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Abstract. Quantifying global cloud condensation nuclei (CCN) concentrations is crucial for reducing uncertain-
ties in radiative forcing resulting from aerosol–cloud interactions. This study analyses two novel, independent,
open-source global CCN datasets derived from spaceborne Cloud Aerosol Lidar with Orthogonal Polarization
(CALIOP) measurements and Copernicus Atmosphere Monitoring Service (CAMS) reanalysis and examines
the spatio-temporal variability of CCN concentrations pertinent to liquid clouds. The results reveal consistent
large-scale patterns in both CALIOP and CAMS datasets, although CALIOP values are approximately 79 %
higher than those from CAMS. Comparisons with the existing literature demonstrate that these datasets effec-
tively bound regionally observed CCN concentrations, with CALIOP typically representing the upper bound
and CAMS the lower bound. Monthly and annual variations in CCN concentrations obtained from the two
datasets largely agree over the Northern Hemisphere and align with previously reported variations. However,
inconsistencies emerge over pristine oceans, particularly in the Southern Hemisphere, where the datasets show
not only opposing seasonal changes but also contrasting annual trends. Seasonal cycles in these regions are
well represented in CAMS, consistent with previous in situ observations, while annual trends seems to be better
captured by CALIOP. A comparative study of trends in CCN and cloud droplet concentrations suggests that
dust-influenced and pristine maritime environments are primary regions that limit our current understanding of
CCN–cloud droplet relationships. Long-term CCN observations in these regions are crucial for improving global
datasets and advancing our understanding of aerosol–cloud interactions.

1 Introduction

Aerosols act as cloud condensation nuclei (CCN) and
through aerosol–cloud interactions (ACIs) induce a cooling
effect on the climate, partially offsetting the warming due to
greenhouse gases (Forster et al., 2021). The effective radia-
tive forcing due to ACIs (ERFACI) is however highly uncer-
tain, estimated to range between −1.7 and −0.3 W m−2 with
moderate confidence (Forster et al., 2021).

A fundamental parameter for constraining ERFACI is the
number concentration of CCN-forming aerosols (nCCN).
Satellite-based studies of ERFACI rely on aerosol optical

properties as proxies for nCCN. Part of the uncertainty in
ERFACI arises from variations in estimates between dif-
ferent observation-based reports, particularly due to their
choice of nCCN proxy (Forster et al., 2021; Gryspeerdt et al.,
2017). The most common proxies are aerosol optical depth
(AOD) and aerosol index (AI) (Quaas et al., 2020; Rosenfeld
et al., 2023). AOD, being a column-integrated bulk prop-
erty, poorly represents nCCN at cloud level. AI, calculated
from AOD and the Ångström exponent, gives more weight
to fine particles and offers an improvement over AOD. Us-
ing AI over AOD strengthens the negative radiative forc-
ing by at least 30 % (Gryspeerdt et al., 2017). Neverthe-
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less, because AI is derived from AOD, it inherits the limi-
tations of AOD (Quaas et al., 2020; Rosenfeld et al., 2023).
Incorporating additional polarimetric measurements enables
retrievals of atmospheric-column-integrated aerosol number
concentrations over oceans, which have been shown to yield
significantly stronger negative forcing compared to AOD
and AI (Hasekamp et al., 2019). Despite being a significant
improvement over optical proxies, these concentrations are
still column-integrated and may not represent the cloud-level
values most relevant to ACIs. These studies illustrate that
ERFACI significantly varies with the choice of nCCN proxy
and highlight the critical need for a comprehensive, height-
resolved global nCCN dataset as the next essential step for
advancing ERFACI estimates.

Two recent efforts have addressed these limitations.
Choudhury and Tesche (2023a) present a satellite-derived,
vertically resolved, three-dimensional (3D) dataset of global
nCCN. Their approach leverages the Cloud Aerosol Lidar
with Orthogonal Polarization (CALIOP) retrievals and em-
ploys a validated CCN-retrieval algorithm (Choudhury and
Tesche, 2022a) to retrieve nCCN from profiles of aerosol ex-
tinction coefficient. The retrieved nCCN values are then grid-
ded onto a 2° by 5° latitude–longitude grid with a verti-
cal resolution of 60 m to produce a monthly global nCCN
dataset. The robustness of the retrieval algorithm is estab-
lished through comparisons with in situ measurements from
various land- and ocean-based platforms (Choudhury et al.,
2022; Choudhury and Tesche, 2022b; Aravindhavel et al.,
2023).

Complementing this effort, Block et al. (2024) present a
3D global nCCN dataset estimated from the Copernicus At-
mosphere Monitoring Service (CAMS) aerosol reanalysis
(Inness et al., 2019a). This dataset is based on a diagnostic
box model built on a simplified κ-Köhler framework that es-
timates nCCN from CAMS-derived aerosol mass mixing ra-
tios. It offers a high temporal resolution of 1 d, a horizontal
resolution of 0.75°, and a hybrid sigma–pressure vertical grid
with 60 levels. While the validation of this dataset is ongo-
ing, a preliminary comparison to surface-based in situ obser-
vations gives promising results (Block et al., 2024).

The CAMS nCCN dataset with its high spatio-temporal res-
olution has great potential for better constraining ERFACI.
However, its dependency on satellite-derived AOD (assimi-
lated into CAMS) and the reliance on modelled aerosol in-
ventories in its simulated component (Inness et al., 2019a)
necessitate an extensive evaluation to assess the representa-
tiveness of this dataset. The CALIOP data’s coarse monthly
resolution complicates a direct integration into ERFACI es-
timation. Nevertheless, it was found to be representative of
in situ-measured long-term variations in nCCN at multiple
regional continental sites (Choudhury and Tesche, 2022b).
Thus, the CALIOP nCCN dataset, currently the only satellite-
based 3D global data available, presents a valuable tool for
expanding the assessment of the CAMS dataset to a global

scale, particularly in regions with limited in situ observa-
tions.

Here, we conduct a comparative study between the two
independent novel nCCN datasets for a maximum supersatu-
ration of 0.2 %, reconciling not only their variability across
diverse spatio-temporal scales but also their co-variability
with relevant cloud properties, such as cloud droplet num-
ber concentration (Nd). Furthermore, we augment their val-
idation by comparing their regional concentrations with in
situ measurements from the literature. The comparative anal-
ysis bridges the gap between the global datasets, providing
insights for their future application and development. Ulti-
mately, this work aims to establish a benchmark for applying
and developing CCN-retrieval algorithms in the context of
aerosol–cloud interactions.

2 Results

2.1 nCCN climatology in CAMS and CALIOP

We first compare the spatial variations in nCCN climatology
for altitudes relevant to liquid clouds (< 2 km) in CALIOP
and CAMS datasets (Fig. 1). CAMS nCCN ranges primar-
ily between 28 and 619 cm−3 (5th and 95th percentiles),
with a global median of 153 cm−3 (Fig. 1a). In contrast,
CALIOP retrievals exhibit a broader range, varying from 107
to 1445 cm−3, with a global median of 274 cm−3 (Fig. 1b).
Overall, CALIOP-derived nCCN values are approximately
79 % higher than those from CAMS. This difference is also
reflected in the magnitudes of their zonal and meridional
variations (Fig. 1c and d). Despite the discrepancies in mag-
nitudes, the zonal and meridional patterns in both datasets are
quite similar, with identical peaks and troughs across most
regions except in the Southern Hemisphere (SH). The differ-
ence in the SH primarily originates from the retrievals over
oceans, where CALIOP-derived concentrations are signifi-
cantly higher than those from CAMS (by 208 %). This differ-
ence is particularly large for latitudes south of 45° S, where
the median CAMS nCCN (33 cm−3) is roughly 7 times lower
than that from CALIOP (263 cm−3).

Both datasets show higher nCCN in the Northern Hemi-
sphere (NH) compared to the SH. However, this contrast
is significantly stronger in CAMS (160 %) compared to
CALIOP (20 %). This hemispheric difference in CAMS
is particularly pronounced over oceans (121 %) compared
to land (59%) and far exceeds the contrast observed in
CALIOP (18 % over land and 10 % over oceans). Inter-
estingly, the hemispheric contrast persists in CAMS, even
over pristine oceans far from continental influence, where
CALIOP exhibits homogeneous concentrations. Heterogene-
ity in CALIOP’s oceanic nCCN is primarily confined to
transatlantic dust transport in the tropics and the extra-
tropical SH region of strong westerly winds. Since dust is
not considered CCN-active in CAMS, the nCCN peak over
the tropical Atlantic Ocean observed in CALIOP is less pro-
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Figure 1. Global climatology of cloud condensation nuclei (CCN) concentration (nCCN) at altitudes below 2 km. (a) Global climatology
derived from CAMS reanalysis. (b) Global climatology derived from CALIOP spaceborne lidar. Median nCCN values are displayed on the
lateral edges of panels (a) and (b). (c) Zonal variations of nCCN climatology. (d) Meridional variations of nCCN climatology. The semi-
transparent patch in (c) and (d) represents 1 standard deviation. Note the different colour scales in the top row and the varying right and left
y-axis limits in the bottom row. CALIOP and CAMS data from June 2006 through December 2021 are used to generate the climatology.

nounced in CAMS. Furthermore, the CCN belt in the South-
ern Ocean (SO), though visible particularly in sea salt nCCN
in CAMS (see Fig. S1 in the Supplement), does not appear
in the total nCCN climatology due to low sea salt concentra-
tions. When comparing the contrast between land and ocean
nCCN, we find similar values for CAMS and CALIOP in the
NH, with land values 65 % and 86 % higher than those over
oceans, respectively. However, this difference in the SH is
more pronounced in CAMS (130 %) than in CALIOP (73 %)
due to substantially lower concentrations in CAMS over SH
oceans. Refer to Table A1 for the median values used in these
calculations.

2.1.1 Regional consistency with in situ observations

To evaluate the datasets, we compare the nCCN climatology
from the global datasets with in situ observations (from the
literature; refer to Table A1) for 16 regional domains en-
compassing major continents and ocean basins (geographical
boundaries provided in Fig. 2a). Among all, Asia exhibits the
highest overall nCCN (Fig. 2b), within which Southeast Asia
shows the highest concentration, followed by South Asia and
West Asia, consistently across CAMS, CALIOP, and in situ
retrievals. Other continental and oceanic domains follow in
decreasing order. Both datasets indicate cleaner SH oceanic
regions (Southeast Pacific, South Atlantic, Indian Ocean, and
Southern Ocean) compared to the NH oceans (Northeast Pa-
cific and North Atlantic). However, this hemispheric order is
opposite in the in situ measurements, where concentrations
in the SH Atlantic and Pacific oceans exceed their respec-
tive NH counterparts. It is important to consider that while

the regional domains over oceans in this study extend tens
of degrees of longitude away from the coast, in situ observa-
tions for ocean environments may be limited in space (close
to the coast) and time. For instance, the observations over the
Southern Ocean (Humphries et al., 2023) are mostly obtained
during the austral summer.

When comparing the magnitudes of nCCN, we observe that
CALIOP-derived concentrations are consistently higher than
those of CAMS across all regions except North America.
These elevated values in the CALIOP data are expected be-
cause the retrieval in CALIOP assumes a fixed CCN activa-
tion radius, above which all aerosols are considered CCN-
active regardless of their hygroscopicity. This assumption
can lead to overestimation of nCCN in urban continental re-
gions (Southeast and South Asia and Southern Africa) influ-
enced by black carbon and regions downwind. CAMS, on
the other hand, considers 80 % of black carbon aerosols to
be hydrophobic (and thus not contributing to nCCN) (Block
et al., 2024). Additionally, CAMS excludes dust as a poten-
tial CCN source, which is accounted for in CALIOP. These
differences in the assumptions in CALIOP and CAMS in
terms of aerosol hygroscopicity, activation size, and CCN ac-
tivity may naturally lead to higher concentrations in CALIOP
compared to CAMS. Other factors may also contribute to
these differences. For example, CALIOP’s aerosol extinc-
tion coefficient may not correlate well with nCCN in complex
aerosol mixtures with varying hygroscopicity (Choudhury
and Tesche, 2022a). Additionally, inaccuracies in the repre-
sentation of aerosol sources and sinks in CAMS may bias the
derived nCCN (Moore et al., 2013). More details on the in-
herent differences between the global datasets are discussed
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Figure 2. Comparison of regional cloud condensation nuclei
(CCN) concentrations nCCN with in situ measurements. (a) Ge-
ographical extent of regional domains considered in this study.
(b) Comparison of median nCCN for various domains derived from
CAMS reanalysis (blue), CALIOP (red), and in situ observations
from the literature (yellow). Error bars for CAMS and CALIOP
represent the geographic interquartile range of nCCN. Error bars
for in situ observations represent the temporal nCCN variations at
the specific measurement locations (refer to Table A1). CALIOP
and CAMS data from June 2006 through December 2021 are used
to produce the regional climatology. NH: Northern Hemisphere;
SH: Southern Hemisphere; NAm: North America; NAf: Northern
Africa; Eu: Europe; NAs: North Asia; WAs: West Asia; SAs: South
Asia; SEAs: Southeast Asia; NAt: North Atlantic; NEP: Northeast
Pacific; Au: Australia; SAm: South America; SAf: Southern Africa;
IO: Indian Ocean; SAt: South Atlantic; SEP: Southeast Pacific.

in Sect. A1. Despite these discrepancies, this regional com-
parison with in situ measurements suggests that the global
datasets adequately capture the observed variations in nCCN
climatology for most regions. CALIOP appears to represent
the upper bound, while CAMS represents the lower bound
of nCCN, highlighting their potential for constraining nCCN,
even in regions lacking in situ measurements.

2.2 Monthly nCCN variations

To understand how well the datasets capture the seasonal
nCCN cycles, we analyse the average monthly variations in
nCCN derived from CALIOP and CAMS for different re-
gional domains (see Fig. 3). Both datasets exhibit a consis-
tent pattern for most continental regions, with nCCN peak-
ing in summer (boreal in the NH and austral in the SH) and

reaching a minimum in winter. This pattern aligns with re-
gional precipitation cycles (shown at the bottom of all panels
of Fig. 3), where wet winters lead to precipitation scaveng-
ing of airborne particles, resulting in lower nCCN compared
to dry summers. Exceptions include the monsoon-influenced
South and Southeast Asia regions, which experience a sum-
mer minimum and winter maximum in nCCN due to pro-
longed summer rainfall. Both datasets adequately capture
this seasonal pattern driven by the monsoon cycle.

However, the datasets show contrasting variations for
all oceanic regions, except for the North Atlantic region.
CALIOP exhibits a summer minimum and winter maximum
in oceanic nCCN, while CAMS generally shows a spring–
summer maximum and winter minimum. The variations in
CALIOP align with the seasonal cycle of near-surface wind
speeds over oceans (Yu et al., 2020). Higher wind speeds
increase sea spray aerosol concentrations in marine envi-
ronments by enhancing wave breaking and bubble bursting
(Revell et al., 2019; Humphries et al., 2023), which may
contribute to the observed CCN cycles in CALIOP. How-
ever, oceanic nCCN values are also influenced by factors be-
yond sea spray aerosols, such as biogenic emissions, which
follow a seasonal pattern of summer maximum and win-
ter minimum (Lana et al., 2011; Revell et al., 2019), more
in line with CAMS. Studies in pristine oceans have shown
that while sea salt aerosols primarily contribute to aerosol
mass, sulfates from biogenic emissions dominate particle or
CCN concentrations (Ayers and Gras, 1991; Gras and Key-
wood, 2017; Humphries et al., 2023). Consequently, in situ-
derived nCCN variations in these regions closely follow bio-
genic emission patterns (Gras, 1990; Ayers and Gras, 1991;
Gras and Keywood, 2017), exhibiting a spring–summer max-
imum and winter minimum. As a result, cloud droplet num-
ber concentration (Nd), a parameter sensitive to changes in
nCCN, also displays a spring–summer maximum and win-
ter minimum in the pristine SH oceans (McCoy et al., 2015;
Mace and Avey, 2017; see also Fig. S2). These seasonal CCN
cycles are well represented in CAMS but not in CALIOP.
Additionally, the austral summer concentrations in CAMS
for the Southern Ocean (Fig. 3p) are comparable to the in
situ observations reported by Humphries et al. (2023), which
were mostly obtained during the austral summer. This obser-
vation contrasts with the results inferred from climatological
concentrations in Fig. 2, where CALIOP misleadingly ap-
pears to show better agreement.

Further investigation reveals that while the total nCCN sea-
sonal cycles in most oceanic regions are opposite in CALIOP
and CAMS, the marine nCCN in CALIOP aligns closely with
CAMS’s sea salt nCCN, with both exhibiting a summer mini-
mum and winter maximum (first and third columns in Fig. 4).
This similarity can be attributed to the similar seasonal cy-
cles of CALIOP’s marine extinction coefficients (αM; sec-
ond column in Fig. 4) and CAMS’s sea salt mass mixing
ratio (MMRSS; fourth column in Fig. 4), the primary pa-
rameters from which their respective nCCN values are cal-
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Figure 3. Monthly variations in the cloud condensation nuclei concentration (nCCN) for various regions. Red lines represent nCCN derived
from spaceborne CALIOP, and blue lines represent nCCN from CAMS reanalysis. Panels (a) to (i) correspond to Northern Hemisphere
regions, while panels (j) to (p) represent Southern Hemisphere regions. Note the separate y axes for CALIOP (left) and CAMS (right). The
numbers at the top and bottom of each panel represent the monthly climatology of low cloud cover (in %) from CERES and precipitation (in
cm) from the GPCP product, respectively, with the opacity of the numbers proportional to their magnitude. Datasets from June 2006 through
December 2021 are used to generate the monthly climatology.

culated (Choudhury and Tesche, 2022a; Block et al., 2024).
Since aerosol mass in pristine oceans consists primarily of
coarse-mode sea salt particles (Humphries et al., 2023; fourth
column in Fig. A1), αM is expected to be proportional to
MMRSS, as these coarse particles dominate light scatter-
ing. nCCN in CALIOP’s retrieval algorithm is proportional to
aerosol extinction coefficient (Shinozuka et al., 2015; Choud-
hury and Tesche, 2022a), so the seasonal nCCN cycles in
CALIOP for pristine oceans follow the variations in sea salt
aerosols. Given that sulfates are the primary contributors
to nCCN in these regions (Ayers and Gras, 1991; Gras and
Keywood, 2017; Humphries et al., 2023), the separation of
marine extinction coefficients in CALIOP into contributions
from sea salt and biogenic aerosols is crucial for accurately
representing nCCN cycles over pristine oceans. This sepa-
ration, however, requires precise quantification of their li-
dar ratios and depolarization properties (Tesche et al., 2009),
which is currently lacking. On the other hand, CAMS, which
can distinguish between different oceanic aerosol species

such as sulfates, hydrophilic organic matter, and sea salt, bet-
ter captures the overall nCCN variations in pristine marine en-
vironments.

Nevertheless, CAMS may significantly underestimate the
contribution of sea salt aerosols to oceanic nCCN (third col-
umn of Figs. 4 and A1), which can be as high as 8 %–51 %
of the total nCCN and may increase to 100 % at higher sur-
face wind speeds (Fossum et al., 2018). This underestimation
could stem from an underrepresentation of small-mode sea
salt aerosol mass in CAMS (see fourth column of Fig. A1).
Another plausible reason may be the size distribution as-
sumed in CAMS’s CCN-retrieval algorithm, which may not
accurately represent small-mode sea salt aerosols. Such fac-
tors likely contribute to the observed low nCCN values in
CAMS compared to in situ observations for SH oceanic do-
mains (see Fig. 2b). Additionally, the inaccurate represen-
tation of CCN generated from new particle formation pro-
cesses (McCoy et al., 2021; Mace et al., 2023, 2024) may
further contribute to the underestimation of CCN in CAMS.
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Figure 4. Monthly variations in cloud condensation nuclei concentration (nCCN), extinction coefficient (α), and mass mixing ratio (MMR)
for six oceanic domains. Blue lines represent marine aerosols in CALIOP and sea salt aerosols in CAMS, while brown lines represent
contributions from other aerosol species. Panels in the first and second column depict the marine and non-marine nCCN and α derived from
CALIOP, respectively. The third and fourth column show the sea salt and non-sea-salt nCCN and MMR derived from CAMS, respectively.
Datasets from June 2006 through December 2021 are used to generate the monthly climatology.

However, due to limited in situ observations across different
regions in the SH oceans, the contribution of these aerosol
species to total oceanic nCCN, as well as their seasonal vari-
ations across different oceanic regions, remains uncertain. It
is important to note that SH oceans are the primary contrib-
utor to global low-level cloud cover (see top of all panels
in Figs. 3 and A2b). These inconsistencies observed in the
global nCCN datasets in such cloud-rich regions demand fur-
ther improvements in the underlying CALIOP and CAMS
datasets, as well as in the associated CCN-retrieval algo-
rithms, to better constrain aerosol–cloud interactions.

2.3 Reconciling trends in nCCN and Nd

Quantifying trends in nCCN is crucial for comprehending the
present dynamics of radiative forcing due to ACIs and for
projecting future changes. Recent decades have witnessed
declining aerosol emission rates and aerosol loadings over

land (Collaud Coen et al., 2020; Quaas et al., 2022) and
oceans (IMO, 2019; Gryspeerdt et al., 2019) due to stricter
emission policies. An exception is the South Asia region,
where aerosol emissions have been increasing in the 21st
century (Jin et al., 2023). These emission trends are also ex-
pected to be reflected inNd because of their strong sensitivity
to changes in nCCN (McCoy et al., 2018; Quaas et al., 2022).
Therefore, we expect the annual trends in nCCN and Nd to be
similar to the emission trends.

Over NH regions, the emission trends are reflected in both
the nCCN datasets (Fig. 5a and b). As expected, all regions ex-
cept South Asia exhibit a declining nCCN trend (see Fig. 5c
and Table A1). The trends in Nd are also consistent with
those in nCCN from both CALIOP and CAMS (Fig. 5c),
with exceptions only observed over dust-influenced regions
(Northern Africa and West Asia). This discrepancy may be
attributed to the hydrophobic nature of fresh mineral dust,
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Figure 5. Comparison of global and regional trends computed using annual time series. (a) Trends in the cloud condensation nuclei concen-
tration (nCCN) derived from CAMS reanalysis. (b) Trends in nCCN from CALIOP. (c) Trends in cloud droplet number concentration (Nd)
derived from MODIS. (d) Regional trends in nCCN derived from CAMS reanalysis (blue), nCCN from CALIOP (red), and Nd from MODIS
(yellow) are compared. Dots in panels (a)–(c) indicate the grids where the trend is statistically significant. The absolute values of the trends
in panels (a)–(c) are shown in Fig. S3. Trends in nCCN from CALIOP and CAMS are produced using data from 2007 to 2021, while data
from 2007 to 2020 are used for Nd. Annual time series for the regional domains are provided in Fig. S4.

which may not readily act as CCN due to a lack of mixing or
coating with water-soluble aerosols (Garimella et al., 2014).

Over SH regions, CALIOP shows declining nCCN trends
across all domains. Nd trends are mostly negative as well
consistent with CALIOP, except for dust-influenced Aus-
tralia (Au) domain. Of particular interest are the spatially uni-
form and statistically significant increasing trends in CAMS-
derived nCCN at altitudes below 2 km over most SH oceanic
regions. This finding not only contradicts the negative trend
observed in Nd and CALIOP-derived nCCN but also the ex-
pected decreasing trend inferred from previous ship emis-
sion reports (Quaas et al., 2022). The trend even exists in
the mass mixing ratios in CAMS data (see Fig. S11), par-
ticularly corresponding to sulfate aerosol species. It is worth
noting that the increasing SH nCCN trends in CAMS coin-
cide with trends in AOD derived from MODIS (see Fig. A3).
Since MODIS AOD is used to constrain the CAMS aerosol
reanalysis (Inness et al., 2019a), a proportionality between
AOD and CAMS-derived nCCN is inherent in homogeneous
marine environments (Block et al., 2024) and may contribute
to the observed increasing trends in CAMS. These inconsis-
tencies over pristine oceans, where the trends in aerosol load-
ings differ between different spaceborne retrievals (Quaas
et al., 2022), question the representativeness of the nCCN
and Nd retrievals, making it challenging to derive their inter-
relationship, a parameter key to quantifying ACIs.

3 Conclusions

The comparative study presented here shows good consis-
tency between the independent CALIOP and CAMS global
nCCN datasets in continental environments. However, signif-
icant discrepancies emerge over most pristine oceans, not
only in nCCN climatology but also in their monthly and an-
nual variations. While the seasonal cycles of oceanic nCCN
derived from CAMS largely align with previous in situ ob-
servations (Gras, 1990; Ayers and Gras, 1991; Gras and Key-
wood, 2017; Humphries et al., 2023) and the variations inNd,
CAMS likely underestimates the contributions from sea salt
and secondary biogenic nCCN. In contrast, the seasonal nCCN
cycles in CALIOP are not representative, likely due to its in-
ability to resolve marine nCCN into sea salt and sulfate (from
biogenic emission) components.

The results, however, are completely opposite for annual
trends in nCCN and Nd. While trends in CAMS and CALIOP
generally agree across most NH regions, they diverge sig-
nificantly in the SH. CALIOP consistently shows a declin-
ing nCCN trend in these regions, which aligns with previous
reports (IMO, 2019; Gryspeerdt et al., 2019; Quaas et al.,
2022) and the decreasing trend in Nd, while CAMS exhibits
an anomalous increasing nCCN trend over SH oceans. This
geographically limited disagreement, restricted to pristine
oceans with limited in situ measurements, raises questions
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about the adequacy of aerosol inventories used by CAMS in
SH oceans, a known issue in climate models (Moore et al.,
2013). These discrepancies in cloud-rich pristine oceans are
particularly concerning because cloud properties in these
regions are highly sensitive to even small perturbations in
aerosol concentrations (Moore et al., 2013; Gryspeerdt et al.,
2023).

Caution should therefore be taken when using these nCCN
datasets in the pristine oceans of the SH. Future research ef-
forts should focus on first separating the sea salt and biogenic
components of marine aerosols in CALIOP and, second, on
accurately quantifying the sources and sinks of CCN and
their long-term cycles in remote SH oceans for improving the
representativeness of aerosol inventories in CAMS. An alter-
native approach could involve the further development of ad-
vanced data-driven techniques to derive global CCN dataset
(Redemann and Gao, 2024). These efforts are crucial to re-
fine the global nCCN datasets and ultimately to reduce the un-
certainties in ERFACI. In conclusion, the aerosol-limited en-
vironments of SH oceans are identified as a significant source
of uncertainty in the present effort to quantify a highly re-
solved global nCCN dataset.

Appendix A: Methods

A1 Global nCCN datasets

The CALIOP dataset provides nCCN at a supersaturation of
0.20 %. It is available on a uniform latitude–longitude grid
of resolution 2° by 5°, a vertical grid resolution of 60 m ex-
tending from mean sea level to a height of 8 km above mean
sea level, and a temporal resolution of 1 month. The dataset
is derived from more than 15 years of the CALIOP level 2
aerosol profile product from June 2006 to December 2021
(NASA/LARC/SD/ASDC, 2018). It is based on a CCN-
retrieval algorithm (Choudhury and Tesche, 2022a) that in-
tegrates the CALIOP-derived height-resolved information
on the aerosol-type-specific extinction coefficient and mi-
crophysical properties from CALIOP’s aerosol model with
the optical modelling capabilities of the MOPSMAP (Mod-
elled Optical Properties of enseMbles of Aerosol Particles;
Gasteiger and Wiegner, 2018) package. Essentially, the al-
gorithm adjusts the normalized size distributions within the
aerosol model to match the extinction coefficient. These ad-
justed size distributions are then used to estimate particle
number concentrations relevant for CCN activation. Aerosol-
type-specific CCN parameterizations are then applied to cal-
culate nCCN at a supersaturation of 0.20 % for continental
(comprising of clean, polluted, and smoke aerosols), dust,
and marine aerosols. The algorithm accounts for hygro-
scopic growth of hydrophilic aerosols (continental and ma-
rine aerosols) under humid conditions using the κ param-
eterization within the MOPSMAP package. Evaluations of
the algorithm have demonstrated good agreement with in-
dependent ground-based and airborne in situ measurements

across diverse geographic locations, with a combined nor-
malized mean bias of ≈ 22 % and a normalized absolute
error of ≈ 61 % (Choudhury et al., 2022; Choudhury and
Tesche, 2022b, 2023a; Aravindhavel et al., 2023). The result-
ing CALIOP-derived nCCN has also been utilized in quanti-
fying the CCN activation ratio for liquid clouds (Alexandri
et al., 2024).

CAMS nCCN dataset (Block et al., 2024) is derived from
CAMS aerosol reanalysis of mass mixing ratios (Inness et al.,
2019b) and provides nCCN at supersaturations ranging from
0.1 % to 1 %. The nCCN dataset retains the native resolution
of CAMS reanalysis data and is available on a uniform hor-
izontal grid of resolution 0.75° by 0.75° and a vertical grid
with 60 hybrid sigma–pressure levels extending from the sur-
face to 0.1 hPa. The CCN-retrieval algorithm in CAMS uti-
lizes a box-model framework (O’Connor et al., 2014; West
et al., 2014) to convert the mass mixing ratios of five aerosol
species – sulfate, mineral dust, black carbon (hydropho-
bic and hydrophilic), organic matter (hydrophobic and hy-
drophilic), and sea salt – into total number concentrations.
Subsequently, these concentrations are combined with nor-
malized size distributions derived from the aerosol module
of the European Centre for Medium-Range Weather Fore-
casts (ECMWF) Integrated Forecasting System (IFS) model
(Benedetti et al., 2009) to estimate the actual aerosol size
distribution. The size distributions of hydrophillic aerosols
are then coupled with auxiliary meteorological parameters
and used in modified Kappa-Köhler theory (Pöhlker et al.,
2023) to calculate the activated nCCN at various supersatu-
rations. Consistent with the CAMS model’s assumption of
completely hydrophobic dust with no consideration of inter-
nal mixing or external coating mechanisms, dust is excluded
in the CCN calculations. Initial validation results using sur-
face in situ CCN observations at continental and coastal
Atmospheric Radiation Measurement (ARM) network sites
have shown promising results, with an acceptable bias factor
of 1.29 (Block et al., 2024).

A1.1 Limitations of nCCN datasets

The CALIOP nCCN dataset is subject to uncertainties aris-
ing from errors in the underlying CALIOP products and ap-
proximations within the CCN-retrieval algorithm. Uncertain-
ties in CALIOP extinction coefficients can reach 30 %. As-
suming fixed aerosol-type-specific size distributions intro-
duces additional uncertainty, estimated to be a factor of 1.5–
2 (Choudhury and Tesche, 2022a). Further, the algorithm as-
sumes an aerosol-species-dependent fixed CCN activation ra-
dius (50 nm for continental and marine aerosols and 100 nm
for mineral dust at a supersaturation of 0.20 %). Using a fixed
CCN activation size (assuming all larger particles are CCN
active) may result in about a 20 % overestimation in the final
CCN product (Choudhury and Tesche, 2022b). Accounting
for all these limitations, the overall uncertainty associated
with the CALIOP-derived CCN dataset is expected to be a
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Figure A1. Monthly variations in the fractional contributions of different aerosol species to cloud condensation nuclei concentration (nCCN),
aerosol extinction coefficient (α), and mass mixing ratio (MMR) for six oceanic domains. Panels in the first and second column depict the
fractional nCCN and α contributions of different aerosol species (continental, marine, smoke, and dust) in CALIOP. The third and fourth
column show the fractional nCCN and MMR contributions of different aerosol species in CAMS (sulfate (SU), sea salt large (SSl), sea salt
medium (SSm), sea salt small (SSs), black carbon (BC), and organic matter (OM)). Datasets from June 2006 to December 2021 are used to
generate the monthly climatology. Fractional contributions for other regional domains are given in Figs. S5–S8.

Figure A2. Relating correlation between CALIOP and CAMS with global cloud cover. (a) Global map of Pearson’s correlation coeffi-
cient (ρ) between monthly mean cloud condensation nuclei concentration (nCCN) derived from spaceborne CALIOP and CAMS reanalysis
datasets. (b) Low-level cloud cover climatology (in %) derived from CERES SYN product.

factor of 2–3 (Choudhury and Tesche, 2023a). Moreover, the
CALIOP dataset is produced using only cloud-free aerosol
profiles. This can lead to sampling bias in regions with sig-
nificant cloud cover, potentially leading to the differences ob-
served between the CALIOP and CAMS datasets. However,

there appears to be no clear relationship between the correla-
tion of the CALIOP and CAMS nCCN datasets and the sam-
pling frequency of CALIOP (Fig. A4).

Similarly, uncertainties in the CAMS nCCN dataset may
stem from the source CAMS aerosol reanalysis product and
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Figure A3. Global map of annual trend in MODIS aerosol optical depth (AOD) derived using combined Dark Target and Deep Blue
algorithms. Panel (a) shows the trend in 10−3 yr−1 and panel (b) in % yr−1. Dots in each panel indicate the grids where the trend is
statistically significant. Data between 2007 and 2021 are used to estimate the trends.

Figure A4. Relationship between sampling frequency in CALIOP and correlation between the datasets. (a) Global map of number of days
with a valid aerosol retrieval observed by CALIOP within period of June 2006 to December 2021. (b) Median number of valid CALIOP
aerosol retrieval over oceans versus Pearson’s correlation coefficient between CALIOP and CAMS (ρCALIOP−CAMS). Error bars denote the
interquartile range. Each ρCALIOP−CAMS bin consists of 407 data points.

the CCN-estimation methodology. The CAMS aerosol prod-
uct is constrained by satellite-derived AOD retrievals, par-
ticularly the MODIS Dark Target and Deep Blue AOD re-
trievals at 0.55 µm (Platnick et al., 2017b) and Advanced
Along-Track Scanning Radiometer (AATSR)-retrieved AOD
(Popp et al., 2016). Therefore, uncertainties in AOD re-
trievals can propagate into the CAMS reanalysis and ul-
timately the nCCN product. Additionally, missing aerosol
sources in the CAMS emission inventory (Moore et al.,
2013; Errera et al., 2021) can introduce uncertainties, es-
pecially in remote areas with sparse observations, limiting
the effectiveness of emission parameterizations implemented
in the aerosol model. Furthermore, unlike the approach in
CALIOP, the CAMS-based retrieval excludes mineral dust.
Studies have demonstrated that mineral dust may be a po-
tential CCN source, particularly when coated or internally
mixed with water-soluble hydrophilic aerosols (Kumar et al.,
2009; Bègue et al., 2015). This exclusion may thus lead to an
underestimation in the final nCCN product.

A2 Spaceborne cloud and precipitation data

Nd data for low-level liquid clouds are derived from the
Moderate Resolution Imaging Spectroradiometer (MODIS)
aboard the Aqua polar-orbiting satellite (Gryspeerdt et al.,

2022). The dataset is available at a uniform spatial res-
olution of 1° by 1° with daily temporal resolution span-
ning July 2002–2020. Low-level cloud cover data are ob-
tained from the Clouds and the Earth’s Radiant Energy Sys-
tem (CERES) SYN Edition 4A monthly product (Doelling
et al., 2013). This product merges retrievals from CERES,
MODIS, and geostationary sensors to construct a global grid-
ded dataset suitable for studying aerosol–cloud interactions.
The dataset is operationally available at a latitude–longitude
resolution of 1° by 1° starting from July 2002.

Precipitation data are derived from the Global Precipita-
tion Climatology Project (GPCP) monthly product (Adler
et al., 2003). This product integrates rainfall data obtained
from several platforms, including satellites, in situ sound-
ings, and rain gauges, to generate a global monthly precipita-
tion dataset on a uniform horizontal resolution of 2.5° avail-
able from 1979.

A3 Data harmonization, trend estimation, and averaging
methodologies

CCN, cloud, and precipitation parameters are considered be-
tween latitudes of 65° N and 65° S. Data at higher latitudes
are not considered due to the uncertainties associated with
MODIS observations at high solar zenith angles (Grosvenor
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Table A1. Median cloud condensation nuclei (CCN) concentration (nCCN) at a supersaturation of 0.20 % in cm−3 with the interquartile range
in parentheses and annual nCCN trend in cm−3 yr−1 for various regions. Trends in bold indicate statistically significant trends (p < 0.05). In
situ nCCN observations and their corresponding references are also provided. Abbreviations are explained in the footnote.

Trend Trend
Region CALIOP nCCN CALIOP CAMS nCCN CAMS In situ nCCN In situ reference

Globe 274 (204, 387) −4.5 153 (84, 250) −1.4 – –
Land 483 (230, 1071) −3.5 276 (188, 398) −1 – –
Ocean 259 (200, 322) −1.9 130 (71, 183) −0.5 – –
NH 308 (213, 614) −6.2 221 (159, 343) −3.3 – –
NH land 510 (225, 1143) −4.4 296 (214, 447) −1.8 – –
NH ocean 275 (212, 395) −2 179 (147, 267) −1.9 – –
SH 257 (198, 315) −4.3 85 (44, 139) 0.7 – –
SH land 432 (245, 831) −2.5 186 (91, 276) 0 – –
SH ocean 250 (194, 299) −2.1 81 (41, 124) 0.8 – –
NAm 202 (138, 402) −4.9 265 (200, 318) −5.1 515 (154, 876) Shen et al. (2019)
NAf 837 (648, 1180) −4.1 302 (265, 371) −9.5 1505 (902, 2108) Désalmand (1987)
Eu 485 (324, 726) −14.2 253 (181, 361) −7.8 578 (91, 1065) Paramonov et al. (2015)
NAs 293 (226, 367) −1.3 271 (216, 313) −0.9 174 (109, 239) Asmi et al. (2016)
WAs 1464 (1066, 1734) −26.3 755 (543, 944) −3.5 – –
SAs 1920 (798, 3713) 24.4 893 (664, 1237) 15.9 1900 (777, 3023) Jayachandran et al. (2020)
SEAs 2297 (1142, 3649) −93.5 1256 (790, 1787) −37.3 2377 (1133, 3023) Shen et al. (2019)
NAt 291 (252, 346) −2.6 147 (138, 164) −2.9 191 (149, 233) Wood et al. (2017)
NEP 231 (197, 265) −1.8 150 (146, 155) −3.5 117 (37, 197) Brendecke et al. (2022)
Au 280 (202, 359) −3.2 54 (21, 119) −1.4 94 (51, 137) Humphries et al. (2023)
SAm 317 (213, 566) −13.9 174 (93, 230) 0.1 448 (71, 825) Shen et al. (2019)
SAf 1017 (379, 1751) −13.4 306 (218, 445) 1.7 552 (250, 854) Ross et al. (2003)
IO 236 (203, 268) −1.9 107 (92, 137) 1.2 – –
SAt 199 (167, 246) −3.6 90 (73, 152) 0.9 207 (94, 320) Redemann et al. (2021)
SEP 198 (173, 231) −1.6 93 (80, 110) 1.7 149 (85, 213) Allen et al. (2011)
SO 289 (185, 335) −2 36 (27, 57) 0.6 125 (76, 174) Humphries et al. (2023)

NAm: North America (20–65° N, 120–80° W); NAf: Northern Africa (10–30° N, 15° W–30° E); Eu: Europe (40–60° N, 10° W–35° E); NAs: North Asia (45–65° N,
40–120° E); WAs: West Asia (15–40° N, 35–60° E); SAs: South Asia (5–30° N, 65–90° E); SEAs: Southeast Asia (20–40° N, 95–125° E); NAt: North Atlantic
(10–35° N, 60–20° W); NEP: Northeast Pacific (20–45° N, 170–135° W); Au: Australia (35–15° S, 115–155° E); SAm: South America (55–10° S, 80–40° W); SAf:
Southern Africa (35–0° S, 10–40° E); IO: Indian Ocean (35–5° S, 55–110° E); SAt: South Atlantic (35–5° S, 30° W–5° E); SEP: Southeast Pacific (40–10° S,
135–90° W); SO: Southern Ocean (65–40° S, 30° W–180° E).

and Wood, 2014; Grosvenor et al., 2018) and the lack of val-
idation for CALIOP retrievals at these latitudes. Horizontal
grids of all datasets are harmonized by transforming them to
the coarser 2° by 5° latitude–longitude grid of CALIOP us-
ing bilinear interpolation. We exclude CAMS data in grids
surrounding Mauna Loa and Altzomoni due to documented
biases in CAMS aerosol emission datasets over these regions
(Inness et al., 2019a).

To specifically focus on the liquid clouds, which are most
relevant for aerosol–cloud interactions, average nCCN values
between altitudes of 0–2 km are considered in this study. Ad-
ditionally, a supersaturation of 0.20 % is selected because
this value represents a characteristic supersaturation near the
base of liquid clouds. Temporal averages of CALIOP data
are weighted by the number of valid aerosol retrievals within
each grid cell (Choudhury and Tesche, 2023a). Horizontal
averages in CALIOP and CAMS are weighted by the area of
the latitude–longitude grids. Trends in nCCN and Nd are es-
timated using the non-parametric Mann–Kendall trend test,

as it does not require any assumptions about the distribution
of the time series data and is more robust in handling outliers
(Mann, 1945; Kendall, 1975). Annual trends computed using
linear regression are shown in Fig. S4. Monthly and annual
statistics are calculated using data between 2007 and 2021
for CALIOP- and CAMS-derived nCCN and between 2007
and 2020 for MODIS-derived Nd.

Data availability. All datasets used in this
work are open-source. The CALIPSO Level 2
Aerosol Profile product can be downloaded from
https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_05KMAPRO-
STANDARD-V4-20 (NASA/LARC/SD/ASDC,
2018). CALIOP CCN data can be accessed at
https://doi.org/10.1594/PANGAEA.956215 (Choudhury and
Tesche, 2023b). CAMS mass mixing ratios were acquired from
the Copernicus Atmosphere Monitoring Service (CAMS) Atmo-
sphere Data Store (ADS) (https://ads.atmosphere.copernicus.eu/
datasets/cams-global-reanalysis-eac4-monthly?tab=overview,
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last access: 25 December 2024; Inness et al., 2019b).
CAMS-derived CCN data can be downloaded from
https://doi.org/10.26050/WDCC/QUAERERE_CCNCAMS_v1
(Block, 2023). The CERES SYN level 3 product can be
downloaded from 10.5067/TERRA+AQUA/CERES/SYN1DE
(NASA Langley Research Center, 2021). MODIS-derived
cloud droplet number concentrations can be downloaded from
https://doi.org/10.5285/864a46cc65054008857ee5bb772a2a2b
(Gryspeerdt et al., 2022). The MODIS Aqua aerosol product
(https://doi.org/10.5067/MODIS/MYD08_M3.061, Platnick et al.,
2017a) is obtained from the Level-1 and Atmosphere Archive
and Distribution System (LAADS) Distributed Active Archive
Center (DAAC), located in the Goddard Space Flight Cen-
ter in Greenbelt, Maryland (https://ladsweb.nascom.nasa.gov/,
last access: 30 March 2025). Global Precipitation Climatol-
ogy Project (GPCP) monthly precipitation data are available
at https://doi.org/10.24381/cds.c14d9324 (Copernicus Climate
Change Service, 2021).

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/acp-25-3841-2025-supplement.
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