

Supplement of

Identifying missing sources and reducing NO_x emissions uncertainty over China using daily satellite data and a mass-conserving method

Lingxiao Lu et al.

Correspondence to: Jason Blake Cohen (jasonbc@alum.mit.edu, jasonbc@cumt.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

NO _x /NO ₂	INTAC _{0%}	INTAC30%
20%	2.76	2.68
50%	6.30	6.24
80%	14.6	14.9
Lifetime (days)	INTAC _{0%}	INTAC30%
20%	0.29	0.27
50%	0.48	0.48
80%	0.68	0.73
Transport (km)	INTAC _{0%}	INTAC _{30%}
20%	-322.	-289.0
50%	18.1	16.3
80%	351.	314.

Table S1: The 20th, 50th,80th percentile ranges of three coefficients from INTAC_{0%} and INTAC_{30%}.

Different sources (Number)	From 1 to 5	From 5 to 10	Above 10
Biomass Burning (30)	22%	48%	30%
Cement Factories (99)	29%	36%	35%
Heat Production and Supply (195)	34%	42%	24%
Steel and Iron Factories (85)	24%	24%	52%
Power Plants (104)	20%	40%	40%

Table S2: The account of grids from different sources over which the median values of NO_x/NO₂ are from 1 to 5, from 5 to 10 and above 10.

Region 1	Cities	Mean	25th	75th
1	Beijing	3.35	1.65	4.27
2	Tianjin	4.70	2.64	5.70
3	Tangshan	5.01	2.63	6.02
4	Jinan	3.75	2.36	4.38
5	Zibo	3.81	2.26	4.55
6	Jining	3.29	2.28	3.90
7	Heze	2.90	2.04	3.51
8	Qingdao	2.79	1.74	3.44
9	Xuzhou	2.86	2.04	3.45
10	Shijiazhuang	3.76	2.28	4.64
11	Xingtai	3.55	2.39	4.26
12	Handan	3.76	2.39	4.38
13	Lianyungang	2.86	2.04	3.44
Region 2	Cities	Mean	25th	75th
14	Shanghai	4.62	2.13	5.81
15	Suzhou	3.28	1.82	4.07
16	Wuxi	2.67	1.66	3.25
17	Changzhou	3.08	1.97	3.55
18	Nanjing	3.08	1.65	3.27
19	Ma'anshan	2.56	1.66	2.88
20	Wuhan	2.66	1.31	2.62
21	Hangzhou	1.74	0.89	2.07
22	Ningbo	2.03	1.16	2.27
Region 3	Cities	Mean	25th	75th
23	Xiamen	2.73	1.50	3.40
24	Shantou	2.14	1.57	2.34
25	Dongguan	4.15	2.61	4.66
26	Foshan	4.11	1.98	4.74
27	Hongkong	4.38	2.17	5.07
28	Macao	2.98	1.78	4.14
29	Guangzhou	3.30	1.65	3.75
30	Beihai	1.46	1.07	1.58

Table S3: The 25th percentile, mean, and 75th percentile values of day-by-day and grid-by-grid emissions (T/day) for 30 cities.

Figure S1: The distributions of three key coefficients obtained from INTAC_{0%} and INTAC_{30%}: a) NO_x/NO₂, b) Lifetime [hours], c) Transport [km]. The ratio of (INTAC_{30%}-INTAC_{0%})/INTAC_{0%} is also displayed on: d) NO_x/NO₂, e) Lifetime [hours], f) Transport [km].

Figure S2: Map of median values in 12 months overlaid by the different types of sources: a) Biomass Burning,b) Cement Factories, c) Heat Production and Supply, d) Steel and Iron Factories, e) Power Plants.

Figure S3: The TROPOMI NO₂ column data is perturbated by a random factor 40% herein called [TO_{40%}] to represent its range of uncertainty. The results are displayed for annual mean of emissions of a) TO_{0%}, b) TO_{40%}, and annual mean of error of c) TO_{0%}, d) TO_{40%}, and the annual mean of e) (TO_{0%}-TO_{40%})/TO_{0%}.

Figure S4: a) The PDF of NO_x emissions $[\mu g/m^2/s]$ over all individual days and grids of TO_{0%} and TO_{40%}, b) The 20th, mean and 80th values across different months of TO_{0%} and TO_{40%}, and c) The time series of the spatial median values of TO_{0%} and TO_{40%} for whole year.

