraft observations. The main objective is an analysis of the sensitivity of ozone pollution to the micrometeorological processes in the urban atmospheric boundary layer and the transport of regional pollution. The paper also discusses to what extent satellite observations can track observed ozone plumes.
Xiaoyi Zhang, Wanyun Xu, Weili Lin, Gen Zhang, Jinjian Geng, Li Zhou, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Jianmin Chen, and Xiaobin Xu
Atmos. Chem. Phys., 24, 12323–12340, https://doi.org/10.5194/acp-24-12323-2024, https://doi.org/10.5194/acp-24-12323-2024, 2024
Short summary
Short summary
Ozone (O3) deposition is a key process that removes surface O3, affecting air quality, ecosystems and climate change. We conducted O3 deposition measurement over a wheat canopy using a newly relaxed eddy accumulation flux system. Large variabilities in O3 deposition were detected, mainly determined by crop growth and modulated by various environmental factors. More O3 deposition observations over different surfaces are needed for exploring deposition mechanisms and model optimization.
Honglei Wang, David W. Tarasick, Jane Liu, Herman G. J. Smit, Roeland Van Malderen, Lijuan Shen, Romain Blot, and Tianliang Zhao
Atmos. Chem. Phys., 24, 11927–11942, https://doi.org/10.5194/acp-24-11927-2024, https://doi.org/10.5194/acp-24-11927-2024, 2024
Short summary
Short summary
In this study, we identify 23 suitable pairs of sites from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) and In-service Aircraft for a Global Observing System (IAGOS) datasets (1995 to 2021), compare the average vertical distributions of tropospheric O3 from ozonesonde and aircraft measurements, and analyze the differences based on ozonesonde type and station–airport distance.
Noémie Taquet, Wolfgang Stremme, María Eugenia González del Castillo, Victor Almanza, Alejandro Bezanilla, Olivier Laurent, Carlos Alberti, Frank Hase, Michel Ramonet, Thomas Lauvaux, Ke Che, and Michel Grutter
Atmos. Chem. Phys., 24, 11823–11848, https://doi.org/10.5194/acp-24-11823-2024, https://doi.org/10.5194/acp-24-11823-2024, 2024
Short summary
Short summary
We characterize the variability in CO and CO2 emissions over Mexico City from long-term time-resolved Fourier transform infrared spectroscopy solar absorption and surface measurements from 2013 to 2021. Using the average intraday CO growth rate from total columns, the average CO / CO2 ratio and TROPOMI data, we estimate the interannual variability in the CO and CO2 anthropogenic emissions of Mexico City, highlighting the effect of an unprecedented drop in activity due to the COVID-19 lockdown.
Akima Ringsdorf, Achim Edtbauer, Bruna Holanda, Christopher Poehlker, Marta O. Sá, Alessandro Araújo, Jürgen Kesselmeier, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 24, 11883–11910, https://doi.org/10.5194/acp-24-11883-2024, https://doi.org/10.5194/acp-24-11883-2024, 2024
Short summary
Short summary
We show the average height distribution of separately observed aldehydes and ketones over a day and discuss their rainforest-specific sources and sinks as well as their seasonal changes above the Amazon. Ketones have much longer atmospheric lifetimes than aldehydes and thus different implications for atmospheric chemistry. However, they are commonly observed together, which we overcome by measuring with a NO+ chemical ionization mass spectrometer for the first time in the Amazon rainforest.
Theresa Harlass, Rebecca Dischl, Stefan Kaufmann, Raphael Märkl, Daniel Sauer, Monika Scheibe, Paul Stock, Tiziana Bräuer, Andreas Dörnbrack, Anke Roiger, Hans Schlager, Ulrich Schumann, Magdalena Pühl, Tobias Schripp, Tobias Grein, Linda Bondorf, Charles Renard, Maxime Gauthier, Mark Johnson, Darren Luff, Paul Madden, Peter Swann, Denise Ahrens, Reetu Sallinen, and Christiane Voigt
Atmos. Chem. Phys., 24, 11807–11822, https://doi.org/10.5194/acp-24-11807-2024, https://doi.org/10.5194/acp-24-11807-2024, 2024
Short summary
Short summary
Emissions from aircraft have a direct impact on our climate. Here, we present airborne and ground-based measurement data of nitrogen oxides that were collected in the exhaust of an Airbus aircraft. We study the impact of burning fossil and sustainable aviation fuel on nitrogen oxide emissions at different engine settings related to combustor temperature, pressure and fuel flow. Further, we compare observations with engine emission models.
Xiao-Bing Li, Bin Yuan, Yibo Huangfu, Suxia Yang, Xin Song, Jipeng Qi, Xianjun He, Sihang Wang, Yubin Chen, Qing Yang, Yongxin Song, Yuwen Peng, Guiqian Tang, Jian Gao, and Min Shao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2755, https://doi.org/10.5194/egusphere-2024-2755, 2024
Short summary
Short summary
Online vertical gradient measurements of volatile organic compounds (VOCs), ozone, and NOx were made based on a 325 m tower in urban Beijing. Vertical changes in concentrations, compositions, key drivers, and environmental impacts of VOCs were analyzed in this study. We find that VOC species display differentiated vertical variation patterns and distinct roles in contributing to photochemical ozone formation with increasing height in the urban planetary boundary layer.
Simone T. Andersen, Max R. McGillen, Chaoyang Xue, Tobias Seubert, Patrick Dewald, Gunther N. T. E. Türk, Jan Schuladen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Abdelwahid Mellouki, Lucy J. Carpenter, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 11603–11618, https://doi.org/10.5194/acp-24-11603-2024, https://doi.org/10.5194/acp-24-11603-2024, 2024
Short summary
Short summary
Using measurements of various trace gases in a suburban forest near Paris in the summer of 2022, we were able to gain insight into the sources and sinks of NOx (NO+NO2) with a special focus on their nighttime chemical and physical loss processes. NO was observed as a result of nighttime soil emissions when O3 levels were strongly depleted by deposition. NO oxidation products were not observed at night, indicating that soil and/or foliar surfaces are an efficient sink of reactive N.
Lee Tiszenkel, James H. Flynn, and Shan-Hu Lee
Atmos. Chem. Phys., 24, 11351–11363, https://doi.org/10.5194/acp-24-11351-2024, https://doi.org/10.5194/acp-24-11351-2024, 2024
Short summary
Short summary
Ammonia and amines are important ingredients for aerosol formation in urban environments, but the measurements of these compounds are extremely challenging. Our observations show that urban ammonia and amines in Houston are emitted from urban sources, and diurnal variations in their concentrations are likely governed by gas-to-particle conversion and emissions.
Arpit Awasthi, Baerbel Sinha, Haseeb Hakkim, Sachin Mishra, Varkrishna Mummidivarapu, Gurmanjot Singh, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Vinayak Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 10279–10304, https://doi.org/10.5194/acp-24-10279-2024, https://doi.org/10.5194/acp-24-10279-2024, 2024
Short summary
Short summary
We use 111 volatile organic compounds (VOCs), PM10, and PM2.5 in a positive matrix factorization (PMF) model to resolve 11 pollution sources validated with chemical fingerprints. Crop residue burning and heating account for ~ 50 % of the PM, while traffic and industrial emissions dominate the gas-phase VOC burden and formation potential of secondary organic aerosols (> 60 %). Non-tailpipe emissions from compressed-natural-gas-fuelled commercial vehicles dominate the transport sector's PM burden.
Luke D. Schiferl, Cong Cao, Bronte Dalton, Andrew Hallward-Driemeier, Ricardo Toledo-Crow, and Róisín Commane
Atmos. Chem. Phys., 24, 10129–10142, https://doi.org/10.5194/acp-24-10129-2024, https://doi.org/10.5194/acp-24-10129-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is an air pollutant and an important indicator of the incomplete combustion of fossil fuels in cities. Using 4 years of winter and spring observations in New York City, we found that both the magnitude and variability of CO from the metropolitan area are greater than expected. Transportation emissions cannot explain the missing and variable CO, which points to energy from buildings as a likely underappreciated source of urban air pollution and greenhouse gas emissions.
Chengzhi Xing, Cheng Liu, Chunxiang Ye, Jingkai Xue, Hongyu Wu, Xiangguang Ji, Jinping Ou, and Qihou Hu
Atmos. Chem. Phys., 24, 10093–10112, https://doi.org/10.5194/acp-24-10093-2024, https://doi.org/10.5194/acp-24-10093-2024, 2024
Short summary
Short summary
We identified the contributions of ozone (O3) and nitrous acid (HONO) to the production rates of hydroxide (OH) in vertical space on the Tibetan Plateau (TP). A new insight was offered: the contributions of HONO and O3 to the production rates of OH on the TP are even greater than in lower-altitudes areas. This study enriches the understanding of vertical distribution of atmospheric components and explains the strong atmospheric oxidation capacity (AOC) on the TP.
Baoye Hu, Naihua Chen, Rui Li, Mingqiang Huang, Jinsheng Chen, Youwei Hong, Lingling Xu, Xiaolong Fan, Mengren Li, Lei Tong, Qiuping Zheng, and Yuxiang Yang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2631, https://doi.org/10.5194/egusphere-2024-2631, 2024
Short summary
Short summary
Box modeling with the master chemical mechanism (MCM) was used to address the puzzle of summertime PAN formation and its association with aerosol pollution under high ozone conditions. The MCM model proves to be an ideal tool for investigating PAN photochemical formation (IOA=0.75). The model performed better during the clean period than during the haze period. Through the machine learning method of XGBoost, we found that the top three factors leading to simulation bias were NH3, NO3, and PM2.5.
Xinyuan Zhang, Lingling Wang, Nan Wang, Shuangliang Ma, Shenbo Wang, Ruiqin Zhang, Dong Zhang, Mingkai Wang, and Hongyu Zhang
Atmos. Chem. Phys., 24, 9885–9898, https://doi.org/10.5194/acp-24-9885-2024, https://doi.org/10.5194/acp-24-9885-2024, 2024
Short summary
Short summary
This study highlights the importance of the redox reaction of NO2 with SO2 based on actual atmospheric observations. The particle pH in future China is expected to rise steadily. Consequently, this reaction could become a significant source of HONO in China. Therefore, it is crucial to coordinate the control of SO2, NOx, and NH3 emissions to avoid a rapid increase in the particle pH.
Jun Zhou, Chunsheng Zhang, Aiming Liu, Bin Yuan, Yan Wang, Wenjie Wang, Jie-Ping Zhou, Yixin Hao, Xiao-Bing Li, Xianjun He, Xin Song, Yubin Chen, Suxia Yang, Shuchun Yang, Yanfeng Wu, Bin Jiang, Shan Huang, Junwen Liu, Yuwen Peng, Jipeng Qi, Minhui Deng, Bowen Zhong, Yibo Huangfu, and Min Shao
Atmos. Chem. Phys., 24, 9805–9826, https://doi.org/10.5194/acp-24-9805-2024, https://doi.org/10.5194/acp-24-9805-2024, 2024
Short summary
Short summary
In-depth understanding of the near-ground vertical variability in photochemical ozone (O3) formation is crucial for mitigating O3 pollution. Utilizing a self-built vertical observation system, a direct net photochemical O3 production rate detection system, and an observation-based model, we diagnosed the vertical distributions and formation mechanism of net photochemical O3 production rates and sensitivity in the Pearl River Delta region, one of the most O3-polluted areas in China.
Eleanor J. Derry, Tyler R. Elgiar, Taylor Y. Wilmot, Nicholas W. Hoch, Noah S. Hirshorn, Peter Weiss-Penzias, Christopher F. Lee, John C. Lin, A. Gannet Hallar, Rainer Volkamer, Seth N. Lyman, and Lynne E. Gratz
Atmos. Chem. Phys., 24, 9615–9643, https://doi.org/10.5194/acp-24-9615-2024, https://doi.org/10.5194/acp-24-9615-2024, 2024
Short summary
Short summary
Mercury (Hg) is a globally distributed neurotoxic pollutant. Atmospheric deposition is the main source of Hg in ecosystems. However, measurement biases hinder understanding of the origins and abundance of the more bioavailable oxidized form. We used an improved, calibrated measurement system to study air mass composition and transport of atmospheric Hg at a remote mountaintop site in the central US. Oxidized Hg originated upwind in the low to middle free troposphere under clean, dry conditions.
Benjamin A. Nault, Katherine R. Travis, James H. Crawford, Donald R. Blake, Pedro Campuzano-Jost, Ronald C. Cohen, Joshua P. DiGangi, Glenn S. Diskin, Samuel R. Hall, L. Gregory Huey, Jose L. Jimenez, Kyung-Eun Min, Young Ro Lee, Isobel J. Simpson, Kirk Ullmann, and Armin Wisthaler
Atmos. Chem. Phys., 24, 9573–9595, https://doi.org/10.5194/acp-24-9573-2024, https://doi.org/10.5194/acp-24-9573-2024, 2024
Short summary
Short summary
Ozone (O3) is a pollutant formed from the reactions of gases emitted from various sources. In urban areas, the density of human activities can increase the O3 formation rate (P(O3)), thus impacting air quality and health. Observations collected over Seoul, South Korea, are used to constrain P(O3). A high local P(O3) was found; however, local P(O3) was partly reduced due to compounds typically ignored. These observations also provide constraints for unmeasured compounds that will impact P(O3).
Fan Zhang, Binyu Xiao, Zeyu Liu, Yan Zhang, Chongguo Tian, Rui Li, Can Wu, Yali Lei, Si Zhang, Xinyi Wan, Yubao Chen, Yong Han, Min Cui, Cheng Huang, Hongli Wang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 24, 8999–9017, https://doi.org/10.5194/acp-24-8999-2024, https://doi.org/10.5194/acp-24-8999-2024, 2024
Short summary
Short summary
Mandatory use of low-sulfur fuel due to global sulfur limit regulations means large uncertainties in volatile organic compound (VOC) emissions. On-board tests of VOCs from nine cargo ships in China were carried out. Results showed that switching from heavy-fuel oil to diesel increased emission factor VOCs by 48 % on average, enhancing O3 and the secondary organic aerosol formation potential. Thus, implementing a global ultra-low-sulfur oil policy needs to be optimized in the near future.
Patrick Dewald, Tobias Seubert, Simone T. Andersen, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Chaoyang Xue, Abdelwahid Mellouki, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 8983–8997, https://doi.org/10.5194/acp-24-8983-2024, https://doi.org/10.5194/acp-24-8983-2024, 2024
Short summary
Short summary
In the scope of a field campaign in a suburban forest near Paris in the summer of 2022, we measured the reactivity of the nitrate radical NO3 towards biogenic volatile organic compounds (BVOCs; e.g. monoterpenes) mainly below but also above the canopy. NO3 reactivity was the highest during nights with strong temperature inversions and decreased strongly with height. Reactions with BVOCs were the main removal process of NO3 throughout the diel cycle below the canopy.
Jian Wang, Lei Xue, Qianyao Ma, Feng Xu, Gaobin Xu, Shibo Yan, Jiawei Zhang, Jianlong Li, Honghai Zhang, Guiling Zhang, and Zhaohui Chen
Atmos. Chem. Phys., 24, 8721–8736, https://doi.org/10.5194/acp-24-8721-2024, https://doi.org/10.5194/acp-24-8721-2024, 2024
Short summary
Short summary
This study investigated the distribution and sources of non-methane hydrocarbons (NMHCs) in the lower atmosphere over the marginal seas of China. NMHCs, a subset of volatile organic compounds (VOCs), play a crucial role in atmospheric chemistry. Derived from systematic atmospheric sampling in coastal cities and marginal sea regions, this study offers valuable insights into the interaction between land and sea in shaping offshore atmospheric NMHCs.
Yusheng Zhang, Feixue Zheng, Zemin Feng, Chaofan Lian, Weigang Wang, Xiaolong Fan, Wei Ma, Zhuohui Lin, Chang Li, Gen Zhang, Chao Yan, Ying Zhang, Veli-Matti Kerminen, Federico Bianch, Tuukka Petäjä, Juha Kangasluoma, Markku Kulmala, and Yongchun Liu
Atmos. Chem. Phys., 24, 8569–8587, https://doi.org/10.5194/acp-24-8569-2024, https://doi.org/10.5194/acp-24-8569-2024, 2024
Short summary
Short summary
The nitrous acid (HONO) budget was validated during a COVID-19 lockdown event. The main conclusions are (1) HONO concentrations showed a significant decrease from 0.97 to 0.53 ppb during lockdown; (2) vehicle emissions accounted for 53 % of nighttime sources, with the heterogeneous conversion of NO2 on ground surfaces more important than aerosol; and (3) the dominant daytime source shifted from the homogenous reaction between NO and OH (51 %) to nitrate photolysis (53 %) during lockdown.
Dong Zhang, Xiao Li, Minghao Yuan, Yifei Xu, Qixiang Xu, Fangcheng Su, Shenbo Wang, and Ruiqin Zhang
Atmos. Chem. Phys., 24, 8549–8567, https://doi.org/10.5194/acp-24-8549-2024, https://doi.org/10.5194/acp-24-8549-2024, 2024
Short summary
Short summary
The increasing concentration of O3 precursors and unfavorable meteorological conditions are key factors in the formation of O3 pollution in Zhengzhou. Vehicular exhausts (28 %), solvent usage (27 %), and industrial production (22 %) are identified as the main sources of NMVOCs. Moreover, O3 formation in Zhengzhou is found to be in an anthropogenic volatile organic compound (AVOC)-limited regime. Thus, to reduce O3 formation, a minimum AVOCs / NOx reduction ratio ≥ 3 : 1 is recommended.
Xiansheng Liu, Xun Zhang, Marvin Dufresne, Tao Wang, Lijie Wu, Rosa Lara, Roger Seco , Marta Monge, Ana Maria Yáñez-Serrano, Marie Gohy, Paul Petit, Audrey Chevalier, Marie-Pierre Vagnot, Yann Fortier, Alexia Baudic, Véronique Ghersi, Grégory Gille, Ludovic Lanzi, Valérie Gros, Leïla Simon, Heidi Hellen, Stefan Reimann, Zoé Le Bras, Michelle Jessy Müller, David Beddows, Siqi Hou, Zongbo Shi, Roy M. Harrison, William Bloss, James Dernie, Stéphane Sauvage, Philip K. Hopke, Xiaoli Duan, Taicheng An, Alastair Lewis, Jim Hopkins, Eleni Liakakou, Nikolaos Mihalopoulos, Xiaohu Zhang, Andrés Alastuey, Xavier Querol, and Thérèse Salameh
EGUsphere, https://doi.org/10.5194/egusphere-2024-2309, https://doi.org/10.5194/egusphere-2024-2309, 2024
Short summary
Short summary
This study examines BTEX (benzene, toluene, ethylbenzene, xylenes) pollution in urban areas across 7 European countries. Analyzing data from 22 monitoring sites, we found traffic and industrial activities significantly impact BTEX levels, with peaks during rush hours. Despite improvements, the risk from BTEX exposure remains moderate, especially in high-traffic and industrial zones. It highlights the need for targeted air quality management to protect public health and improve urban air quality.
Delaney B. Kilgour, Christopher M. Jernigan, Olga Garmash, Sneha Aggarwal, Claudia Mohr, Matt E. Salter, Joel A. Thornton, Jian Wang, Paul Zieger, and Timothy H. Bertram
EGUsphere, https://doi.org/10.5194/egusphere-2024-1975, https://doi.org/10.5194/egusphere-2024-1975, 2024
Short summary
Short summary
We report simultaneous measurements of dimethyl sulfide (DMS) and hydroperoxymethyl thioformate (HPMTF) in the Eastern North Atlantic. We use an observationally constrained box model to show cloud loss is the dominant sink of HPMTF in this region over six weeks, resulting in large reductions in DMS-derived products that contribute to aerosol formation and growth. Our findings indicate that fast cloud processing of HPMTF must be included in global models to accurately capture the sulfur cycle.
Arianna Peron, Martin Graus, Marcus Striednig, Christian Lamprecht, Georg Wohlfahrt, and Thomas Karl
Atmos. Chem. Phys., 24, 7063–7083, https://doi.org/10.5194/acp-24-7063-2024, https://doi.org/10.5194/acp-24-7063-2024, 2024
Short summary
Short summary
The anthropogenic fraction of non-methane volatile organic compound (NMVOC) emissions associated with biogenic sources (e.g., terpenes) is investigated based on eddy covariance observations. The anthropogenic fraction of terpene emissions is strongly dependent on season. When analyzing volatile chemical product (VCP) emissions in urban environments, we caution that observations from short-term campaigns might over-/underestimate their significance depending on local and seasonal circumstances.
Sihang Wang, Bin Yuan, Xianjun He, Ru Cui, Xin Song, Yubin Chen, Caihong Wu, Chaomin Wang, Yibo Huangfu, Xiao-Bing Li, Boguang Wang, and Min Shao
Atmos. Chem. Phys., 24, 7101–7121, https://doi.org/10.5194/acp-24-7101-2024, https://doi.org/10.5194/acp-24-7101-2024, 2024
Short summary
Short summary
Emissions of reactive organic gases from industrial volatile chemical product sources are measured. There are large differences among these industrial sources. We show that oxygenated species account for significant contributions to reactive organic gas emissions, especially for industrial sources utilizing water-borne chemicals.
Qing Yang, Xiao-Bing Li, Bin Yuan, Xiaoxiao Zhang, Yibo Huangfu, Lei Yang, Xianjun He, Jipeng Qi, and Min Shao
Atmos. Chem. Phys., 24, 6865–6882, https://doi.org/10.5194/acp-24-6865-2024, https://doi.org/10.5194/acp-24-6865-2024, 2024
Short summary
Short summary
Online vertical gradient measurements of formic and isocyanic acids were made based on a 320 m tower in a megacity. Vertical variations and sources of the two acids were analyzed in this study. We find that formic and isocyanic acids exhibited positive vertical gradients and were mainly contributed by photochemical formations. The formation of formic and isocyanic acids was also significantly enhanced in urban regions aloft.
Junwei Song, Harald Saathoff, Feng Jiang, Linyu Gao, Hengheng Zhang, and Thomas Leisner
Atmos. Chem. Phys., 24, 6699–6717, https://doi.org/10.5194/acp-24-6699-2024, https://doi.org/10.5194/acp-24-6699-2024, 2024
Short summary
Short summary
This study presents concurrent online measurements of organic gas and particles (VOCs and OA) at a forested site in summer. Both VOCs and OA were largely contributed by oxygenated organic compounds. Semi-volatile oxygenated OA and organic nitrate formed from monoterpenes and sesquiterpenes contributed significantly to nighttime particle growth. The results help us to understand the causes of nighttime particle growth regularly observed in summer in central European rural forested environments.
Jiemeng Bao, Xin Zhang, Zhenhai Wu, Li Zhou, Jun Qian, Qinwen Tan, Fumo Yang, Junhui Chen, Yunfeng Li, Hefan Liu, Liqun Deng, and Hong Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-1204, https://doi.org/10.5194/egusphere-2024-1204, 2024
Short summary
Short summary
Our research in the Chengdu Plain Urban Agglomeration (CPUA), China, reveals significant correlations between carbonyl compounds and ozone pollution, particularly in Chengdu. Formaldehyde, acetone, and acetaldehyde are key contributors to ozone formation. Urgent collaborative actions among cities are needed to mitigate carbonyl-related ozone pollution, stressing the control of NOx and VOCs emissions. Our study offers crucial insights for crafting effective regional pollution control strategies.
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
Atmos. Chem. Phys., 24, 5863–5886, https://doi.org/10.5194/acp-24-5863-2024, https://doi.org/10.5194/acp-24-5863-2024, 2024
Short summary
Short summary
This study uses snow samples collected from a Canadian high Arctic site, Eureka, to demonstrate that surface snow in early spring is a net sink of atmospheric bromine and nitrogen. Surface snow bromide and nitrate are significantly correlated, indicating the oxidation of reactive nitrogen is accelerated by reactive bromine. In addition, we show evidence that snow photochemical release of reactive bromine is very weak, and its emission flux is much smaller than the deposition flux of bromide.
Rebecca M. Garland, Katye E. Altieri, Laura Dawidowski, Laura Gallardo, Aderiana Mbandi, Nestor Y. Rojas, and N'datchoh E. Touré
Atmos. Chem. Phys., 24, 5757–5764, https://doi.org/10.5194/acp-24-5757-2024, https://doi.org/10.5194/acp-24-5757-2024, 2024
Short summary
Short summary
This opinion piece focuses on two geographical areas in the Global South where the authors are based that are underrepresented in atmospheric science. This opinion provides context on common challenges and constraints, with suggestions on how the community can address these. The focus is on the strengths of atmospheric science research in these regions. It is these strengths, we believe, that highlight the critical role of Global South researchers in the future of atmospheric science research.
Heidi Hellén, Rostislav Kouznetsov, Kaisa Kraft, Jukka Seppälä, Mika Vestenius, Jukka-Pekka Jalkanen, Lauri Laakso, and Hannele Hakola
Atmos. Chem. Phys., 24, 4717–4731, https://doi.org/10.5194/acp-24-4717-2024, https://doi.org/10.5194/acp-24-4717-2024, 2024
Short summary
Short summary
Mixing ratios of C2-C5 NMHCs and methanethiol were measured on an island in the Baltic Sea using an in situ gas chromatograph. Shipping emissions were found to be an important source of ethene, ethyne, propene, and benzene. High summertime mixing ratios of methanethiol and dependence of mixing ratios on seawater temperature and height indicated the biogenic origin to possibly be phytoplankton or macroalgae. These emissions may have a strong impact on SO2 production and new particle formation.
Matthew M. Coggon, Chelsea E. Stockwell, Lu Xu, Jeff Peischl, Jessica B. Gilman, Aaron Lamplugh, Henry J. Bowman, Kenneth Aikin, Colin Harkins, Qindan Zhu, Rebecca H. Schwantes, Jian He, Meng Li, Karl Seltzer, Brian McDonald, and Carsten Warneke
Atmos. Chem. Phys., 24, 4289–4304, https://doi.org/10.5194/acp-24-4289-2024, https://doi.org/10.5194/acp-24-4289-2024, 2024
Short summary
Short summary
Residential and commercial cooking emits pollutants that degrade air quality. Here, ambient observations show that cooking is an important contributor to anthropogenic volatile organic compounds (VOCs) emitted in Las Vegas, NV. These emissions are not fully presented in air quality models, and more work may be needed to quantify emissions from important sources, such as commercial restaurants.
Fabien Paulot, Gabrielle Pétron, Andrew M. Crotwell, and Matteo B. Bertagni
Atmos. Chem. Phys., 24, 4217–4229, https://doi.org/10.5194/acp-24-4217-2024, https://doi.org/10.5194/acp-24-4217-2024, 2024
Short summary
Short summary
New data from the National Oceanic and Atmospheric Administration show that hydrogen (H2) concentrations increased from 2010 to 2019, which is consistent with the simulated increase in H2 photochemical production (mainly from methane). But this cannot be reconciled with the expected decrease (increase) in H2 anthropogenic emissions (soil deposition) in the same period. This shows gaps in our knowledge of the H2 biogeochemical cycle that must be resolved to quantify the impact of higher H2 usage.
Wenjie Wang, Bin Yuan, Hang Su, Yafang Cheng, Jipeng Qi, Sihang Wang, Wei Song, Xinming Wang, Chaoyang Xue, Chaoqun Ma, Fengxia Bao, Hongli Wang, Shengrong Lou, and Min Shao
Atmos. Chem. Phys., 24, 4017–4027, https://doi.org/10.5194/acp-24-4017-2024, https://doi.org/10.5194/acp-24-4017-2024, 2024
Short summary
Short summary
This study investigates the important role of unmeasured volatile organic compounds (VOCs) in ozone formation. Based on results in a megacity of China, we show that unmeasured VOCs can contribute significantly to ozone fomation and also influence the determination of ozone control strategy. Our results show that these unmeasured VOCs are mainly from human sources.
Shigeyuki Ishidoya, Satoshi Sugawara, and Atsushi Okazaki
EGUsphere, https://doi.org/10.5194/egusphere-2024-654, https://doi.org/10.5194/egusphere-2024-654, 2024
Short summary
Short summary
Diurnal, seasonal, and interannual variations of the present-day stable isotopic ratio of atmospheric O2, in other words slight variations in the Dole-Morita effect, have been detected firstly. A box model that incorporated biological and water processes associated with the Dole-Morita effect reproduced the general characteristics of the observational results. Based on the findings, we proposed some applications to evaluate oxygen, carbon, and water cycles.
Romain Salignat, Matti Rissanen, Siddharth Iyer, Jean-Luc Baray, Pierre Tulet, Jean-Marc Metzger, Jérôme Brioude, Karine Sellegri, and Clémence Rose
Atmos. Chem. Phys., 24, 3785–3812, https://doi.org/10.5194/acp-24-3785-2024, https://doi.org/10.5194/acp-24-3785-2024, 2024
Short summary
Short summary
Using mass spectrometry data collected at the Maïdo Observatory (2160 m a.s.l., Réunion), we provide the first detailed analysis of molecular cluster chemical composition specifically in the marine free troposphere. The abundance of the identified species is related both to in situ meteorological parameters and air mass history, which also provide insight into their origin. Our work makes an important contribution to documenting the chemistry and physics of the marine free troposphere.
Delaney B. Kilgour, Gordon A. Novak, Megan S. Claflin, Brian M. Lerner, and Timothy H. Bertram
Atmos. Chem. Phys., 24, 3729–3742, https://doi.org/10.5194/acp-24-3729-2024, https://doi.org/10.5194/acp-24-3729-2024, 2024
Short summary
Short summary
Laboratory experiments with seawater mimics suggest ozone deposition to the surface ocean can be a source of reactive carbon to the marine atmosphere. We conduct both field and laboratory measurements to assess abiotic VOC composition and yields from ozonolysis of real surface seawater. We show that C5–C11 aldehydes contribute to the observed VOC emission flux. We estimate that VOCs generated by the ozonolysis of surface seawater are competitive with biological VOC production and emission.
Xiangdong Zheng, Wen Yang, Yuting Sun, Chunmei Geng, Yingying Liu, and Xiaobin Xu
Atmos. Chem. Phys., 24, 3759–3768, https://doi.org/10.5194/acp-24-3759-2024, https://doi.org/10.5194/acp-24-3759-2024, 2024
Short summary
Short summary
Chen et al. (2022) attributed the nocturnal ozone enhancement (NOE) during the night of 31 July 2021 in the North China Plain (NCP) to "the direct stratospheric intrusion to reach the surface". We analyzed in situ data from the NCP. Our results do not suggest that there was a significant impact from the stratosphere on surface ozone during the NOE. We argue that the NOE was not caused by stratospheric intrusion but originated from fresh photochemical production in the lower troposphere.
Junling Li, Chaofan Lian, Mingyuan Liu, Hao Zhang, Yongxin Yan, Yufei Song, Chun Chen, Haijie Zhang, Yanqin Ren, Yucong Guo, Weigang Wang, Yisheng Xu, Hong Li, Jian Gao, and Maofa Ge
EGUsphere, https://doi.org/10.5194/egusphere-2024-367, https://doi.org/10.5194/egusphere-2024-367, 2024
Short summary
Short summary
In recent years, the concentration of atmospheric particulate matter in China decreased significantly, but the ozone concentration showed a fluctuating upward trend, the atmospheric oxidation capacity increased significantly, especially in the warm season. Given the contribution of HONO to atmospheric oxidation capacity, its sources should be studied in more detail.
James M. Roberts, Siyuan Wang, Patrick R. Veres, J. Andrew Neuman, Michael A. Robinson, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Hannah M. Allen, John D. Crounse, Paul O. Wennberg, Samuel R. Hall, Kirk Ullmann, Simone Meinardi, Isobel J. Simpson, and Donald Blake
Atmos. Chem. Phys., 24, 3421–3443, https://doi.org/10.5194/acp-24-3421-2024, https://doi.org/10.5194/acp-24-3421-2024, 2024
Short summary
Short summary
We measured cyanogen bromide (BrCN) in the troposphere for the first time. BrCN is a product of the same active bromine chemistry that destroys ozone and removes mercury in polar surface environments and is a previously unrecognized sink for active Br compounds. BrCN has an apparent lifetime against heterogeneous loss in the range 1–10 d, so it serves as a cumulative marker of Br-radical chemistry. Accounting for BrCN chemistry is an important part of understanding polar Br cycling.
Kai Qin, Wei Hu, Qin He, Fan Lu, and Jason Blake Cohen
Atmos. Chem. Phys., 24, 3009–3028, https://doi.org/10.5194/acp-24-3009-2024, https://doi.org/10.5194/acp-24-3009-2024, 2024
Short summary
Short summary
We compute CH4 emissions and uncertainty on a mine-by-mine basis, including underground, overground, and abandoned mines. Mine-by-mine gas and flux data and 30 min observations from a flux tower located next to a mine shaft are integrated. The observed variability and bias correction are propagated over the emissions dataset, demonstrating that daily observations may not cover the range of variability. Comparisons show both an emissions magnitude and spatial mismatch with current inventories.
Yao Yan Huang and D. James Donaldson
Atmos. Chem. Phys., 24, 2387–2398, https://doi.org/10.5194/acp-24-2387-2024, https://doi.org/10.5194/acp-24-2387-2024, 2024
Short summary
Short summary
Ground-level ozone interacts at the lake–land boundary; this is important to our understanding and modelling of atmospheric chemistry and air pollution in the lower atmosphere. We show that a steep ozone gradient occurs year-round moving inland up to 1 km from the lake and that this gradient is influenced by seasonal factors on the local land environment, where more rural areas are more greatly affected seasonally.
Cited articles
Awonaike, B., Lei, Y. D., and Wania, F.: Precipitation-induced transport and phase partitioning of organophosphate esters (OPEs) in urban and rural watersheds, Environ. Sci. Water Res. Technol., 7, 2106–2115, https://doi.org/10.1039/D1EW00329A, 2021.
Bacaloni, A., Cucci, F., Guarino, C., Nazzari, M., Samperi, R., and Laganà, A.: Occurrence of organophosphorus flame retardant and plasticizers in three volcanic lakes of Central Italy, Environ. Sci. Technol., 42, 1898–1903, https://doi.org/10.1021/es702549g, 2008.
Bidleman, T., Andersson, A., Brorström-Lundén, E., Brugel, S., Ericson, L., Hansson, K., and Tysklind, M.: Halomethoxybenzenes in air of the Nordic region, Environ. Sci. Ecotechnology, 13, 1–7, https://doi.org/10.1016/j.ese.2022.100209, 2023.
Booij, K. and Smedes, F.: An Improved Method for Estimating in Situ Sampling Rates of Nonpolar Passive Samplers, Environ. Sci. Technol., 44, 6789–6794, https://doi.org/10.1021/es101321v, 2010.
Booij, K., Hofmans, H. E., Fischer, C. V, and Van Weerlee, E. M.: Temperature-Dependent Uptake Rates of Nonpolar Organic Compounds by Semipermeable Membrane Devices and Low-Density Polyethylene Membranes, Environ. Sci. Technol., 37, 361–366, https://doi.org/10.1021/es025739i, 2003.
Breivik, K., McLachlan, M. S., and Wania, F.: The Emissions Fractions Approach to Assessing the Long-Range Transport Potential of Organic Chemicals, Environ. Sci. Technol., 56, 11983–11990, https://doi.org/10.1021/acs.est.2c03047, 2022.
Casas, G., Martinez-Varela, A., Vila-Costa, M., Jiménez, B., and Dachs, J.: Rain Amplification of Persistent Organic Pollutants, Environ. Sci. Technol., 55, 12961–12972, https://doi.org/10.1021/acs.est.1c03295, 2021.
Castro-Jiménez, J., González-Gaya, B., Pizarro, M., Casal, P., Pizarro-Álvarez, C., and Dachs, J.: Organophosphate ester flame retardants and plasticizers in the global oceanic atmosphere, Environ. Sci. Technol., 50, 12831–12839, https://doi.org/10.1021/acs.est.6b04344, 2016.
Chan, C. H. and Perkins, L. H.: Monitoring of trace organic contaminants in atmospheric precipitation, J. Great Lakes Res., 15, 465–475, https://doi.org/10.1016/S0380-1330(89)71502-1, 1989.
Chen, Y., Zhang, Q., Luo, T., Xing, L., and Xu, H.: Occurrence, distribution and health risk assessment of organophosphate esters in outdoor dust in Nanjing, China: Urban vs. rural areas, Chemosphere, 231, 41–50, https://doi.org/10.1016/j.chemosphere.2019.05.135, 2019.
Choo, G. and Oh, J.-E.: Seasonal occurrence and removal of organophosphate esters in conventional and advanced drinking water treatment plants, Water Res., 186, 116359, https://doi.org/10.1016/j.watres.2020.116359, 2020.
Desimoni, E. and Brunetti, B.: About Estimating the Limit of Detection by the Signal to Noise Approach, Pharm. Anal. Acta, 6, 1–4, https://doi.org/10.4172/2153-2435.1000355, 2015.
Ding, J., Shen, X., Liu, W., Covaci, A., and Yang, F.: Occurrence and risk assessment of organophosphate esters in drinking water from Eastern China, Sci. Total Environ., 538, 959–965, https://doi.org/10.1016/j.scitotenv.2015.08.101, 2015.
Environment and Climate Change Canada: Draft screening assessment flame retardants group, Environment and Climate Change Canada, https://www.canada.ca/en/environment-climate-change/services/evaluating-existing-substances/draft-screening-assessment-flame-retardants-group.html#toc7, last access: 17 November 2023a.
Environment and Climate Change Canada: Risk management scope for TPHP, BPDP, BDMEPPP, IDDP, IPPP and TEP, Environment and Climate Change Canada, https://www.canada.ca/en/environment-climate-change/services/evaluating-existing-substances/risk-management-scope-tphp-bpdp-bdmeppp-iddp-ippp-tep.html, last access: 17 November 2023b.
Environment and Climate Change Canada: Screening assessment alkyl aryl phosphites, Environment and Climate Change Canada, https://www.canada.ca/en/environment-climate-change/services/evaluating-existing-substances/screening-assessment-alkyl-aryl-phosphites.html, last access: 17 November 2023c.
Environment and Climate Change Canada: Updated draft screening assessment – Certain organic flame retardants substance grouping – TCPP and TDCPP, Environment and Climate Change Canada, https://www.canada.ca/en/environment-climate-change/services/evaluating-existing-substances/updated-draft-screening-assessment-organic-flame-retardants-substance-grouping-tcpp-tdcpp.html, last access: 17 November 2023d.
Fries, E. and Püttmann, W.: Monitoring of the three organophosphate esters TBP, TCEP and TBEP in river water and ground water (Oder, Germany), J. Environ. Monit., 5, 346–352, https://doi.org/10.1039/b210342g, 2003.
Gu, J., Su, F., Hong, P., Zhang, Q., and Zhao, M.: 1H NMR-based metabolomic analysis of nine organophosphate flame retardants metabolic disturbance in Hep G2 cell line, Sci. Total Environ., 665, 162–170, https://doi.org/10.1016/j.scitotenv.2019.02.055, 2019.
Han, X., Hao, Y., Li, Y., Yang, R., Wang, P., Zhang, G., Zhang, Q., and Jiang, G.: Occurrence and distribution of organophosphate esters in the air and soils of Ny-Ålesund and London Island, Svalbard, Arctic, Environ. Pollut., 263, 114495, https://doi.org/10.1016/j.envpol.2020.114495, 2020.
Han, X., Li, W., Zhao, Y., Zhuang, Y., Jia, Q., Guan, H., Liu, J., and Wu, C.: Organophosphate Esters in Building Materials from China: Levels, Sources, Emissions, and Preliminary Assessment of Human Exposure, Environ. Sci. Technol., 58, 2434–2445, https://doi.org/10.1021/acs.est.3c08432, 2024.
He, M. J., Lu, J. F., and Wei, S. Q.: Organophosphate esters in biota, water, and air from an agricultural area of Chongqing, western China: Concentrations, composition profiles, partition and human exposure, Environ. Pollut., 244, 388–397, https://doi.org/10.1016/j.envpol.2018.10.085, 2019.
Kemmlein, S., Hahn, O., and Jann, O.: Emissions of Organophosphate and Brominated Flame Retardants from Selected Consumer Products and Building Materials, Atmos. Environ., 37, 5485–5493, https://doi.org/10.1016/j.atmosenv.2003.09.025, 2003.
Kim, H.-K., Shin, Y.-S., Lee, D.-S., Song, B.-J., and Kim, J.-G.: Estimation of Rain Scavenging Ratio for Particle Bound Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls, Environmental Engineering Research, 11, 33–44, https://doi.org/10.4491/eer.2006.11.1.033, 2006.
Kim, U. J. and Kannan, K.: Occurrence and Distribution of Organophosphate Flame Retardants/Plasticizers in Surface Waters, Tap Water, and Rainwater: Implications for Human Exposure, Environ. Sci. Technol., 52, 5625–5633, https://doi.org/10.1021/acs.est.8b00727, 2018.
Kung, H. C., Hsieh, Y. K., Huang, B. W., Cheruiyot, N. K., and Chang-Chien, G. P.: An Overview: Organophosphate Flame Retardants in the Atmosphere, Aerosol Air Qual. Res., 22, 220148, https://doi.org/10.4209/aaqr.220148, 2022.
Kurt-Karakus, P., Alegria, H., Birgul, A., Gungormus, E., and Jantunen, L.: Organophosphate ester (OPEs) flame retardants and plasticizers in air and soil from a highly industrialized city in Turkey, Sci. Total Environ., 625, 555–565, https://doi.org/10.1016/j.scitotenv.2017.12.307, 2018.
Lei, Y. D. and Wania, F.: Is rain or snow a more efficient scavenger of organic chemicals?, Atmos. Environ., 38, 3557–3571, https://doi.org/10.1016/j.atmosenv.2004.03.039, 2004.
Li, J., Xie, Z., Mi, W., Lai, S., Tian, C., Emeis, K. C., and Ebinghaus, R.: Organophosphate Esters in Air, Snow, and Seawater in the North Atlantic and the Arctic, Environ. Sci. Technol., 51, 6887–6896, https://doi.org/10.1021/acs.est.7b01289, 2017.
Li, J., Tang, J., Mi, W., Tian, C., Emeis, K. C., Ebinghaus, R., and Xie, Z.: Spatial Distribution and Seasonal Variation of Organophosphate Esters in Air above the Bohai and Yellow Seas, China, Environ. Sci. Technol., 52, 89–97, https://doi.org/10.1021/acs.est.7b03807, 2018.
Li, J., Zhao, L., Letcher, R. J., Zhang, Y., Jian, K., Zhang, J., and Su, G.: A review on organophosphate Ester (OPE) flame retardants and plasticizers in foodstuffs: Levels, distribution, human dietary exposure, and future directions, Environ. Int., 127, 35–51, https://doi.org/10.1016/j.envint.2019.03.009, 2019a.
Li, J., Cao, H., Mu, Y., Qu, G., Zhang, A., Fu, J., and Jiang, G.: Structure-Oriented Research on the Antiestrogenic Effect of Organophosphate Esters and the Potential Mechanism, Environ. Sci. Technol., 54, 14525–14534, https://doi.org/10.1021/acs.est.0c04376, 2020.
Li, W., Wang, Y., and Kannan, K.: Occurrence, distribution and human exposure to 20 organophosphate esters in air, soil, pine needles, river water, and dust samples collected around an airport in New York state, United States, Environ. Int., 131, 105054, https://doi.org/10.1016/j.envint.2019.105054, 2019b.
Li, Y., Zhan, F., Lei, Y. D., Shunthirasingham, C., Hung, H., and Wania, F.: Field calibration and PAS-SIM model evaluation of the XAD-based passive air samplers for semi-volatile organic compounds, Environ. Sci. Technol., 57, 9224–9233, https://doi.org/10.1021/acs.est.3c00809, 2023a.
Li, Y., Zhan, F., Shunthirasingham, C., Lei, Y. D., Hung, H., and Wania, F.: Unbiased Passive Sampling of All Polychlorinated Biphenyls Congeners from Air, Environ. Sci. Technol. Lett., 10, 565–572, https://doi.org/10.1021/acs.estlett.3c00271, 2023b.
Li, Y., Zhan, F., Su, Y., Lei, Y. D., Shunthirasingham, C., Zhou, Z., Abbatt, J. P. D., Hung, H., and Wania, F.: Uptake behavior of polycyclic aromatic compounds during field calibrations of the XAD-based passive air sampler across seasons and locations, Atmos. Meas. Tech., 17, 715–729, https://doi.org/10.5194/amt-17-715-2024, 2024.
Li, Y., Zhan, F., Shunthirasingham, C., Lei, Y. D., Oh, J., Weng, C., Chaaben, A. Ben, Lu, Z., Lee, K., Gobas, F. A. P. C., Hung, H., and Wania, F.: Inferring Atmospheric Sources of Gaseous Organophosphate Esters from Spatial Patterns, Environ. Toxicol. Chem., https://doi.org/10.1093/etojnl/vgae089, accepted, 2025.
Liu, Q., Liu, R., Zhang, X., Li, W., Harner, T., Saini, A., Liu, H., Yue, F., Zeng, L., Zhu, Y., Xing, C., Li, L., Lee, P., Tong, S., Wang, W., Ge, M., Wang, J., Wu, X., Johannessen, C., Liggio, J., Li, S. M., Hung, H., Xie, Z., Mabury, S. A., and Abbatt, J. P. D.: Oxidation of commercial antioxidants is driving increasing atmospheric abundance of organophosphate esters: Implication for global regulation, One Earth, 6, 1202–1212, https://doi.org/10.1016/j.oneear.2023.08.004, 2023.
Liu, R. and Mabury, S. A.: Organophosphite Antioxidants in Indoor Dust Represent an Indirect Source of Organophosphate Esters, Environ. Sci. Technol., 53, 1805–1811, https://doi.org/10.1021/acs.est.8b05545, 2019.
Lu, Z., Martin, P. A., Burgess, N. M., Champoux, L., Elliott, J. E., Baressi, E., De Silva, A. O., de Solla, S. R., and Letcher, R. J.: Volatile Methylsiloxanes and Organophosphate Esters in the Eggs of European Starlings (Sturnus vulgaris) and Congeneric Gull Species from Locations across Canada, Environ. Sci. Technol., 51, 9836–9845, https://doi.org/10.1021/acs.est.7b03192, 2017.
Ma, Y., Cui, K., Zeng, F., Wen, J., Liu, H., Zhu, F., Ouyang, G., Luan, T., and Zeng, Z.: Microwave-assisted extraction combined with gel permeation chromatography and silica gel cleanup followed by gas chromatography-mass spectrometry for the determination of organophosphorus flame retardants and plasticizers in biological samples, Anal. Chim. Acta, 786, 47–53, https://doi.org/10.1016/j.aca.2013.04.062, 2013.
Ma, Y., Vojta, S., Becanova, J., Habtemichael, A. Z., Adelman, D. A., Muir, D., and Lohmann, R.: Spatial distribution and air-water exchange of organophosphate esters in the lower Great Lakes, Environ. Pollut., 286, 117349, https://doi.org/10.1016/j.envpol.2021.117349, 2021.
Ma, Y., Luo, Y., Zhu, J., Zhang, J., Gao, G., Mi, W., Xie, Z., and Lohmann, R.: Seasonal variation and deposition of atmospheric organophosphate esters in the coastal region of Shanghai, China, Environ. Pollut., 300, 118930, https://doi.org/10.1016/j.envpol.2022.118930, 2022.
Marcogliese, D. J., Blaise, C., Cyr, D., de Lafontaine, Y., Fournier, M., Gagné, F., Gagnon, C., and Hudon, C.: Effects of a major municipal effluent on the St. Lawrence River: A case study, Ambio, 44, 257–274, https://doi.org/10.1007/s13280-014-0577-9, 2015.
Marklund, A., Andersson, B., and Haglund, P.: Organophosphorus flame retardants and plasticizers in Swedish sewage treatment plants, Environ. Sci. Technol., 39, 7423–7429, https://doi.org/10.1021/es051013l, 2005a.
Marklund, A., Andersson, B., and Haglund, P.: Traffic as a source of organophosphorus flame retardants and plasticizers in snow, Environ. Sci. Technol., 39, 3555–3562, https://doi.org/10.1021/es0482177, 2005b.
McDonough, C. A., De Silva, A. O., Sun, C., Cabrerizo, A., Adelman, D., Soltwedel, T., Bauerfeind, E., Muir, D. C. G., and Lohmann, R.: Dissolved organophosphate esters and polybrominated diphenyl ethers in remote marine environments: Arctic surface water distributions and net transport through Fram Strait, Environ. Sci. Technol., 52, 6208–6216, https://doi.org/10.1021/acs.est.8b01127, 2018.
Mi, L., Xie, Z., Zhang, L., Waniek, J. J., Pohlmann, T., Mi, W., and Xu, W.: Organophosphate Esters in Air and Seawater of the South China Sea: Spatial Distribution, Transport, and Air–Sea Exchange, Environ. Heal., 1, 191–202, https://doi.org/10.1021/envhealth.3c00059, 2023.
Mihajlović, I. and Fries, E.: Atmospheric deposition of chlorinated organophosphate flame retardants (OFR) onto soils, Atmos. Environ., 56, 177–183, https://doi.org/10.1016/j.atmosenv.2012.03.054, 2012.
Möller, A., Xie, Z., Caba, A., Sturm, R., and Ebinghaus, R.: Organophosphorus flame retardants and plasticizers in the atmosphere of the North Sea, Environ. Pollut., 159, 3660–3665, https://doi.org/10.1016/j.envpol.2011.07.022, 2011.
Möller, A., Sturm, R., Xie, Z., Cai, M., He, J., and Ebinghaus, R.: Organophosphorus flame retardants and plasticizers in airborne particles over the Northern Pacific and Indian Ocean toward the polar regions: Evidence for global occurrence, Environ. Sci. Technol., 46, 3127–3134, https://doi.org/10.1021/es204272v, 2012.
Na, G., Hou, C., Li, R., Shi, Y., Gao, H., Jin, S., Gao, Y., Jiao, L., and Cai, Y.: Occurrence, distribution, air-seawater exchange and atmospheric deposition of organophosphate esters (OPEs) from the Northwestern Pacific to the Arctic Ocean, Mar. Pollut. Bull., 157, 111243, https://doi.org/10.1016/j.marpolbul.2020.111243, 2020.
Oh, J., Shunthirasingham, C., Lei, Y. D., Zhan, F., Li, Y., Dalpé Castilloux, A., Ben Chaaben, A., Lu, Z., Lee, K., Gobas, F. A. P. C., Eckhardt, S., Alexandrou, N., Hung, H., and Wania, F.: The atmospheric fate of 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH): spatial patterns, seasonal variability, and deposition to Canadian coastal regions, Atmos. Chem. Phys., 23, 10191–10205, https://doi.org/10.5194/acp-23-10191-2023, 2023.
Regnery, J. and Püttmann, W.: Organophosphorus Flame Retardants and Plasticizers in Rain and Snow from Middle Germany, CLEAN – Soil, Air, Water, 37, 334–342, https://doi.org/10.1002/clen.200900050, 2009.
Regnery, J. and Püttmann, W.: Occurrence and fate of organophosphorus flame retardants and plasticizers in urban and remote surface waters in Germany, Water Res., 44, 4097–4104, https://doi.org/10.1016/j.watres.2010.05.024, 2010.
Rosenmai, A. K., Winge, S. B., Möller, M., Lundqvist, J., Wedebye, E. B., Nikolov, N. G., Lilith Johansson, H. K., and Vinggaard, A. M.: Organophosphate ester flame retardants have antiandrogenic potential and affect other endocrine related endpoints in vitro and in silico, Chemosphere, 263, 127703, https://doi.org/10.1016/j.chemosphere.2020.127703, 2021.
Salamova, A., Ma, Y., Venier, M., and Hites, R. A.: High Levels of Organophosphate Flame Retardants in the Great Lakes Atmosphere, Environ. Sci. Technol. Lett., 1, 8–14, https://doi.org/10.1021/ez400034n, 2013.
Salamova, A., Hermanson, M. H., and Hites, R. A.: Organophosphate and Halogenated Flame Retardants in Atmospheric Particles from a European Arctic Site, Environ. Sci. Technol., 48, 6133–6140, https://doi.org/10.1021/es500911d, 2014.
Salamova, A., Peverly, A. A., Venier, M., and Hites, R. A.: Spatial and temporal trends of particle phase organophosphate ester concentrations in the atmosphere of the great lakes, Environ. Sci. Technol., 50, 13249–13255, https://doi.org/10.1021/acs.est.6b04789, 2016.
Shi, T., Li, R., Fu, J., Hou, C., Gao, H., Cheng, G., Zhang, H., Jin, S., Kong, L., and Na, G.: Fate of organophosphate esters from the Northwestern Pacific to the Southern Ocean: Occurrence, distribution, and fugacity model simulation, J. Environ. Sci., 137, 347–357, https://doi.org/10.1016/j.jes.2023.03.001, 2024.
Shi, Y., Zhang, Y., Du, Y., Kong, D., Wu, Q., Hong, Y., Wang, Y., Tam, N. F. Y., and Leung, J. Y. S.: Occurrence, composition and biological risk of organophosphate esters (OPEs) in water of the Pearl River Estuary, South China, Environ. Sci. Pollut. Res., 27, 14852–14862, https://doi.org/10.1007/s11356-020-08001-1, 2020.
Shoeib, M., Ahrens, L., Jantunen, L., and Harner, T.: Concentrations in air of organobromine, organochlorine and organophosphate flame retardants in Toronto, Canada, Atmos. Environ., 99, 140–147, https://doi.org/10.1016/j.atmosenv.2014.09.040, 2014.
Stackelberg, P. E., Gibs, J., Furlong, E. T., Meyer, M. T., Zaugg, S. D., and Lippincott, R. L.: Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds, Sci. Total Environ., 377, 255–272, https://doi.org/10.1016/j.scitotenv.2007.01.095, 2007.
Stamp, S., Burman, E., Shrubsole, C., Chatzidiakou, L., Mumovic, D., and Davies, M.: Seasonal Variations and the Influence of Ventilation Rates on IAQ: A Case Study of Five Low-Energy London Apartments, Indoor Built Environ., 31, 607–623, https://doi.org/10.1177/1420326X211017175, 2022.
Storey, J. M. E., Luo, W., Isabelle, L. M., and Pankow, J. F.: Gas/Solid Partitioning of Semivolatile Organic Compounds to Model Atmospheric Solid Surfaces as a Function of Relative Humidity. 1. Clean Quartz, Environ. Sci. Technol., 29, 2420–2428, https://doi.org/10.1021/es00009a039, 1995.
Sühring, R., Diamond, M. L., Scheringer, M., Wong, F., Pućko, M., Stern, G., Burt, A., Hung, H., Fellin, P., Li, H., and Jantunen, L. M.: Organophosphate esters in Canadian Arctic air: Occurrence, levels and trends, Environ. Sci. Technol., 50, 7409–7415, https://doi.org/10.1021/acs.est.6b00365, 2016.
Sühring, R., Scheringer, M., Rodgers, T. F. M. M., Jantunen, L. M., and Diamond, M. L.: Evaluation of the OECD P OV and LRTP screening tool for estimating the long-range transport of organophosphate esters, Environ. Sci. Process. Impacts, 22, 207–216, https://doi.org/10.1039/c9em00410f, 2020.
Sundkvist, A. M., Olofsson, U., and Haglund, P.: Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk, J. Environ. Monit., 12, 943–951, https://doi.org/10.1039/B921910B, 2010.
Turygin, V. V., Sokhadze, L. A., Golubeva, Y. Y., Platonova, L. V., Afanas'eva, A. A., Nazarenko, D. I., and Shvetsova-Shilovskaya, T. N.: New Approach to Obtain Neutral Ester of Phosphoric Acid: Tris(2-chloroisopropyl) Phosphate, Theor. Found. Chem. Eng., 52, 643–647, https://doi.org/10.1134/S0040579518040280, 2018.
UFZ-LSER database v 3.2.1: http://www.ufz.de/lserd, last access: 13 January 2024.
van der Veen, I. and de Boer, J.: Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis, Chemosphere, 88, 1119–1153, https://doi.org/10.1016/j.chemosphere.2012.03.067, 2012.
Wang, C., Wang, P., Zhao, J., Fu, M., Zhang, L., Li, Y., Yang, R., Zhu, Y., Fu, J., Zhang, Q., and Jiang, G.: Atmospheric organophosphate esters in the Western Antarctic Peninsula over 2014–2018: Occurrence, temporal trend and source implication, Environ. Pollut., 267, 115428, https://doi.org/10.1016/j.envpol.2020.115428, 2020a.
Wang, X., Zhu, Q., Yan, X., Wang, Y., Liao, C., and Jiang, G.: A review of organophosphate flame retardants and plasticizers in the environment: Analysis, occurrence and risk assessment, Sci. Total Environ., 731, 139071, https://doi.org/10.1016/j.scitotenv.2020.139071, 2020b.
Wang, X., Luu, T., Beal, M. A., Barton-Maclaren, T. S., Robaire, B., and Hales, B. F.: The Effects of Organophosphate Esters Used as Flame Retardants and Plasticizers on Granulosa, Leydig, and Spermatogonial Cells Analyzed Using High-Content Imaging, Toxicol. Sci., 186, 269–287, https://doi.org/10.1093/toxsci/kfac012, 2022.
Wania, F., Haugen, J. E., Lei, Y. D., and Mackay, D.: Temperature dependence of atmospheric concentrations of semivolatile organic compounds, Environ. Sci. Technol., 32, 1013–1021, https://doi.org/10.1021/es970856c, 1998.
Wong, F., de Wit, C. A., and Newton, S. R.: Concentrations and variability of organophosphate esters, halogenated flame retardants, and polybrominated diphenyl ethers in indoor and outdoor air in Stockholm, Sweden, Environ. Pollut., 240, 514–522, https://doi.org/10.1016/j.envpol.2018.04.086, 2018.
Wu, Y., Venier, M., and Salamova, A.: Spatioseasonal Variations and Partitioning Behavior of Organophosphate Esters in the Great Lakes Atmosphere, Environ. Sci. Technol., 54, 5400–5408, https://doi.org/10.1021/acs.est.9b07755, 2020.
Xie, Z., Wang, P., Wang, X., Castro-Jiménez, J., Kallenborn, R., Liao, C., Mi, W., Lohmann, R., Vila-Costa, M., and Dachs, J.: Organophosphate ester pollution in the oceans, Nat. Rev. Earth Environ., 3, 309–322, https://doi.org/10.1038/s43017-022-00277-w, 2022.
Yan, H. and Hales, B. F.: Effects of Organophosphate Ester Flame Retardants on Endochondral Ossification in Ex Vivo Murine Limb Bud Cultures, Toxicol. Sci., 168, 420–429, https://doi.org/10.1093/toxsci/kfy301, 2019.
Yan, H. and Hales, B. F.: Exposure to tert-Butylphenyl Diphenyl Phosphate, an Organophosphate Ester Flame Retardant and Plasticizer, Alters Hedgehog Signaling in Murine Limb Bud Cultures, Toxicol. Sci., 178, 251–263, https://doi.org/10.1093/toxsci/kfaa145, 2020.
Zhan, F., Shunthirasingham, C., Li, Y., Oh, J., Lei, Y. D., Ben Chaaben, A., Dalpé Castilloux, A., Lu, Z., Lee, K., Gobas, F. A. P. C., Alexandrou, N., Hung, H., and Wania, F.: Sources and environmental fate of halomethoxybenzenes, Sci. Adv., 9, eadi8082, https://doi.org/10.1126/sciadv.adi8082, 2023.
Zhang, Q., Li, X., Wang, Y., Zhang, C., Cheng, Z., Zhao, L., Li, X., Sun, Z., Zhang, J., Yao, Y., Wang, L., Li, W., and Sun, H.: Occurrence of novel organophosphate esters derived from organophosphite antioxidants in an e-waste dismantling area: Associations between hand wipes and dust, Environ. Int., 157, 106860, https://doi.org/10.1016/j.envint.2021.106860, 2021.
Zhang, W., Wang, P., Li, Y., Wang, D., Matsiko, J., Yang, R., Sun, H., Hao, Y., Zhang, Q., and Jiang, G.: Spatial and temporal distribution of organophosphate esters in the atmosphere of the Beijing-Tianjin-Hebei region, China, Environ. Pollut., 244, 182–189, https://doi.org/10.1016/j.envpol.2018.09.131, 2019.
Zhang, X., Sühring, R., Serodio, D., Bonnell, M., Sundin, N., and Diamond, M. L.: Novel flame retardants: Estimating the physical-chemical properties and environmental fate of 94 halogenated and organophosphate PBDE replacements, Chemosphere, 144, 2401–2407, https://doi.org/10.1016/j.chemosphere.2015.11.017, 2016.
Zhang, Z., Lin, G., Lin, T., Zhang, R., Jin, L., and Di, Y.: Occurrence, behavior, and fate of organophosphate esters (OPEs) in subtropical paddy field environment: A case study in Nanning City of South China, Environ. Pollut., 267, 115675, https://doi.org/10.1016/j.envpol.2020.115675, 2020.
Zhao, F., Riipinen, I., and MacLeod, M.: Steady-State Mass Balance Model for Predicting Particle–Gas Concentration Ratios of PBDEs, Environ. Sci. Technol., 55, 9425–9433, https://doi.org/10.1021/acs.est.0c04368, 2021a.
Zhao, S., Tian, L., Zou, Z., Liu, X., Zhong, G., Mo, Y., Wang, Y., Tian, Y., Li, J., Guo, H., and Zhang, G.: Probing Legacy and Alternative Flame Retardants in the Air of Chinese Cities, Environ. Sci. Technol., 55, 9450–9459, https://doi.org/10.1021/acs.est.0c07367, 2021b.
Short summary
Organophosphate esters are important humanmade trace contaminants. Measuring them in the atmospheric gas phase, particles, precipitation, and surface water in Canada, we explore seasonal concentration variability, gas–particle partitioning, precipitation scavenging, and the air–water equilibrium. Whereas higher summer concentrations and efficient precipitation scavenging conform with expectations, the lack of a relationship between compound volatility and gas–particle partitioning is puzzling.
Organophosphate esters are important humanmade trace contaminants. Measuring them in the...
Altmetrics
Final-revised paper
Preprint