Articles | Volume 25, issue 4
https://doi.org/10.5194/acp-25-2291-2025
https://doi.org/10.5194/acp-25-2291-2025
Research article
 | 
21 Feb 2025
Research article |  | 21 Feb 2025

Identifying missing sources and reducing NOx emissions uncertainty over China using daily satellite data and a mass-conserving method

Lingxiao Lu, Jason Blake Cohen, Kai Qin, Xiaolu Li, and Qin He

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1903', Anonymous Referee #1, 09 Aug 2024
  • RC2: 'Comment on egusphere-2024-1903', Anonymous Referee #2, 28 Aug 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Jason Cohen on behalf of the Authors (28 Oct 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (19 Nov 2024) by Carl Percival
RR by Anonymous Referee #2 (20 Nov 2024)
ED: Publish as is (03 Dec 2024) by Carl Percival
AR by Jason Cohen on behalf of the Authors (07 Dec 2024)  Manuscript 
Download
Short summary
This study applies an approach that assimilates NO2 vertical column densities from TROPOMI in a mass-conserving manner and inverts daily NOx emissions, presented over rapidly changing regions in China. Source attribution is quantified by the local thermodynamics of the combustion temperature (NOx/NO2). Emission results identify sources which do not exist in the a priori datasets, especially medium industrial sources located next to the Yangtze River.
Share
Altmetrics
Final-revised paper
Preprint