Measurement datasets of cloud condensation nuclei (CCN) are vital for our understanding of aerosol-cloud interaction and reliable climate modelling. This study analyses and compares the only two global CCN datasets derived from satellite and reanalysis data. These key datasets are found to disagree over pristine oceans in terms of their climatology as well as seasonal and annual variations. Given the importance of CCN as a fundamental property in climate model simulations, further research is needed to reconcile these differences and to produce an observation-based dataset that can be confidently used to evaluate our understanding.
Measurement datasets of cloud condensation nuclei (CCN) are vital for our understanding of...
Aerosol particles in the atmosphere increase cloud reflectivity, thereby cooling the Earth. Accurate global measurements of these particles are crucial for estimating this cooling effect. This study compares and harmonizes two newly developed global aerosol datasets, offering insights for their future use and refinement. We identify pristine oceans as a significant source of uncertainty in the datasets and, therefore, in quantifying the role of aerosols in Earth's climate.
Aerosol particles in the atmosphere increase cloud reflectivity, thereby cooling the Earth....